| (19) |
 |
|
(11) |
EP 1 753 885 B2 |
| (12) |
NEW EUROPEAN PATENT SPECIFICATION |
|
After opposition procedure |
| (45) |
Date of publication and mentionof the opposition decision: |
|
24.08.2022 Bulletin 2022/34 |
| (45) |
Mention of the grant of the patent: |
|
28.12.2016 Bulletin 2016/52 |
| (22) |
Date of filing: 25.05.2005 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/EP2005/005751 |
| (87) |
International publication number: |
|
WO 2005/118899 (15.12.2005 Gazette 2005/50) |
|
| (54) |
PROCESS FOR PRODUCING AN ALUMINIUM ALLOY BRAZING SHEET, ALUMINIUM ALLOY BRAZING SHEET
VERFAHREN ZUR HERSTELLUNG EINES ALUMINIUMLEGIERUNGSLÖTBLECHS UND ALUMINIUMLEGIERUNGSLÖTBLECH
PROCEDE DE PRODUCTION D'UNE FEUILLE DE BRASAGE D'ALLIAGE D'ALUMINIUM, ET FEUILLE DE
BRASAGE D'ALLIAGE D'ALUMINIUM OBTENUE PAR CE PROCEDE
|
| (84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI
SK TR |
| (30) |
Priority: |
26.05.2004 EP 04076545 18.06.2004 EP 04076785 23.09.2004 EP 04077623
|
| (43) |
Date of publication of application: |
|
21.02.2007 Bulletin 2007/08 |
| (73) |
Proprietor: Novelis Koblenz GmbH |
|
56070 Koblenz (DE) |
|
| (72) |
Inventors: |
|
- HALLER, Scott, William
Richmond, VA 23237 (US)
- VAN DER HOEVEN, Job, Anthonius
NL-2011 NM Haarlem (NL)
- VIEREGGE, Klaus
56237 Nauort (DE)
- BÜRGER, Achim
56203 Hoehr-Grenzhausen (DE)
- DESIKAN, Sampath
56070 Koblenz (DE)
|
| (74) |
Representative: Weickmann & Weickmann PartmbB |
|
Postfach 860 820 81635 München 81635 München (DE) |
| (56) |
References cited: :
EP-A- 0 718 072 EP-A2- 0 492 796 WO-A-02/40729 WO-A1-2005/014274 US-A1- 2001 007 720 US-B1- 6 413 331
|
EP-A- 1 291 165 WO-A-00/63008 WO-A1-01/90430 JP-A- H0 598 376 US-A1- 2001 010 866
|
|
| |
|
|
- M. NYLEN, U. GUSTAVSSON, B. HUTCHINSON, A. KARLSSON: "The Mechanism of Braze Metal
Penetration by Migration of Liquid Films in Aluminium" MATERIALS SCIENCE FORUM, TRANS
TECH PUBLICATIONS, no. 331-337, 2000, pages 1737-1742, XP008043730 SWITZERLAND
- A. WITTEBROOD, C.J. KOOIJ, K. VIEREGGE: "Grain Boundary Melting or Liquid Film Migration
in Brazing Sheet" MATERIALS SCIENCE FORUM, TRANS TECH PUBLICATIONS, no. 331-337, 2000,
pages 1743-1750, XP008043731 SWITZERLAND
- "Registration Record Series - Teal Sheets - International Alloy Désignations and Chemical
Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys", The Aluminum
Association, February 2009 (2009-02), page 6,
- P. DENEUVILLE: "M3140 V1, Mise en forme de l'aluminium - Laminage", Techniques de
l'ingénieur, 10 June 2010 (2010-06-10),
- J.E. HATCH: "metallurgy of head tretment", Aluminium, Properties and physical metallurgy,
May 1984 (1984-05), page 165,
- R.A. WOODS: "Liquid Film Migration During Aluminium Brazing", Vehicle Thermal Management
Systems Conference Proceedings, 1997, pages 639-648,
- ITOH ET AL.: "Erosion in Aluminum Brazing", SUMITOMO LIGHT METALSTECHNICAL REPORT,
vol. 30, no. 2, 30 April 1989, pages 53-63
- NYLEN ET AL.: "Mechanisms of Erosion during Brazing of Aluminium Alloys", MATERIALS
SCIENCE FORUM, vol. 396-402, 31 December 2002, pages 1585-1590
|
|
| |
|
[0001] The invention relates to a process for producing an Al-Mn alloy sheet with improved
liquid film migration resistance when used as core alloy in brazing sheet materials.
The invention further relates to an Al-Mn alloy sheet produced according to said process
and to the use of said alloy sheet.
[0002] In brazing applications, the phenomenon known as 'Liquid Film Migration' or LFM,
causes a deterioration in the overall performance of brazed products such as evaporators,
radiators, heater cores etc. In literature the term "LFM" is also referred to as "core
dissolution" or "core penetration" or "core erosion". Herein by the term "LFM" we
refer to all these terminologies. Although the exact mechanism causing LFM is not
yet fully understood, it appears that the severity of LFM is enhanced by the presence
of a certain amount of dislocations in the core alloy of the brazing sheet. It is
known that the sensitivity of a material to LFM is relatively low in both, fully annealed
(O-temper) and in strain hardened and/or stress relieved tempers (such as for example
H14, H24 etc) as compared to the soft and slightly cold worked condition of the same
material. By the term "slight cold working", we refer to the deformation resulting
from industrial processes such as stamping, roll forming or tension levelling which
are typically applied to produce components of heat exchangers such as evaporator
or oil cooler core plates, folded tubes etc. When a brazing sheet consisting of a
core alloy and an Al-Si clad alloy is deformed to form a product and is subsequently
subjected to a brazing cycle, the small amount of deformation appears to be sufficient
to induce LFM in the brazing sheet. If the LFM progresses too far into the core alloy,
then the brazeability, strength and the corrosion resistance decreases. It is known
that alloying elements, which retard recrystallisation, such as chromium, zirconium
and vanadium enhance the susceptibility to LFM. Manganese dispersoïds are also known
to retard recrystallisation and therefore to enhance the susceptibility to LFM. The
amount and size of the manganese dispersoïds depend on the processing route of the
brazing sheet.
[0003] For brazing applications, a core alloy of a brazing sheet product requires a good
combination of strength and formability. Obviously, the susceptibility to LFM has
to be at a sufficiently low level to ensure adequate corrosion resistance and brazeability.
Higher strength can be obtained by alloying with elements such as silicon, manganese,
chromium, zirconium or vanadium. However, these alloying elements also increase the
susceptibility to LFM. The use of a non O-temper, such as H14-temper or H24-temper
has also been suggested to reduce the susceptibility to LFM. However, although these
tempers effectively reduce the LFM, formability of the brazing sheet product is often
compromised. Other alternative processes such light cold deforming process such as
tension levelling, or the use of a non-recrystallised surface layer are difficult
to control in mass-production practice and therefore may compromise reproducibility
and/or formability.
[0004] EP1291165 discloses a brazing sheet with a two-layer structure or a three-layer structure,
having a core sheet made of an aluminium alloy core material and on one side or both
sides thereof a brazing layer of an aluminium alloy containing silicon as main alloying
element, wherein the aluminium alloy of the core sheet composition consists of (in
weight %): Mn 0.5-1.5, Cu 0.5-2.0, Si 0.3-1.5, Mg < 0.05, Fe < 0.4, Ti <0.15, Cr <0.35,
Zr and/ or V < 0.35 in total Zn < 0.25 balance aluminium and unavoidable impurities,
and wherein said brazing sheet has a post-braze 0.2% yield strength of at least 50
MPa and a corrosion life of more than 12 days in a SWAAT test without perforations
in accordance with ASTM G-85.
[0005] It is an object of the invention to provide a process for producing an Al-Mn alloy
sheet with improved liquid film migration resistance when used as core alloy in brazing
sheet wherein a good strength/formability combination of the alloy is combined with
a sufficiently low susceptibility to LFM and adequate corrosion resistance.
[0006] It is also an object to provide a process to produce said Al-Mn alloy sheet, which
is easy to control and results in a reproducible product.
[0007] It is also an object of the invention to provide an Al-Mn alloy sheet with improved
liquid film migration resistance in folded tubes, evaporator or oil cooler core plates,
fin stocks etc., wherein a good strength/formability combination of the alloy is combined
with a sufficiently low susceptibility to LFM, good brazeability and adequate corrosion
resistance.
[0008] According to the invention, one or more of the objects is reached with a process
for producing an Al-Mn alloy sheet with improved liquid film migration resistance
when used as core alloy in brazing sheet, comprising the steps of:
- Casting a composition consisting of (in weight percent):
∘ 0.5 < Mn ≤ 1.7, preferably 0.6 - 1.7,
∘ Cu 0.2 to 1.5,
∘ Si ≤ 1.3, preferably Si ≤ 0.8, more preferably Si ≤ 0.3,
∘ Mg ≤ 0.05
∘ Ti < 0.2
∘ Zn ≤ 2.0
∘ Fe ≤ 0.5
∘ at least one element of the group of elements consisting of 0.05 < Zr ≤ 0.25 and
0.05 < Cr ≤ 0.25
∘ inevitable impurities < 0.05 each and total <0.20, balance Al.
- homogenisation and preheat
- hot rolling
- cold rolling (including intermediate anneals whenever required) wherein the homogenisation
temperature is at least 450 °C for a duration of at least 1 hour followed by an air
cooling at a rate of at least 20 °C/h and wherein the pre-heat temperature is at least
400 °C for at least 0.5 hour.
[0009] Casting takes place using regular production techniques such as DC casting or continuous
casting.
[0010] The process according to the invention enables production of an Al-Mn alloy which,
when used as core alloy in brazing sheet couples a good strength/formability combination
to a sufficiently low susceptibility to LFM and an adequate corrosion resistance.
The inventors surprisingly found that, although chromium is reported to have an adverse
effect on the susceptibility to LFM because of the retarding effect it has on the
recrystallisation of the alloy, the combination of the chemistry of the alloy and
the process parameters, particularly the homogenisation and preheat process results
in a product with a sufficiently low susceptibility to LFM and hence adequate corrosion
resistance. The Cr-containing and/or Zr-containing precipitates, which are formed
in the alloy as a result of the combination of composition and processing conditions,
reduce the susceptibility to LFM. Also the chromium strengthens the alloy, whereas
the recrystallisation of the alloy results in adequate formability. The inventors
found that similar results can be obtained by alloying with V or a by alloying with
a combination of V with Cr and/or Zr.
[0011] In an embodiment of the invention, the Cr and/or Zr content is at least 0.08%. The
inventors found that when using a chromium content of at least 0.08% or a zirconium
content of at least 0.08% or the combination thereof in combination with the described
process conditions resulted in a higher strength in combination with adequate LFM-resistance.
[0012] The maximum magnesium content is 0.05%. The magnesium content should be as low as
possible to avoid the deleterious effect of magnesium on the flux that is used during
Controlled Atmosphere Brazing. In an embodiment of the invention the copper content
is from 0.7 to 1.2 %.
[0013] In an embodiment of the invention the manganese content is from 0.7 to 1.4 %. If
the manganese content exceeds 1.4% difficulties in fabrication increase and below
0.7% the strength of the alloy is insufficient. In an embodiment of the invention
the maximum zinc content is preferably 0.4% to prevent the core alloy being excessively
anodic in certain applications. In an embodiment of the invention the iron content
is preferably below 0.35% to prevent the formation of undesirable large iron containing
intermetallics during industrial casting practices.
[0014] In an embodiment of the invention, the homogenisation temperature is between 530
°C and 620°C, preferably between 530 and 595 °C, preferably for between 1 to 25 hours,
more preferably for between 10 to 16 hours, and wherein the pre-heat temperature is
between 400 °C and 530°C, preferably between 420 and 510 °C, preferably for between
1 to 25 hours, more preferably for between 1 and 10 hours. In the alloys according
to the invention, it appears that the best compromise between the strength, formability,
susceptibility to LFM and corrosion resistance was found when the homogenisation temperature
and time and the pre-heat temperature and time was chosen within the given boundaries
and that a particularly interesting compromise was obtained when processing the alloy
according to the abovementioned preferred temperatures and times.
[0015] It is known to the skilled person that time and temperature of an annealing are usually
not chosen independently. Most relevant metallurgical processes are thermally activated,
resulting in the situation that a high temperature coupled with a short time may have
the same result as a lower temperature and a longer time.
[0016] The process according to the invention also comprises recrystallisation annealing
after cold rolling at an annealing temperature-annealing time combination sufficient
for promoting essentially full recrystallisation of the Al-Mn alloy. In this condition
the highest formability is reached.
[0017] In an embodiment of the invention the maximum silicon content of the Al-Mn alloy
is 0.3 % in weight. In a preferable embodiment of the invention the maximum silicon
content of the Al-Mn alloy is 0.15 % in weight. Silicon is known to increase the susceptibility
to LFM. Consequently, the silicon content is to be chosen as low as possible. However,
the inventors found that when using a silicon content of up to 0.3 % but preferably
of up to 0.15 % that an adequate combination of susceptibility to LFM and strength
was obtained.
[0018] In an embodiment of the invention Cr ≤ 0.18%, preferably at least 0.06%, more preferably
0.08% < Cr ≤ 0.15%, even more preferably 0.08% < Cr ≤ 0.12%. When the Cr-level exceeds
0.18%, casting of the Al-Mn alloy becomes very difficult as a result of the formation
of large intermetallics. Casting the Al-Mn with Cr-contents of below 0.15% or below
0.12 causes no problems. By adding at least 0.08% of Cr, the effect thereof on the
susceptibility to LFM in combination with the described process conditions results
in an adequate combination of susceptibility to LFM and strength. The precipitates,
which are formed in the alloy as a result of the combination of composition and processing
conditions, reduce the susceptibility to LFM. In an embodiment of the invention the
process also comprises cladding the Al-Mn alloy on at least one side with an AA4000-series
or Al-Si brazing alloy optionally comprising up to 2.0 % Zn. Cladding may for instance
be performed by roll-bonding or any other known technique such as spray cladding or
cast cladding.
[0019] The invention is also embodied in a sheet produced according to the process as described
hereinabove, wherein the pre-braze elongation is at least 18%, preferably at least
19 %, more preferably at least 21% and/or a pre-braze n-value of at least 0.270, and/or
a post-brazing tensile strength of at least 140 MPa, preferably of at least 150 MPa.
The elongation is measured over a gauge length of 80 mm, also denoted as A80.
[0020] In an embodiment of the invention the post-braze coupon SWAAT lifetime measured in
terms of time to perforation in days and, when tested according to ASTM G85 A3, is
at least 15 days, preferably at least 20 days without perforation. The low susceptibility
to LFM is reflected in an improved resistance against corrosion in a formed heat exchanger
component after brazing.
[0021] In an embodiment of the invention the sheet as described hereinabove is applied as
a core in brazing sheet with or without a non-brazing liner or waterside liner alloy
such as an AA7072, an AA1145 or an AA 3005 or Al-Mn type alloys containing Zn in the
range 0.5-5.0%, preferably in the range 0.5-2.5%, in folded tubes or for applications
which are used under similar conditions. The requirements as to strength, formability,
LFM susceptibility and corrosion resistance are particularly relevant for the application
of the sheet as a core in a brazing sheet, for instance for application in heat exchangers
utilising folded tubes.
[0022] The sheet materials produced according to the process described hereinabove are particularly
suitable for use as a core alloy in brazing sheet materials intended for manufacturing
of components of tube-fin type heat exchangers such as radiators, heater cores and
condensers, or for manufacturing of components of plate-fin type heat exchanger such
as evaporator or oil cooler core plates or tanks of radiators or heater cores as a
core alloy in brazing fin stock materials intended for manufacturing of components
for heat exchangers.
[0023] A specific embodiment of the present invention will now be explained by the following
non-limitative examples.
Table 1. Examples of alloys produced according to the invention.
| Alloy |
Cu |
Fe |
Si |
Mn |
Mg |
Ti |
Cr |
Zr |
| 1 (reference) |
0.76 |
0.18 |
0.10 |
1.14 |
0.03 |
0.13 |
<0.01 |
<0.01 |
| 2 |
0.80 |
0.21 |
0.09 |
1.15 |
0.05 |
0.13 |
0.05 |
0.05 |
| 3 |
0.78 |
0.21 |
0.09 |
1.20 |
0.03 |
0.13 |
0.11 |
<0.01 |
| 4 |
0.78 |
0.20 |
0.08 |
1.16 |
0.02 |
0.12 |
0.15 |
<0.01 |
| 5 |
0.72 |
0.20 |
0.07 |
1.21 |
0.01 |
0.14 |
0.08 |
<0.01 |
| 6 |
0.76 |
0.15 |
0.08 |
1.19 |
0.01 |
0.12 |
0.06 |
<0.01 |
| standard |
0.5-0.7 |
<0.5 |
<0.3 |
0.65-1.0 |
<0.02 |
0.08-0.10 |
- |
- |
| other elements < 0.05 each and total <0.20, balance Al. |
[0024] Other elements as mentioned in Table 1 represent inevitable impurities. These alloys
(alloys 1-4) were subjected to a homogenisation treatment at various temperatures
for various times. Subsequently the alloys were clad on both sides with AA4045, 10%
of the thickness on each side, followed by a preheat prior to hot rolling at various
temperatures for various times, hot-rolling to 6.5 mm followed by an inter anneal
at 350 °C for 3 hours, a first cold rolling to 2.3 mm, again followed by an inter
anneal at 350 °C for 3 hours and a second cold rolling to a final gauge of 0.5 mm.
The alloy was subjected to a recrystallisation annealing treatment to promote essentially
full recrystallisation. To test the LFM behaviour, the materials were stretched between
2 and 10%. The stretch level that showed the deepest penetration was used for the
LFM data in Table 2.
[0025] Alloy 5 and 6 were clad on both sides with AA4045, 10% of the thickness on each side,
followed by a preheat prior to hot rolling, and subsequently hot rolled to 3.5 mm
and cold-rolled to 0.41 mm without inter annealing. After cold-rolling the material
was subjected to a recrystallisation annealing treatment to promote essentially full
recrystallisation. The LFM behaviour was tested as described above. The results are
presented in Table 2. The alloy designated 'standard' is an alloy which is used for
LFM-critical applications.
in Table 2:
- "+/-" means between 50 and 60% penetration of the core alloy thickness;
- "+" means between 30 and 50% penetration of the core alloy thickness;
- "++" means <30% penetration of the core alloy thickness.
[0026] Since the elongation usually shows significant scatter, the n-value can be used as
an alternative indicator of formability. An n-value of at least 0.270 indicates a
good formability in view of the minimum strength requirement of at least 140 MPa.
When compared to the standard alloy for LFM-critical applications, the alloys according
to the invention, such as alloy 2-6 in Table 2, provide equal LFM-performance, but
with significantly higher post-braze tensile properties.
Table 2. Examples of alloys produced according to the invention (2-4,5) and reference alloy
(1). (n.d. = not determined)
| |
Homoge- Preheat. |
pre-braze |
post-braze |
coupon SWAAT |
LFM resistance * |
| Alloy |
nisation |
|
A80 |
n-value |
0.2PS |
UTS |
|
| |
°C/h |
°C/h |
% |
|
MPa |
MPa |
days to perforation |
| 1 |
610 / 8 |
430 / 24 |
17.4 |
0.264 |
60 |
133 |
26 |
+/- |
| 2 |
610 / 8 |
430 / 24 |
21.2 |
0.276 |
69 |
152 |
38 |
+ |
| 3 |
610 / 8 |
490 / 24 |
19.4 |
0.296 |
63 |
155 |
>40 |
+ |
| 3 |
610 / 8 |
490 / 2 |
19.4 |
0.286 |
66 |
152 |
>40 |
+ |
| 3 |
610 / 24 |
430 / 24 |
21.7 |
0.285 |
61 |
153 |
>40 |
+ |
| 3 |
580 / 12 |
430 / 5 |
19.5 |
0.300 |
68 |
156 |
37 |
+ |
| 3 |
580 / 12 |
490 / 2 |
22:2 |
0.304 |
62 |
152 |
35 |
++ |
| 3 |
550 / 12 |
490 / 24 |
18.6 |
0.307 |
66 |
157 |
22 |
+ |
| 3 |
550 / 12 |
490 / 2 |
24.5 |
0.300 |
65 |
159 |
29 |
++ |
| 4 |
610 / 8 |
430 / 24 |
21.1 |
0.277 |
70 |
153 |
33 |
++ |
| 5 |
610 / 10 |
430 / 1 |
24.0 |
0.282 |
61 |
155 |
24 |
++ |
| 6 |
610 / 10 |
430 / 1 |
n.d. |
n.d. |
n.d. |
n.d. |
n.d. |
++ |
| stand. |
|
|
n.d. |
n.d. |
50 |
130 |
n.d. |
++ |
[0027] Another alloy not according to the invention has the following compositional ranges,
in wt.%:
- Si 0.8-1.0, and typically about 0.9
- Fe 0.25 - 0.4, and typically about 0.35
- Cu 0.25 - 0.45, and typically about 0.40
- Mn 0.55 - 0.9, and typically about 0.85
- Mg 0.1 - 0.22, and typically about 0.15
- Zn 0.06 - 0.10, and typically about 0.08
- Cr 0.06 - 0.10, and typically about 0.08
- Zr 0.06 - 0.10, and typically about 0.08,
- Balance aluminium and inevitable impurities.
The alloy can be used amongst others for tube plate, side supports and header tanks.
[0028] It is of course to be understood that the present invention is not limited to the
described embodiments and examples described above, but encompasses any and all embodiments
within the scope of the description and the following claims.
1. Process for producing an Al-Mn alloy sheet with improved liquid film migration resistance
when used as core alloy in brazing sheet, comprising the steps of:
• casting a composition consisting of in weight percent
• 0.5 < Mn s 1.7
• 0.2 ≤ Cu ≤ 1.5
• Si ≤ 0.15
• Mg ≤ 0.05
• Ti < 0.2
• Zn ≤ 2.0
• Fe ≤ 0.5
• at least one element of the group of elements consisting of 0.05 < Zr ≤ 0.25 and
0.05 < Cr ≤ 0.25
• other elements < 0.05 each and total < 0.20, balance Al
• homogenisation and preheat
• hot rolling
• cold rolling and optionally intermediate annealing,
wherein the homogenisation temperature is at least 450°C for a duration of at least
1 hour followed by an air cooling at a rate of at least 20°C/h and wherein the pre-heat
temperature is at least 400°C for at least 0.5 hour.
2. Process according to claim 1, wherein the homogenisation temperature is between 530°C
and 620°C for between 1 to 25 hours, and wherein the pre-heat temperature is between
400°C and 530°C for between 1 to 25 hours.
3. Process according to claim 1 or 2, wherein Mn is between 0.7 and 1.4%.
4. Process according to any of the claims 1 to 3, wherein Cr ≤ 0.18, preferably 0.08
< Cr ≤ 0.15, more preferably 0.08 < Cr ≤ 0.12.
5. Process according to any of the claims 1 to 4, wherein Zn ≤ 0.4%.
6. Process according to any of the claims 1 to 5, further comprising cladding the Al-Mn
alloy on at least one side with an Al-Si brazing alloy optionally comprising up to
2.0% Zn.
7. Process according to any of the claims 1 to 6, further comprising cladding the Al-Mn
alloy on at least one side with an Al-Si brazing alloy optionally comprising up to
2.0% Zn, and having a non-brazing liner alloy such as AA7072 or AA1145 or AA 3005
or Al-Mn type alloys containing Zn in the range 0.5 - 5.0%, preferably in the range
0.5 - 2.5%.
8. Sheet produced according to any of the claims 1 to 7, wherein the pre-braze elongation
is at least 18%, preferably 19%.
9. Sheet according to claim 8, wherein the post-brazing tensile strength is at least
140 MPa, preferably at least 150 MPa.
10. Sheet according to claim 8 or 9, wherein the pre-braze n-value is at least 0.270.
11. Sheet according to any of the claims 8 to 10, wherein the post-braze coupon SWAAT
lifetime, when tested according to ASTM G85 A3, is at least 15 days without perforation.
12. Use of sheet produced according to any one of the claims 1 to 7 or the sheet according
to any one of the claims 8 to 11 as a core alloy in brazing sheet intended for manufacturing
of components of tube-fin type heat exchanger such as radiators, heater cores and
condensers.
13. Use of sheet produced according to any one of the claims 1 to 7 or the sheet according
to any of the claims 8 to 11 as a core alloy in brazing sheet intended for manufacturing
of components of plate-fin type heat exchanger such as evaporator or oil cooler core
plates or tanks of radiators or heater cores.
14. Use of sheet produced according to any one of the claims 1 to 7 or the sheet according
to any of the claims 8 to 11 as a core alloy in brazing fin stock materials intended
for manufacturing of components of heat exchangers.
1. Verfahren zur Herstellung eines Blechs aus Al-Mn-Legierung mit einer verbesserten
Flüssigkeitsfilm-Migrationsbeständigkeit, wenn es als Kernlegierung in einem Hartlötblech
verwendet wird, das die folgenden Schritte umfasst:
• Gießen einer Zusammensetzung bestehend in Gewichtsprozent aus
∘ 0,5 < Mn ≤ 1,7
∘ 0,2 ≤ Cu ≤ 1,5
∘ Si ≤ 0,15
∘ Mg ≤ 0,05
∘ Ti < 0,2
∘ Zn ≤ 2,0
∘ Fe ≤ 0,5
∘ mindestens einem der Elemente der Gruppe von Elementen, die aus 0,05 < Zr ≤ 0,25
und 0,05 < Cr ≤ 0,25 besteht,
∘ anderen Elementen von je < 0,05 und insgesamt < 0,20, Rest Al,
• Homogenisieren und Vorwärmen
• Warmwalzen
• Kaltwalzen und optional Zwischenglühen,
wobei die Homogenisierungstemperatur mindestens 450°C für eine Dauer von mindestens
1 Stunde beträgt, gefolgt von einer Luftkühlung mit einer Geschwindigkeit von mindestens
20°C/h, und wobei die Vorwärmtemperatur mindestens 400°C für mindestens 0,5 Stunden
beträgt.
2. Verfahren nach Anspruch 1, wobei die Homogenisierungstemperatur zwischen 530°C und
620°C für zwischen 1 und 25 Stunden beträgt, und wobei die Vorwärmtemperatur zwischen
400°C und 530°C für zwischen 1 und 25 Stunden beträgt.
3. Verfahren nach Anspruch 1 oder 2, wobei Mn zwischen 0,7 und 1,4% liegt.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei Cr ≤ 0,18, vorzugsweise 0,08 < Cr
≤ 0,15, bevorzugter 0,08 < Cr ≤ 0,12.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei Zn ≤ 0,4%.
6. Verfahren nach einem der Ansprüche 1 bis 5, das ferner ein Plattieren der Al-Mn-Legierung
auf mindestens einer Seite mit einer Al-Si-Hartlötlegierung umfasst, die optional
bis zu 2,0% Zn umfasst.
7. Verfahren nach einem der Ansprüche 1 bis 6, das ferner ein Plattieren der Al-Mn-Legierung
auf mindestens einer Seite mit einer Al-Si-Hartlötlegierung umfasst, die optional
bis zu 2,0% Zn umfasst, und die eine nicht-lötende Auskleidungslegierung aufweist,
wie vom Legierungstyp AA7072 oder AA1145 oder AA3005 oder Al-Mn, die Zn im Bereich
von 0,5-5,0%, vorzugsweise im Bereich von 0,5-2,5% aufweist.
8. Blech, das nach einem der Ansprüche 1 bis 7 hergestellt ist, wobei die Dehnung vor
dem Hartlöten mindestens 18%, vorzugsweise 19%, beträgt.
9. Blech nach Anspruch 8, wobei die Zugfestigkeit nach dem Hartlöten mindestens 140 MPa,
vorzugsweise mindestens 150 MPa beträgt.
10. Blech nach Anspruch 8 oder 9, wobei der n-Wert vor dem Hartlöten mindestens 0,270
beträgt.
11. Blech nach einem der Ansprüche 8 bis 10, wobei die Coupon-SWAAT-Lebensdauer nach dem
Hartlöten, wenn sie gemäß ASTM G85 A3 getestet wird, mindestens 15 Tage ohne Perforierung
beträgt.
12. Verwendung eines gemäß einem der Ansprüche 1 bis 7 erzeugten Blechs oder des Blechs
gemäß einem der Ansprüche 8 bis 11 als eine Kernlegierung in einem Lötblech, das zur
Herstellung von Bauteilen der Art Rippenrohr-Wärmetauscher wie Kühlern, Heizkernen
und Kondensatoren bestimmt ist.
13. Verwendung eines gemäß einem der Ansprüche 1 bis 7 erzeugten Blechs oder des Blechs
gemäß einem der Ansprüche 8 bis 11 als eine Kernlegierung in einem Lötblech, das zur
Herstellung von Bauteilen der Art Rippenplatten-Wärmetauscher wie Verdampfer- oder
Ölkühler-Kernplatten oder Behältern von Kühlern oder Heizkernen bestimmt ist.
14. Verwendung eines gemäß einem der Ansprüche 1 bis 7 erzeugten Blechs oder des Blechs
gemäß einem der Ansprüche 8 bis 11 als eine Kernlegierung in Hartlötrippenlagermaterialien,
die zur Herstellung von Bauteilen für Wärmetauscher bestimmt sind.
1. Procédé pour produire une feuille d'alliage en Al-Mn à résistance améliorée à la migration
en film liquide lorsqu'on l'utilise comme alliage central dans une feuille de brasage,
comprenant les étapes suivantes :
• coulée d'une composition constituée, en pourcentage en poids, de
• 0,5 < Mn ≤ 1,7
• 0,2 ≤ Cu ≤ 1,5
• Si ≤ 0,15
• Mg ≤ 0,05
• Ti < 0,2
• Zn ≤ 2,0
• Fe ≤ 0,5
• au moins un élément du groupe d'éléments constitué de 0,05 < Zr ≤ 0,25 et 0,05 <
Cr ≤ 0,25
• d'autres éléments < 0,05 chacun et au total < 0,20, le reste étant Al
• homogénéisation et préchauffage
• laminage à chaud
• laminage à froid et facultativement recuit intermédiaire,
dans lequel la température d'homogénéisation est au moins de 450 °C pendant une durée
d'au moins 1 heure suivie d'un refroidissement à l'air à une vitesse d'au moins 20
°C/h, et dans lequel la température de préchauffage est au moins de 400 °C pendant
au moins 0,5 heure.
2. Procédé selon la revendication 1, dans lequel la température d'homogénéisation est
entre 530 °C et 620 °C pendant 1 à 25 heures, et dans lequel la température de préchauffage
est entre 400 °C et 530 °C pendant 1 à 25 heures.
3. Procédé selon la revendication 1 ou 2, dans lequel Mn est entre 0,7 et 1,4 %.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel Cr ≤ 0,18, de
préférence 0,08 < Cr ≤ 0,15, de manière davantage préférée 0,08 < Cr ≤ 0,12.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel Zn ≤ 0,4 %.
6. Procédé selon l'une quelconque des revendications 1 à 5, comprenant en outre le placage
de l'alliage en Al-Mn sur au moins un côté avec un alliage de brasage en Al-Si comprenant
facultativement jusqu'à 2,0 % de Zn.
7. Procédé selon l'une quelconque des revendications 1 à 6, comprenant en outre le placage
de l'alliage en Al-Mn sur au moins un côté avec un alliage de brasage en Al-Si comprenant
facultativement jusqu'à 2,0 % de Zn, et ayant un alliage de doublage de non-brasage
tel que AA7072 ou AA1145 ou AA3005, ou des alliages du type Al-Mn contenant du Zn
dans la plage de 0,5 à 5,0 %, de préférence dans la plage de 0,5 à 2,5 %.
8. Feuille produite selon l'une quelconque des revendications 1 à 7, dans laquelle l'allongement
avant brasage est au moins de 18 %, de préférence de 19 %.
9. Feuille selon la revendication 8, dans laquelle la résistance à la traction après
brasage est au moins de 140 MPa, de préférence au moins de 150 MPa.
10. Feuille selon la revendication 8 ou 9, dans laquelle la valeur n avant brasage est
au moins de 0,270.
11. Feuille selon l'une quelconque des revendications 8 à 10, dans laquelle la durée de
vie SWAAT d'un coupon après brasage, quand il est testé selon ASTM G85 A3, est au
moins de 15 jours sans perforations.
12. Utilisation d'une feuille produite selon l'une quelconque des revendications 1 à 7
ou de la feuille selon l'une quelconque des revendications 8 à 11 comme alliage central
dans une feuille de brasage destinée à la fabrication de composants d'un échangeur
de chaleur de type à tubes-et-ailettes tels que les radiateurs, les parties centrales
de chaudières et les condenseurs.
13. Utilisation d'une feuille produite selon l'une quelconque des revendications 1 à 7
ou de la feuille selon l'une quelconque des revendications 8 à 11 comme alliage central
dans une feuille de brasage destinée à la fabrication de composants d'un échangeur
de chaleur de type à plaque-et-ailettes tels que les plaques centrales pour évaporateurs
ou dispositifs de refroidissement d'huile, ou les réservoirs de radiateurs ou les
parties centrales de chaudières.
14. Utilisation d'une feuille produite selon l'une quelconque des revendications 1 à 7
ou de la feuille selon l'une quelconque des revendications 8 à 11 comme alliage central
pour le brasage de matériaux bruts pour ailettes destinés à la fabrication de composants
d'échangeurs de chaleur.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description