| (19) |
 |
|
(11) |
EP 1 752 726 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
21.04.2010 Bulletin 2010/16 |
| (22) |
Date of filing: 11.08.2005 |
|
| (51) |
International Patent Classification (IPC):
|
|
| (54) |
Transfer system for liquid metals
Übergabesystem für flüssige Metalle
Système de transfert pour méteaux liquides
|
| (84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE
SI SK TR |
| (43) |
Date of publication of application: |
|
14.02.2007 Bulletin 2007/07 |
| (73) |
Proprietor: ALUAR Aluminio Argentino S.A.I.C. |
|
1058 BUENOS AIRES (AR) |
|
| (72) |
Inventor: |
|
- Daroqui, Fernando Luis
Puerto Madryn, Provincia de Chubut (AR)
|
| (74) |
Representative: Ghioni, Carlo Raoul Maria et al |
|
c/o Bugnion S.p.A.
Viale Lancetti 17 20158 Milano 20158 Milano (IT) |
| (56) |
References cited: :
EP-B- 0 777 844
|
US-A- 4 531 717
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The invention relates to a transfer system for liquid metals such as aluminum, zinc
and magnesium. The invention also refers to a method of transferring liquid metals
using the transfer system.
Description of the Related Art
[0002] The use of canals in the transfer of liquid metals from the furnace to the casting
machine is widely known and used. In the past, these canals were made of refracting
concrete but the use of such material generated a great loss of temperature in the
liquid metal during its transfer. Due to the enormous amount of materials available
nowadays, there are at least two conditions that must comply when choosing the correct
material in the process of making the canals. The first condition that a chosen material
chosen must comply is that the loss of temperature of the liquid metal when transferred
from the furnace to the casting machine must be minimum. The second condition that
a chosen material must meet is the resistance to chemical attack deriving from the
molten metal transferred.
[0003] Most of the processes that in the past where made inside the furnace were converted
into continuum process incorporating specific equipments for filtering and removing
contaminating gases for the metal. Due to this modification, the length of the canals
transporting the melted metal had to be lengthened, increasing therefore the loss
of temperature during the transfer of liquid metal. In order to reduce such loss of
temperature, the common solution was to increase the temperature of the liquid metal
at the furnace, rendering a reduced loss of temperature of the liquid metal during
its transfer. However, this obvious solution made the liquid metal to oxidize at a
faster rate, rendering it to a more chemical aggressive material hence reducing the
life of the canals. It is also important to mention that the increase of temperature
in the liquid metal generated the incorporation of several contaminants such as hydrogen
which solubility increased with the rise of the temperature.
[0004] At the late 70's, ceramic fibers were incorporated into the world of technological
material. By using ceramic fibers in the construction of canals, the results of durability
were surprisingly increased. However, the use of such canals was only useful in short
casting process usually lasting between 4 to 5 hours. After that period the canals
had to be replaced. As the use of aluminum was increased over time, the industry developed
new equipments known as continuous casting machines, where the duration of the casting
process can last up to several days.
[0005] The problem encountered, when using the canals made of ceramic fiber in the continuous
casting process, was that after every casting period the canals had to be replaced,
therefore generating an increase in the final cost of the product. A partial solution
to such problem was to develop canals using materials with increased resistance to
the chemical attack but the problem encountered then was that using such materials
also increased the loss of temperature in the liquid metal. Therefore, the canals
included improved thermal insulation in order to obtain a satisfactory result. However,
at the beginning of the continuum casting process the use of gas burners had to be
applied in such process. Gas burners are widely known and use in the casting process,
but it is also widely known that the expose of a material to a constant and powerful
flame stream reduced the life term of such material producing cracks and clefts. Alternatively,
in the near zones of the burners it could be found a temperature difference within
several hundreds of degrees which generates tensions and micro cracks shortening the
life term of the canal. In order to avoid the use of gas burners to maintain the temperature
with in the canal, the use of electrical heaters were implemented reducing the deterioration
of the canal.
[0006] Due to the constant deterioration of the canals and the casting equipment where the
liquid metal passes through, the maintenance schedule to follow in order to continue
with the normal casting procedure requires several stopping times, which is inadmissible
in continuous casting process. By using conventional canals, the average temperature
of the liquid metal is sometimes greater than 100°C which is more that the normal
temperature needed for casting. This represents a loss of 5° to 10°C by meter in the
length of the canal. This loss of temperature can also generate the reduction or even
the loss of the casting process. In the event that the casting process includes several
hours, the interruption of a casting process due to parametrical miscalculations in
the process can generate an important economic damage.
[0007] As stated before, transferring canals are made of ceramic fibers and the same are
placed in a metal cradle which is used to support the canal and abut the canal with
an adjacent one by means of a bridle in order to conform a full canal for transferring
the liquid metal. Another important factor to consider is the great difference between
the thermal expansion coefficient of the canal and the metal cradle, which generates
metal leaks in the junction between abutting canals increasing the leakage during
several casting processes.
[0008] Another important factor to consider is the level of the liquid metal during the
transfer between the furnace and the casting machine. When the liquid metal gets in
contact with the mould a thin layer of solid is formed which contains the remaining
of the liquid metal. This is a dynamic process where the solid layer generated is
removed at constant speed and the new liquid metal arrives at the mould. The quality
of the obtained piece depends mostly on the stability of the solid/liquid interaction
and its contact with the mould in the process of solidification. The variation in
the metal level at the feeding system of the moulds modifies the liquid pressure and
disarrays the contact between the thin solid layer and the mould. The final result
becomes a noticeable reduction in the length of the casting process
SUMMARY OF THE INVENTION
[0009] The present invention relates to a transfer system for liquid metal from a furnace
to a casting machine wherein the system lengthens the life term of the transfer canal
while used on several casting process.
[0010] The present invention also relates to
[0011] a method for controlling the liquid metal transfer between a furnace and a casting
machine allowing to automatically maintaining the liquid metal level during said liquid
metal transfer.
[0012] The above-discussed and other features and advantages of the present invention will
be appreciated and understood by those of ordinary skill in the art from the following
detailed discussion and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] Referring now to the drawings, wherein like elements are numbered alike in the several
FIGURES:
FIG. 1 a schematic view of the system in accordance with the present invention;
FIG. 2 is a front elevation view, partly in cross-section, of a canal in accordance
with the present invention;
FIG. 3 is a schematic drawing of the use of the method of the present invention with
the system of FIG. 1.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0014] Referring initially to FIG. 1 the transfer system of the present invention comprises
a central operation panel 2 which controls and commands a PLC (Programmable Logic
Controller) 3. As stated on FIG. 1, the PLC controls the performance of a hydraulic
central 4 which commands the movement of a balanced valve 5. This balanced valve actuates
on a hydraulic cylinder 6 controlling the tilt of a casting furnace 7.
[0015] A laser sensor 8 detects the liquid metal level in the conduit 9 when the liquid
metal is poured from the furnace 7 towards the casting machine 22 (FIG. 3). The data
acquired by the laser sensor 8 is sent to the PLC 3 to adjust the furnace's tilting.
The sensor 8 must be configured to detect the presence of liquid metal at a pre settled
level bearing that the level 0 is the base of the canal. Said level can be settled
according to the specific configuration of the casting process. The laser sensor 8
should be placed near the outlet of the furnace 7 but said sensor 8 can be used in
any available position where it can be determined the level of the liquid metal in
the conduit 9.
[0016] Making reference to FIG. 3, the conduit 9 is build based on a plurality of adjacent
canals 10 abutted each other by means of nuts and bolts. Between every abutment a
compressible gasket I made of ceramic fiber is placed in order to reduce the leakage
of the liquid metal once is transferred from the furnace 7 towards the casting machine
22. Any skilled in the art could notice that the use of bolts and nuts as a mean for
abutting several canals 10 in order to make the conduit 10 is just an example and
that any means for joining two or more canals such as welding, riveting, clinching
and so, can be used without leaving the scope of the present invention. However, it
is preferable to use any means to adjoin two or more canals that will allow performing
a fast replacement of the damaged canals and thus maintaining the modular condition
of the conduit 9.
[0017] The canal 10 showed in FIG. 2 comprises a first U shape profile 12 in which a second
U shape profile 14 is placed, being separated both profiles by an insulate layer 13.
The profile 14 defines a path for the liquid metal to be transferred from the furnace
7 to the casting machine 22. In the present embodiment, the first profile 12 is made
of a steel alloy while the second profile 14 is made of a refracting ceramic material.
Moreover, the insulated layer 13 can be made of any insulate material such as fiber
glass, ceramic fiber, microporous insulation panels, asbestos, refracting mud or the
combination thereof. A lid 15 is placed on top of first and second profiles protecting
the edges of such profiles from breakage when cleaning the conduit 10 once the casting
process is over.
[0018] As seen on FIG. 2, a cover 17 is attached with a hinge 18 to the first profile 12.
The cover is actuated by pneumatic or hydraulic means (not shown) controlled by said
PLC 3. Said cover includes heat generating means 16 attached to the internal portion
of the cover by an insulate layer 19. The insulate layer 19 can be made of the same
material as the insulated layer 13. Said heat generating means 16 are defined by electric
resistance heating elements 20 enclosed in metal tubes that emit heat in the form
of infrared rays. Even though the number of electrical resistance heating elements
20 illustrated in FIG. 2 are only two, the number of such heating elements 20 can
be as many as needed depending on the particular casting process. On the other hand,
even if it is possible to replace said heating elements 20 with gas burners, the use
of such gas burners can compromise the safety of the whole casting line. However,
the use of heating elements 20 as means for generating heat in the canals 9 cannot
be considered as limiting the scope of the invention, since it will be obvious to
any skilled in the art replacing the heating elements 20 by any other heating source
available. As seen on FIG 3, the transfer system of the present invention comprises
at least two heat sensors 23. Said sensors 23 are placed preferably one near the outlet
of the furnace 7 and the other near the inlet of the casting machine 22. This sensor
deployment allows the system to strictly control any differential of temperature along
the total transfer of the liquid metal over the conduit 10. It can be appreciated
that the use of more than two heat sensors is included within the bound of the scope
of the invention, since it will be obvious to any skilled in the art to notice that
the greater the number of heat sensors the better the result in maintaining the temperature
level would be. On the other hand, the heat sensors 23 can be any sensor commercially
available such as laser beam sensor, thermocouple or a combination of both.
[0019] From the safety point of view, the transfer system includes a complex electrical
wiring (not shown) including current and voltage detectors that controls any variation
such as in the heating elements 20 or heat sensors 23, allowing the operator of the
casting line to control the temperature process. As it is shown in FIG. 2, canals
9 are placed over a double T beam 21. Such beam 21 is used as a strong and firm support
platform for the total length of the conduit 10.
[0020] For a better comprehension of the present invention, an explanation of the use and
functionality of the whole system will be explained in detail using all the figures
mentioned before. As every casting process, the same begins at the furnace 7. The
metal in liquid form is placed inside said furnace 7 kept at a melting point until
it is ready to be poured in the conduit 10. For the present embodiment, the casting
process will be explained using aluminum as the metal to be transferred. The aluminum
in liquid form is kept in the furnace at approximately 720 °C. Once the furnace 7
is tilted the pouring of the liquid metal in the conduit 10 occurs. This pouring method
is based on a gravity pouring and the tilting degree is graduated and maintained by
the hydraulic cylinder 6. Once the furnace 7 is tilted and the pouring begins, the
laser sensor 8 controls the level of the metal poured and acquires data about the
minimum and maximum levels and sends them to the PLC unit 3. The PLC unit then verifies
that said data sent by the sensor 8 is within the parameters already configured in
the PLC unit. In the event that the data sent by the sensor 8 is either over or below
the parameters configured, the PLC unit sends the instructions to the hydraulic central
4 to command, by means of the balanced valve 5, the corresponding hydraulic cylinder
6 to either increase or decrease the tilt degree of the furnace 7. Once the data sent
by the sensor 8 is within the parameters configured in the PLC unit, the tilting of
the furnace 7 stops.
[0021] Once the liquid metal starts flowing through the conduit 10 in order to reach the
casting machine, the breach in the temperature from the furnace's outlet and from
the casting machine's inlet is increased proportionally to the length of the conduit
10. Therefore, sensors 23 gather the temperature in both places and each one sends
the information to the PLC unit. The PLC unit compares the data received with the
parameters previously configured. In the event that the temperature drops a few degrees,
the PLC unit sends the instructions to a hydraulic center (not shown) which commands
the closing of the covers 17 in order to reduce the loss of temperature. If the temperature
keeps dropping the sensors 23 detect such drop and send the information to the PLC
unit. Afterwards, the PLC unit processes the information and controls the ignition
of the heating elements 20 in order to rise and maintain the heat of the liquid metal
within the temperature parameters. In order to keep the temperature as homogenous
as possible in the total length of the conduit 10, the PLC unit can individually control
the ignition of the heat elements 20 in each canal 9, thus keeping a stricter control
on the temperature range.
[0022] Once the casting procedure is finished, which as stated before it could last several
days, the maintenance routine commences. This routine comprises the complete checking
and control of each and every canal 9. In the event that one or more canals 9 show
any sign of major attrition such canal can be easily replaced by a new one thanks
to the modular construction concept that the conduit 10 has. On the other hand, if
one or more canals 9 shows any small sign of ware, such as cracks in the ceramic fiber
surface in the second profile, the same can be replaced
in situ. This is possible since each canal has an easy construction configuration which allows
the replacement of any part involved in the construction of the canal 9. As experience
shows, the second profile is the part which suffers greater deterioration between
several casting processes. Fixing
in situ or replacing such second profile reduces the costs of maintenance of the casting
process.
[0023] Finally, it is important to mention that even though the length of the canals 9 was
not mentioned, the same can vary depending on the casting line to be used and also
said canals can be formed in different shapes, not only straight line canals, but
also Y shaped canal, curves or any desirable form needed to evade any obstacle in
the process of building a casting line.
1. A method for controlling the transfer of liquid metal from a furnace to a casting
machine wherein comprises the steps of:
a) tilting the furnace to a degree until the liquid metal is poured into a conduit;
b) obtaining the level information in said conduit by means of a level sensor (8);
c) sending the data obtained by said level sensor to a programmable logic controller
(3);
d) controlling the tilt degree of the furnace by comparing the data sent by the level
sensor and the data already pre programmed;
e) controlling the temperature of the liquid metal near inlet and near outlet of the
conduit and sending the temperature data to the PLC (3);
f) activating a hinged covers (17) in case the differential temperature is below a
level pre settled in the programmable logic controller;
g) igniting heat generator means (16) in the event that the temperature is still below
the pre settled level even after the hinged cover was activated;
h) regulating the temperature by activating individually said hinged covers and said
heat generator means.
2. The method according to claim 1 wherein comprise the additional steps of:
a) increasing the tilt degree of the furnace in the event that said level detector
detects a decrease in the level of the liquid metal in the conduit.
b) decreasing the tilt degree of the furnace in the event that said level detector
detects an increase in the level of the liquid metal in the conduit.
3. The method according to claim 1 wherein the activation of said hinged cover is strictly
related to data supplied by the heat sensor to the programmable logic controller.
4. A system for performing the method of claim 1 comprising:
- a PLC (3) controlled by a central operation panel (2);
- a hydraulic central system (4) operatively connected to a balanced valve (5) acting
on a hydraulic cylinder (6) on command of the PLC (3) for tilting the furnace to a
degree so that the liquid metal is poured into a conduit (10);
- a laser level sensor (8) for detecting the level of the liquid metal running through
the conduit, said' level sensor (8) being connected to said PLC (3) for sending the
level information in said conduit;
- said PLC (3) being able to verify that said level information is within parameters
already configured in the PLC (3) and being able to send instructions to the hydraulic
central system (4) for commanding said hydraulic cylinder (6) for adjusting the tilt
degree of the furnace (7);
- at least two heat sensors (23) for determining the differential temperature of the
liquid metal along the conduit (10) and sending the temperature data to the PLC (3);
- a cover (17) actuated by pneumatic or hydraulic means controlled by said PLC (3)
for being closed in case the detected differential temperature is below a level pre
settled in the PLC (3);
- said cover (17) including heat generating means (16) attached to the internal portion
of the cover by an insulate layer (19);
- said PLC (3) being able to process the temperature data for igniting the heat generator
means (16) in order to rise and maintain the heat of the liquid metal within preset
parameters.
5. The system according to claim 4 wherein said a conduit (9) comprises at least a canal
(10) containing a first profile (12) and a second profile (14) within said first profile
(12).
6. The system according to claims 4 and 5 wherein a plurality of said canals (10) is
abutted each other by attaching means such as nuts and bolts, welding, bridle, defining
a modular conduit.
7. The system according to claim 4 wherein said at least one level sensor (8) is placed
in the vicinity of the furnace's outlet.
8. The system according to claim 5 wherein the first profile (12) and the second profile
(14) of the canal (10) are U shaped, said two profile (12, 14) being separated by
an insulate layer (13), said second u shaped profile (14) defining a path fro the
liquid metal to be transferred from the furnace (7) to the casting machine, said cover
(17) being attached with a hinge (18) to the first U shaped profile (12).
9. The system according to claim 8 wherein said first U shaped profile (12) is attached
to a double T beam.
10. The system according to claim 8 wherein the insulate layer (13) is made of fiber glass,
ceramic fiber, microporous insulation panels, asbestos, refracting mud or the combination
thereof.
11. The system according to claim 8 wherein said first U shaped profile (12) is made of
a steel alloy.
12. The system according to claim 8 wherein said second U shaped profile (14) is made
of any of fiber glass, ceramic fiber, microporous insulation panels, asbestos, refracting
mud or the combination thereof.
13. The system according to claim 4 wherein said heating generator means (16) are electric
resistance heating elements (20) enclosed in metal tubes that emit heat in the form
of infrared rays.
14. The system according to claim 8 wherein a lid (15) is placed on top of first and second
profiles (12, 14) protecting the edges of such profiles from breakage.
15. The system according to claim 8 wherein said hinged cover (17) attached to said first
U shaped profile (12) is actuated by hydraulic means.
16. The system according to claim 8 wherein the canal (10) comprises said heat sensors
(23) placed on either ends of the canal.
17. The system according to claim 16 wherein said heat sensors (23) are one of a laser
beam sensors, a thermocouples or a combination of both.
1. Übergabe-System für Flüssigmetalle aus einem Ofen in eine Gießmaschine, umfassend
die Schritte:
a) Kippen des Ofens um einen Winkel, das ausreichend ist, das Flüssigmetall in eine
Leitung einzugießen,
b) Einholen von Daten über den Flüssigkeitsfüllstand in der genannten Leitung mittels
eines Füllstandsensors (8),
c) Zuführen der durch den genannten Füllstandsensor erhaltenen Daten einer PLC-Steuerung
(3),
d) Überprüfen des Kippengrads des Ofens durch Vergleich der von dem genannten Füllstandsensor
gesendeten Daten mit den vorprogrammierten Daten,
e) Ermitteln der Temperatur des Flüssigmetalls nahe am Leitungseinlass und -auslass
sowie Zuführen der Temperaturdaten der PLC-Steuerung (3),
f) Antrieb einer eingehängten Kappe (17), falls die Differentialtemperatur unterhalb
eines in der PLC-Steuerung vorbestimmten Pegels liegt,
g) Einschalten eines Wärmeerzeugers (16), falls die Temperatur noch unterhalb des
vorbestimmten Pegels liegt, nachdem die eingehängte Kappe angetrieben worden ist,
h) Einstellen der Temperatur durch individuellen Antrieb der genannten eingehängten
Kappe sowie des genannten Wärmeerzeugers.
2. System nach Anspruch 1, umfassend die zusätzlichen Schritte:
a) Erhöhung des Kippwinkels des Ofens, falls der genannte Füllstands-Sensor eine Füllstandsenkung
des Flüssigmetalls in der Leitung ermittelt,
b) Herabsetzung des Kippwinkels des Ofens, falls der genannte Füllstands-Sensor einen
Füllstandanstieg des Flüssigmetalls in der Leitung ermittelt.
3. System nach Anspruch 1, wobei die Ansteuerung der genannten eingehängte Kappe eng
von Daten abhängt, die vom Wärmefühler der PLC-Steuerung zugeführt werden.
4. Anlage zur Durchführung des Systems nach Anspruch 1, umfassend:
- eine durch eine Zentralbedienplatte (2) gesteuerte PLC-Steuerung (3),
- ein zentrales hydraulisches System (4), das mit einem Entlastungsventil (5) operativ
verbunden ist, welches vom PLC (3) gesteuert auf einen Hydraulikzylinder (6) derart
zum Kippen des Ofens wirkt, dass das Flüssigmetall um einen Winkel dermaßen kippt,
dass das Flüssigmetall in eine Leitung (10) eingegossen wird,
- einen Laserfüllstandsensor (8) zum Ermitteln des Füllstandes des durch die Leitung
fließenden Flüssigmetalls, wobei der genannte Füllstandsensor (8) mit der genannten
PLC-Steuerung (3) zum Zuführen der Füllstanddaten betreffend die genannte Leitung
verbunden ist,
- wobei die genannte PLC-Steuerung (3) feststellen kann, ob die genannten Füllstanddaten
innerhalb von in der PLC-Steuerung (3) vorbestimmten Parametern liegt, und sie ist
ferner imstande, dem hydraulischen System (4) Befehle zum Steuern des genannten Hydraulikzylinders
(6) zu senden, um den Kippwinkel des Ofens (7) einzustellen,
- wenigstens zwei Wärmefühler (23), um die Differentialtemperatur des Flüssigmetalls
entlang der Leitung (10) festzustellen und die Temperaturdaten der PLC-Steuerung (3)
zuzuführen,
- eine Kappe (17), die von pneumatischen bzw. hydraulischen durch die genannte PLC-Steuerung
(3) gesteuerten Mitteln angetrieben wird, welche geschlossen wird, falls die ermittelte
Differentialtemperatur unterhalb eines in der PLC-Steuerung (3) vorbestimmten Wertes
liegt,
- wobei die genannte Kappe (17) Wärmeerzeuger (16) umfasst, die mit der inneren Seite
der Kappe über eine Isolierschicht (19) verbunden ist,
- wobei die genannte PLC-Steuerung (3) zum Bearbeiten der Temperaturdaten ausgelegt
ist, um die Wärmeerzeuger (16) derart einzuschalten, dass die Wärme des Flüssigmetalls
erhöht und innerhalb von vorbestimmten Parametern gehalten wird.
5. Anlage nach Anspruch 4, wobei die genannte Leitung (9) wenigstens einen Kanal (10)
umfasst, der ein erstes Profil (12) und ein zweites Profil (14) innerhalb des genannten
ersten Profils (12) enthält.
6. Anlage nach Anspruch 4 und 5, wobei mehrere unter den genannten Kanälen (10) aneinander
über Befestigungsmittel wie Muttern, Bolzen, Schweißen, Sperren befestigt sind, sodass
eine Modulleitung gebildet wird.
7. Anlage nach Anspruch 4, wobei der genannte wenigstens eine Füllstandsensor (8) in
der Nähe des Ofenauslasses angeordnet ist.
8. Anlage nach Anspruch 5, wobei das erste Profil (12) und das zweite Profil (14) des
Kanals (10) U-förmig sind, wobei die genannten zwei Profile (12, 14) durch eine Isolierschicht
(13) voneinander getrennt sind, wobei das genannte zweite U-förmige Profil (14) einen
Weg zur Übergabe des Flüssigmetalls vom Ofen (7) der Gießmaschine bildet, und wobei
die genannte Kappe (17) mit dem ersten U-förmigen Profil (12) über ein Gelenk (18)
verbunden ist.
9. Anlage nach Anspruch 8, wobei das genannte U-förmige Profil (12) an einem Doppel-T-Träger
befestigt ist.
10. Anlage nach Anspruch 8, wobei die Isolierschicht (13) aus Glasfasern, Keramik fasern,
mikroporösen Isolierpaneelen, Asbest, feuerfestem Schlamm, oder deren Kombination
besteht.
11. Anlage nach Anspruch 8, wobei das genannte erste U-förmige Profil (12) aus einem Stahllegierung
besteht.
12. Anlage nach Anspruch 8, wobei das genannte zweite U-förmige Profil (14) aus irgend
einem unter Glasfasern, Keramik fasern, mikroporösen Isolierpaneelen, Asbest, feuerfestem
Schlamm, oder deren Kombination besteht.
13. Anlage nach Anspruch 4, wobei die genannten Wärmeerzeuger (16) in Metallrohren enthaltene
Elektrowiderstandheizelemente (20) sind, die Wärme in Form von Infrarotstrahlen abgeben.
14. Anlage nach Anspruch 8, wobei ein Deckel (15) auf der Oberseite der ersten bzw. der
zweiten Profile (12, 14) angeordnet ist, der die Ränder der genannten Profile schützt.
15. Anlage nach Anspruch 8, wobei die genannte am genannten ersten U-förmigen Profil (12)
befestigte eingehängte Kappe (17) durch Hydraulikmittel angetrieben wird.
16. Anlage nach Anspruch 8, wobei der Kanal (10) an dessen beiden Enden die genannten
Wärmefühler (23) enthält.
17. Anlage nach Anspruch 16, wobei die genannten Wärmefühler (23) eine unter einem Laserbündelsensor,
einem Thermopaar, oder einer Kombination derselben sind.
1. Méthode pour contrôler le transfert d'un métal liquide depuis un fourneau jusqu'à
une machine de moulage, cette méthode comprenant les étapes de:
a) incliner le fourneau à un certain degré jusqu'à quand le métal liquide est versé
dans un conduit;
b) obtenir les informations concernant le niveau dans ledit conduit par l'intermédiaire
d'un détecteur de niveau (8);
c) envoyer les données obtenues par ledit détecteur de niveau à un contrôleur logique
programmable (PLC) (3);
d) contrôler le degré d'inclinaison du fourneau en comparant les données envoyées
par le détecteur de niveau et les données déjà programmées à l'avance;
e) contrôler la température du métal liquide à proximité de l'entrée et de la sortie
du conduit et envoyer les données relatives à la température au PLC (3) ;
f) activer une couverture à charnière (17) si la différence de température est au-dessous
d'un niveau préétabli dans le contrôleur logique programmable;
g) allumer des moyens générateurs de chaleur (16) dans le cas où la température est
encore au-dessous du niveau préétabli même après avoir activé la couverture à charnière;
h) régler la température en activant individuellement lesdites couvertures à charnière
et lesdits moyens générateurs de chaleur.
2. Méthode selon la revendication 1, laquelle comprend les étapes supplémentaires de:
a) augmenter le degré d'inclinaison du fourneau dans le cas où ledit détecteur de
niveau détecte une diminution du niveau du métal liquide dans le conduit;
b) réduire le degré d'inclinaison du fourneau dans le cas où ledit détecteur de niveau
détecte une augmentation du niveau du métal liquide dans le conduit.
3. Méthode selon la revendication 1, dans laquelle l'activation de ladite couverture
à charnière est étroitement liée aux données fournies par le détecteur de chaleur
au contrôleur logique programmable.
4. Système pour la mise en oeuvre de la méthode de la revendication 1, comprenant:
- un PLC (3) contrôlé par un panneau central de fonctionnement (2);
- un système hydraulique central (4) relié de manière opérante à une soupape équilibrée
(5) agissant sur un cylindre hydraulique (6) sur commande du PLC (3) pour incliner
le fourneau à un tel degré que le métal liquide est versé dans le conduit (10);
- un détecteur de niveau laser (8) pour détecter le niveau du métal liquide s'écoulant
à travers le conduit, ledit détecteur de niveau (8) étant relié audit PLC (3) pour
envoyer les informations sur le niveau dans ledit conduit;
- ledit PLC (3) étant en mesure de vérifier si lesdites informations sur le niveaux
sont dans les paramètres déjà configurés dans le PLC (3) et étant en mesure d'envoyer
des instructions au système hydraulique central (4) pour commander ledit cylindre
hydraulique (6) pour le réglage du degré d'oscillation du fourneau (7);
- au moins deux détecteurs de chaleur (23) pour déterminer la différence de température
du métal liquide le long du conduit (10) et envoyer les données sur la température
au PLC (3);
- une couverture (17) actionnée par des moyens pneumatiques ou hydrauliques contrôlés
par ledit PLC (3) pour qu'elle soit fermée dans le cas où la différence de température
détectée est au-dessous d'un niveau préétabli dans le PLC (3);
- ladite couverture (17) comprenant des moyens générateurs de chaleur (16) attachés
à la portion intérieure de la couverture par une couche d'isolement (19) ;
- ledit PLC (3) étant en mesure de traiter les données relatives à la température
pour allumer les moyens générateurs de chaleur (16) dans le but d'élever et maintenir
la chaleur du métal liquide dans les paramètres préétablis.
5. Système selon la revendication 4, dans lequel ledit conduit (9) comprend au moins
un canal (10) contenant un premier profil (12) et un deuxième profil (14) à l'intérieur
dudit premier profil (12).
6. Système selon les revendications 4 et 5, dans lequel une pluralité desdits canaux
(10) aboutent les uns contre les autres par des moyens d'attache tels que écrous et
boulons, soudage, joints anglais, définissant un conduit modulaire.
7. Système selon la revendication 4, dans lequel ledit au moins un détecteur de niveau
(8) est mis à proximité de la sortie du fourneau.
8. Système selon la revendication 5, dans lequel le premier profil (12) et le deuxième
profil (14) du canal (10) sont en forme de "U", lesdits deux profils (12, 14) étant
séparés par une couche d'isolement (13), ledit deuxième profil en "U" (14) définissant
un parcours pour le métal liquide à transférer du fourneau (7) à la machine de moulage,
ladite couverture (17) étant attachée par une charnière (18) au premier profil (12)
en forme de "U".
9. Système selon la revendication 8, dans lequel ledit premier profil (12) en forme de
"U" est attaché à une poutrelle à double "T".
10. Système selon la revendication 8, dans lequel la couche d'isolement (13) est réalisée
en fibre de verre, fibre céramique, panneaux microporeux d'isolement, amiante, boue
réfractaire ou une combinaison de ceux-ci.
11. Système selon la revendication 8, dans lequel le premier profil en forme de "U" (12)
est réalisé en un alliage d'acier.
12. Système selon la revendication 8, dans lequel ledit deuxième profil en forme de "U"
(14) est réalisé en une quelconque parmi fibre de verre, fibre céramique, panneaux
microporeux d'isolement, amiante, boue réfractaire ou une combinaison de ceux-ci.
13. Système selon la revendication 4, dans lequel lesdits moyens générateurs de chaleur
(16) sont des éléments de chauffage (20) comportant des résistances électriques (20)
renfermées dans des tubes métalliques émettant de la chaleur sous forme de rayons
infrarouges.
14. Système selon la revendication 8, dans lequel un couvercle (15) est mis au sommet
des premier et deuxième profils (12, 14) pour protéger les bords desdits profils contre
la rupture.
15. Système selon la revendication 8, dans lequel ladite couverture à charnière (17) attachée
audit premier profil (12) en forme de "U" est actionnée par des moyens hydrauliques.
16. Système selon la revendication 8, dans lequel le canal (10) comprend lesdits détecteurs
de chaleur (23) mis aux deux extrémités du canal.
17. Système selon la revendication 16, dans lequel lesdits détecteurs de chaleur (23)
sont un détecteur choisi parmi des détecteurs laser, un thermocouple ou une combinaison
des deux.

