(11) EP 1 757 709 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

28.02.2007 Patentblatt 2007/09

(51) Int Cl.: C22C 21/08 (2006.01)

- (21) Anmeldenummer: 06405085.9
- (22) Anmeldetag: 28.02.2006
- (84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

- (30) Priorität: 22.08.2005 CH 13712005
- (71) Anmelder: ALUMINIUM RHEINFELDEN GmbH 79618 Rheinfelden (DE)

- (72) Erfinder: Franke, Rüdiger 79539 Lörrach (DE)
- (74) Vertreter: Wiedmer, Edwin et al Isler & Pedrazzini AG Gotthardstrasse 53 Postfach 6940 8023 Zürich (CH)

(54) Warmfeste Aluminiumlegierung

(57) Bei eine Aluminiumlegierung vom Typ AlMgSi mit guter Dauerwarmfestigkeit zur Herstellung thermisch und mechanisch beanspruchter Gussbauteile sind die Gehalte der Legierungselemente Magnesium und Silizium in Gew.-% in einem kartesischen Koordinatensystem durch ein Polygon A mit den Koordinaten [Mg; Si] [8,5; 2,7] [8,5; 4,7] [6,3; 2,7] [6,3; 3,4] begrenzt und die Legierung enthält weiter

0,1 bis 1 Gew.-% Mangan max. 1 Gew.-% Eisen max. 3 Gew.-% Kupfer max. 2 Gew.-% Nickel max. 0,5 Gew.-% Chrom

max. 0,6 Gew.-% Kobalt

max. 0,2 Gew.-% Zink

max. 0,2 Gew.-% Titan

max. 0,5 Gew.-% Zirkonium

max. 0,008 Gew.-% Beryllium

max. 0,5 Gew.-% Vanadium

sowie Aluminium als Rest mit weiteren Elementen und herstellungsbedingten Verunreinigungen einzeln max. 0,05 Gew.-%, insgesamt max. 0,2 Gew.-%.

Die Legierung eignet sich insbesondere zur Herstellung von Zylinderkurbelgehäusen im Druckgiessverfahren.

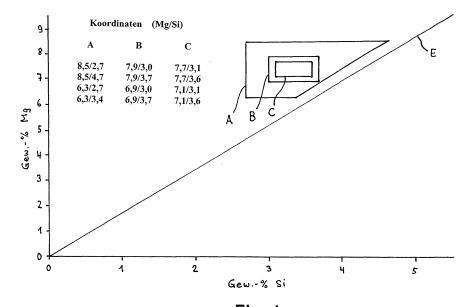


Fig. 1

Beschreibung

20

30

35

40

45

50

55

[0001] Die Erfindung betrifft eine Aluminiumlegierung vom Typ AlMgSi mit guter Dauerwarmfestigkeit zur Herstellung thermisch und mechanisch beanspruchter Gussbauteile.

[0002] Die Weiterentwicklung von Dieselmotoren mit dem Ziel einer verbesserten Verbrennung des Dieselkraftstoffes und einer höheren spezifischen Leistung führt u. a. zu erhöhtem Explosionsdruck und in der Folge zu einer auf das Zylinderkurbelgehäuse pulsierend einwirkenden mechanischen Last, die an den Werkstoff höchste Anforderungen stellt. Neben einer hohen Dauerfestigkeit ist eine Hochtemperatur-Wechselfestigkeit des Werkstoffes eine weitere Voraussetzung für dessen Verwendung zur Herstellung von Zylinderkurbelgehäusen.

[0003] Für thermisch beanspruchte Bauteile werden heute üblicherweise AlSi-Legierungen eingesetzt, wobei die Warmfestigkeit durch Zulegieren von Cu erreicht wird. Kupfer erhöht allerdings auch die Warmrissneigung und wirkt sich negativ auf die Giessbarkeit aus. Anwendungen, bei denen insbesondere Warmfestigkeit gefordert wird, findet man hauptsächlich im Bereich der Zylinderköpfe im Automobilbau, siehe z.B. F. J. Feikus, "Optimierung von Aluminium-Silicium-Gusslegierungen für Zylinderköpfe", Giesserei-Praxis, 1999, Heft 2, S. 50-57.

[0004] Aus der US-A-3 868 250 ist eine warmfeste AlMgSi-Legierung zur Herstellung von Zylinderköpfen bekannt. Die Legierung enthält, nebst üblichen Zusätzen, 0,6 bis 4,5 Gew.-% Si, 2,5 bis 11 Gew.-% Mg, davon 1 bis 4,5 Gew.-% freies Mg, und 0,6 bis 1,8 Gew.-% Mn.

[0005] Die WO-A-9615281 offenbart eine Aluminiumlegierung mit 3,0 bis 6,0 Gew.-% Mg, 1,4 bis 3,5 Gew.-% Si, 0,5 bis 2,0 Gew.-% Mn, max. 0,15 Gew.-% Fe, max. 0,2 Gew.-% Ti und Aluminium als Rest mit weiteren Verunreinigungen einzeln max. 0,02 Gew.-%, insgesamt max. 0,2 Gew.-%. Die Legierung eignet sich zur Herstellung von Bauteilen mit hohen Anforderungen an die mechanischen Eigenschaften. Die Verarbeitung der Legierung erfolgt bevorzugt durch Druckgiessen, Thixocasting oder Thixoschmieden.

[0006] Aus der WO-A-0043560 ist eine ähnliche Aluminiumlegierung zur Herstellung von Sicherheitsbauteilen im Druckguss-, Squeezecasting-, Thixoforming- oder Thixoforging-Verfahren bekannt. Die Legierung enthält 2,5 - 7,0 Gew.-% Mg, 1,0 - 3,0 Gew.-% Si, 0,3 - 0,49 Gew.-% Mn, 0,1 - 0,3 Gew.-% Cr, max. 0,15 Gew.-% Ti, max. 0,15 Gew.-% Ti, max. 0,15 Gew.-% Fe, max. 0,00005 Gew.-% Ca, max. 0,00005 Gew.-% Na, max. 0,0002 Gew.-% P, sonstige Verunreinigungen einzeln max. 0,02 Gew.-% und Aluminium als Rest.

[0007] Eine aus der EP-A-1 234 893 bekannte Gusslegierung vom Typ AlMgSi enthält 3,0 bis 7,0 Gew.-% Mg, 1,7 bis 3,0 Gew.-% Si, 0,2 bis 0,48 Gew.-% Mn, 0,15 bis 0,35 Gew.-% Fe, max. 0,2 Gew.-% Ti, wahlweise noch 0,1 bis 0,4 Gew.-% Ni sowie Aluminium als Rest und herstellungsbedingte Verunreinigungen einzeln max. 0,02 Gew.-%, insgesamt max. 0,2 Gew.-%, mit der weiteren Massgabe, dass Magnesium und Silizium in der Legierung im wesentlichen in einem Gewichtsverhältnis Mg: Si von 1,7: 1 entsprechend der Zusammensetzung des quasi-binären Eutektikums mit den festen Phasen Al und Mg₂Si vorliegen. Die Legierung eignet sich zur Herstellung von Sicherheitsteilen im Fahrzeugbau durch Druckgiessen, Rheo- und Thixocasting.

[0008] Der Erfindung liegt die Aufgabe zugrunde, eine Aluminiumlegierung mit guter Dauerwarmfestigkeit zur Herstellung thermisch und mechanisch beanspruchter Bauteile zu schaffen. Die Legierung soll sich vor allem für den Druckguss, aber auch für den Schwerkraft-Kokillenguss, den Niederdruck-Kokillenguss und den Sandguss eignen.

[0009] Ein spezielles Ziel der Erfindung ist die Bereitstellung einer Aluminiumlegierung für im Druckgiessverfahren hergestellte Zylinderkurbelgehäuse von Verbrennungsmotoren, insbesondere Dieselmotoren.

[0010] Die aus der Legierung gegossenen Bauteile sollen eine hohe Festigkeit in Verbindung mit hoher Duktilität aufweisen. Die im Bauteil angestrebten mechanischen Eigenschaften sind wie folgt definiert:

Dehngrenze Rp0.2 > 170 MPa

Zugfestigkeit Rm > 230 MPa

Bruchdehnung A5 > 6%

[0011] Die Giessbarkeit der Legierung sollte mit der Giessbarkeit der derzeit angewendeten AlSiCu-Gusslegierungen vergleichbar sein, und die Legierung sollte keine Tendenz zu Warmrissen zeigen.

[0012] Zur erfindungsgemässen Lösung der Aufgabe führt, dass die Gehalte der Legierungselemente Magnesium und Silizium in Gew.-% in einem kartesischen Koordinatensystem durch ein Polygon A mit den Koordinaten [Mg; Si] [8,5; 2,7] [8,5; 4,7] [6,3; 2,7] [6,3; 3,4] begrenzt sind und die Legierung weiter 0,1 bis 1 Gew.-% Mangan

max. 1 Gew.-% Eisen

max. 3 Gew.-% Kupfer

max. 2 Gew.-% Nickel

max. 0,5 Gew.-% Chrom

max. 0,6 Gew.-% Kobalt

```
max. 0,2 Gew.-% Zink max. 0,2 Gew.-% Titan
```

max. 0,5 Gew.-% Zirkonium

max. 0,008 Gew.-% Beryllium

max. 0,5 Gew.-% Vanadium

sowie Aluminium als Rest mit weiteren Elementen und herstellungsbedingten Verunreinigungen einzeln max. 0,05 Gew.-%, insgesamt max. 0,2 Gew.-% enthält.

[0013] Für die Hauptlegierungselemente Mg und Si werden die folgenden Gehaltsbereiche bevorzugt:

```
Mg 6,9 bis 7,9 Gew.-%, insbesondere 7,1 bis 7,7 Gew.-%Si 3,0 bis 3,7 Gew.-%, insbesondere 3,1 bis 3,6 Gew.-%
```

[0014] Besonders bevorzugt werden Legierungen, deren Gehalte der Legierungselemente Magnesium und Silizium in Gew.-% in einem kartesischen Koordinatensystem durch ein Polygon B mit den Koordinaten [Mg; Si] [7,9; 3,0] [7,9; 3,7] [6,9; 3,0] [6,9; 3,7], insbesondere durch ein Polygon C mit den Koordinaten [Mg; Si] [7,7; 3,1] [7,7; 3,6] [7,1; 3,6] begrenzt sind.

[0015] Mit den Legierungselementen Mn und Fe kann das Kleben der Gussteile in der Form verhindert werden. Ein hoher Eisengehalt führt zu einer erhöhten Warmfestigkeit auf Kosten einer verminderten Dehnung. Mn trägt auch wesentlich zur Warmhärtung bei. Je nach Anwendungsbereich werden deshalb die Legierungselemente Fe und Mn bevorzugt wie folgt aufeinander abgestimmt:

[0016] Bei einem Gehalt von 0,4 bis 1 Gew.-% Fe, insbesondere 0,5 bis 0,7 Gew.-% Fe, wird ein Gehalt von 0,1 bis 0,5 Gew.-% Mn, insbesondere 0,3 bis 0,5 Gew.-% Mn eingestellt.

[0017] Bei einem Gehalt von max. 0,2 Gew.-% Fe, insbesondere max. 0,15 Gew.-% Fe, wird ein Gehalt von 0,5 bis 1 Gew.-% Mn, insbesondere 0,5 bis 0,8 Gew.-% Mn eingestellt.

[0018] Für die weiteren Legierungselemente werden die folgenden Gehaltsbereiche bevorzugt:

```
Cu 0.2 bis 1,2 Gew.-%, vorzugsweise 0,3 bis 0,8 Gew.-%, insbesondere 0,4 bis 0,6 Gew.-% Ni 0.8 bis 1,2 Gew.-%
```

Cr max 0,2 Gew.-%, vorzugsweise max. 0,05 Gew.-%

30 Co 0,3 bis 0,6 Gew.-% Ti 0,05 bis 0,15 Gew.-% Fe max. 0,15 Gew.-%

20

45

50

55

Zr 0,1 bis 0,4 Gew.-%

[0019] Kupfer führt zu einer zusätzlichen Festigkeitssteigerung, verschlechtert aber mit zunehmendem Gehalt des Korrosionsverhalten der Legierung.

[0020] Durch Zugabe von Kobalt kann das Ausformverhalten der Legierung weiter verbessert werden.

[0021] Titan und Zirkonium dienen der Kornfeinung. Eine gute Kornfeinung trägt wesentlich zur Verbesserung der Giesseigenschaften und der mechanischen Eigenschaften bei.

40 [0022] Beryllium in Verbindung mit Vanadium vermindert die Krätzebildung. Bei einer Zugabe von 0.02 bis 0.15 Gew.-% V, vorzugsweise 0.02 bis 0.08 Gew.-% V, insbesondere 0.02 bis 0.05 Gew.-% V sind weniger als 60 ppm Be ausreichend.

[0023] Ein bevorzugter Anwendungsbereich der erfindungsgemässen Aluminiumlegierung ist die Herstellung thermisch und mechanisch beanspruchter Bauteile als Druck-, Kokillen- oder Sandguss, insbesondere für im Druckgiessverfahren hergestellte Zylinderkurbelgehäuse im Automobilbau.

[0024] Die erfindungsgemässe Legierung erfüllt zudem die für Strukturbauteile im Fahrzeugbau geforderten mechanischen Eigenschaften nach einer einstufigen Wärmebehandlung ohne separate Lösungsglühung.

[0025] Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in

Fig. 1 ein Diagramm mit den Gehaltsgrenzen für die Legierungselemente Mg und Si.

[0026] Das in Fig. 1 dargestellte Polygon A definiert den Gehaltsbereich für die Legierungselemente Mg und Si, die Polygone B und C betreffen Vorzugsbereiche. Die Gerade E entspricht der Zusammensetzung des quasi-binären Eutektikums Al-Mg₂Si. Die erfindungsgemässen Legierungszusammensetzungen liegen somit auf der Seite mit einem Magnesiumüberschuss.

[0027] Die erfindungsgemässe Legierung wurde zu Druckgussplatten mit unterschiedlichen Wanddicken vergossen. Aus den Druckgussplatten wurden Zugproben gefertigt. An den Zugproben wurden die mechanischen Eigenschaften

Dehngrenze (Rp0.2), Zugfestigkeit (Rm) und Bruchdehnung (A) im Zustand

F Gusszustand

Wasser/F Gusszustand, nach dem Ausformen in Wasser abgeschreckt

F> 24 h Gusszustand, > 24 h Lagerung bei Raumtemperatur

Wasser/F > 24 Gusszustand, nach dem Ausformen in Wasser abgeschreckt, > 24 h Lagerung bei Raumtemperatur

sowie nach verschiedenen einstufigen Wärmebehandlungen bei Temperaturen im Bereich von 250 °C bis 380 °C und nach Langzeitlagerungen bei Temperaturen im Bereich von 150 °C bis 250 °C bestimmt.

10 **[0028]** Die untersuchten Legierungen sind in Tabelle 1 zusammengestellt. Die Kennziffer A verweist auf Legierungen mit Kupferzusatz, die Kennziffer B auf Legierungen ohne Kupferzusatz.

[0029] In Tabelle 2 sind die Ergebnisse der an Zugproben der Legierungen von Tabelle 1 ermittelten mechanischen Eigenschaften zusammengestellt.

[0030] Eine in den Tabellen 1 und 2 nicht berücksichtigte Legierung mit guter Dauerwarmfestigkeit wies die folgende Zusammensetzung (in Gew.-%) auf:

3,4 Si, 0,6 Fe, 0,42 Cu, 0,32 Mn, 7,4 Mg, 0,07 Ti, 0,9 Ni, 0,024 V und 0,004 Be

[0031] Die Ergebnisse der Langzeitversuche belegen die gute Dauerwarmfestigkeit der erfindungsgemässen Legierung. Die mechanischen Eigenschaften nach einer einstufigen Wärmebehandlung bei 350 °C und 380 °C während 90 min lassen darüber hinaus erkennen, dass die erfindungsgemässe Legierung auch die an Strukturbauteile im Fahrzeugbau gestellten Anforderungen erfüllt.

Tabelle 1: chemische Zusammensetzung der Legierungen in Gew.-.%

Legierungsvariante	Wanddicke Flachprobe	Si	Fe	Cu	Mn	Mg	Ti	V	Ве
1	3mm	3,469	0,1138		0,787	7,396	0,106	0,0221	0,0025
1A	3 mm	3,4	0,117	0,527	0,781	7,151	0,119	0,0223	0,0019
2	2 mm	3,366	0,0936		0,774	7,246	0,117	0,0263	0,0024
2A	2mm	3,251	0,0841	0,507	0,76	7,499	0,1	0,0246	0,0023
3	4 mm	3,352	0,0917		0,774	7,221	0,118	0,026	0,0024
3A	4mm	3,198	0,0848	0,522	0,747	7,351	0,101	0,0255	0,0023
4	6 mm	3,28	0,0921		0,766	7,024	0,119	0,0268	0,0024
4A	6mm	3,181	0,0862	0,535	0,745	7,273	0,1	0,0257	0,0023

30

25

15

20

35

40

45

50

Tabelle 2: mechanische Eigenschaften der Legierungen

	Legierungsvariante	Ausgangszustand	Wärmebehandlung	Rp0.2 [MPa]	Rm [MPa]	A5 [%]
		F		210	359	8,6
5		Wasser / F		181	347	9,6
		F>24h		204	353	8,9
		Wasser / F>24h		176	347	13,4
10			250°C/10min	216	352	7,4
			250°C/20min	218	352	6,8
			250°C/90min	207	349	10,8
45			350°C/10min	154	315	12,5
15			350°C/20min	158	315	10,6
			350°C/90min	147	306	11,4
	1		380°C/10min	145	304	14,1
20			380°C/20min	139	299	13,9
		F>24h	380°C/90min	137	299	16,7
			150°C/100h	221	365	9,4
25			180°C/100h	214	346	6
20			200°C/100h	211	354	9,4
			250°C/100h	184	336	11,7
			150°C/500h	223	353	6
30			180°C/500h	216	357	9,7
			200°C/500h	202	349	9,2
			250°C/500h	170	327	12,3
35	1A	F		234	345	4,2
		Wasser / F		170	319	4,9
		F>24h		205	355	7,1
		Wasser / F>24h		188	340	5,6
40		F>24h	250°C/10min	227	355	6,6
			250°C/20min	217	354	7,5
			250°C/90min	213	350	7,9
45			350°C/10min	157	328	10,4
			350°C/20min	151	317	9,3
			350°C/90min	142	312	12,1
			380°C/10min	141	315	12,6
50			380°C/20min	137	312	12,4
			380°C/90min	133	309	12,2

(fortgesetzt)

	Legierungsvariante	Ausgangszustand	Wärmebehandlung	Rp0.2 [MPa]	Rm [MPa]	A5 [%]
			150°C/100h	248	370	5
			180°C/100h	249	373	6,3
			200°C/100h	215	346	6,2
			250°C/100h	185	329	7,6
			150°C/500h	239	368	6,5
			180°C/500h	227	352	6,9
			200°C/500h	215	350	7,8
			250°C/500h	162	317	8,9
				212	364	10,7
		E- 041-	250°C/90min	223	358	9,9
	2	F>24h	350°C/90min	152	312	13,9
			380°C/90min	139	297	17,9
		F>24h		241	394	7,8
			250°C/90min	234	375	8,5
	2A		350°C/90min	163	332	9
			380°C/90min	144	328	13,7
		F>24h		158	321	9,9
			250°C/90min	164	324	10,4
	3		350°C/90min	143	307	12
			380°C/90min	129	292	16,4
				173	326	6
		F>24h	250°C/90min	181	325	5,9
	3A		350°C/90min	151	315	6,9
			380°C/90min	137	312	9,5
		F>24h		138	304	8,2
			250°C/90min	145	309	9
	4		350°C/90min	133	297	8,4
			380°C/90min	123	286	12,7
	4A	F>24h		152	284	4,3
			250°C/90min	163	278	3,7
			350°C/90min	139	286	5,2
			380°C/90min	131	285	5,7

Patentansprüche

55

1. Aluminiumlegierung vom Typ AlMgSi mit guter Dauerwarmfestigkeit zur Herstellung thermisch und mechanisch beanspruchter Gussbauteile,

dadurch gekennzeichnet, dass

die Gehalte der Legierungselemente Magnesium und Silizium in Gew.-% in einem kartesischen Koordinatensystem durch ein Polygon A mit den Koordinaten [Mg; Si] [8,5; 2,7] [8,5; 4,7] [6,3; 2,7] [6,3; 3,4] begrenzt sind und die

Legierung weiter
0,1 bis 1 Gew.-% Mangan
max. 1 Gew.-% Eisen
max. 3 Gew.-% Kupfer

5 max. 2 Gew.-% Nickel
max. 0,5 Gew.-% Chrom
max. 0,6 Gew.-% Kobalt
max. 0,2 Gew.-% Zink
max. 0,2 Gew.-% Titan

10 max 0,5 Gew.-% Zirkoniu

max. 0,5 Gew.-% Zirkonium max. 0,008 Gew.-% Beryllium

max. 0,5 Gew.-% Vanadium

sowie Aluminium als Rest mit weiteren Elementen und herstellungsbedingten Verunreinigungen einzeln max. 0,05 Gew.-%, insgesamt max. 0,2 Gew.-% enthält.

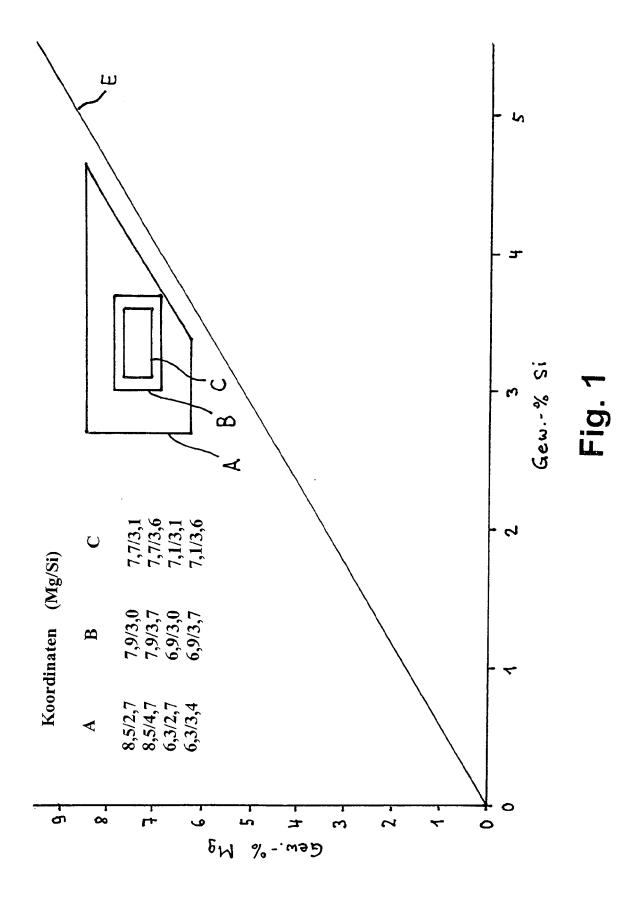
2. Aluminiumlegierung nach Anspruch 1, **gekennzeichnet durch** 6.9 bis 7,9 Gew.-% Mg, vorzugsweise 7,1 bis 7,7 Gew.-% Mg.

- **3.** Aluminiumlegierung nach Anspruch 1 oder 2, **gekennzeichnet durch** 3,0 bis 3,7 Gew.-% Si, vorzugsweise 3,1 bis 3,6 Gew.-% Si.
- **4.** Aluminiumlegierung nach Anspruch 1, **dadurch gekennzeichnet**, **dass** die Gehalte der Legierungselemente Magnesium und Silizium in Gew.-% in einem kartesischen Koordinatensystem durch ein Polygon B mit den Koordinaten [Mg; Si] [7,9; 3,0] [7,9; 3,7] [6,9; 3,0] [6,9; 3,7] begrenzt sind.
- **5.** Aluminiumlegierung nach Anspruch 4, **dadurch gekennzeichnet**, **dass** die Gehalte der Legierungselemente Magnesium und Silizium in Gew.-% in einem kartesischen Koordinatensystem durch ein Polygon C mit den Koordinaten [Mg; Si] [7,7; 3,1] [7,7; 3,6] [7,1; 3,6] begrenzt sind.
- 6. Aluminiumlegierung nach einem der Ansprüche 1 bis 5, **gekennzeichnet durch** 0,4 bis 1 Gew.-% Fe, vorzugsweise 0,5 bis 0,7 Gew.-% Fe, und 0,1 bis 0,5 Gew.-% Mn, vorzugsweise 0,3 bis 0,5 Gew.-% Mn.
 - 7. Aluminiumlegierung nach einem der Ansprüche 1 bis 5, **gekennzeichnet durch** max. 0,20 Gew.-% Fe, vorzugsweise max. 0,15 Gew.-% Fe, und 0,5 bis 1 Gew.-% Mn, vorzugsweise 0,5 bis 0,8 Gew.-% Mn.
 - **8.** Aluminiumlegierung nach einem der Ansprüche 1 bis 7, **gekennzeichnet durch** 0,2 bis 1,2 Gew.-% Cu, vorzugsweise 0,3 bis 0,8 Gew.-% Cu, insbesondere 0,4 bis 0,6 Gew.-% Cu.
 - 9. Aluminiumlegierung nach einem der Ansprüche 1 bis 8, gekennzeichnet durch 0,8 bis1,2 Gew.-% Ni.
 - **10.** Aluminiumlegierung nach einem der Ansprüche 1 bis 9, **gekennzeichnet durch** max. 0,2 Gew.-% Cr, vorzugsweise max. 0,05 Gew.-% Cr.
 - 11. Aluminiumlegierung nach einem der Ansprüche 1 bis 10, gekennzeichnet durch 0,3 bis 0,6 Gew.-% Co.
 - 12. Aluminiumlegierung nach einem der Ansprüche 1 bis 11, gekennzeichnet durch 0,05 bis 0,15 Gew.-% Ti.
 - 13. Aluminiumlegierung nach einem der Ansprüche 1 bis 12, gekennzeichnet durch 0,1 bis 0,4 Gew.-% Zr.
- ⁵⁰ **14.** Aluminiumlegierung nach einem der Ansprüche 1 bis 13, **gekennzeichnet durch** 0.02 bis 0.15 Gew.-% V, vorzugsweise 0.02 bis 0.08 Gew.-% V, insbesondere 0.02 bis 0.05 Gew.-% V, und weniger als 60 ppm Be.
 - **15.** Verwendung einer Aluminiumlegierung nach einem der Ansprüche 1 bis 14 für im Druck- Kokillen- oder Sandgiessverfahren hergestellte, thermisch und mechanisch beanspruchte Bauteile.
 - 16. Verwendung nach Anspruch 15 für im Druckgiessverfahren hergestellte Zylinderkurbelgehäuse im Automobilbau.
 - 17. Verwendung einer Aluminiumlegierung nach einem der Ansprüche 1 bis 14 für im Druckgiessverfahren hergestellte

7

15

25


20

35

40

45

Sicherheitsteile im Automobilbau.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 06 40 5085

	EINSCHLÄGIGE	DOKUMENTE		
Kategorie	Kennzeichnung des Dokun der maßgebliche	nents mit Angabe, soweit erforderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
Α	EN FUER TEMPARATURM GUSSSTÜCKE HEAT-RES ALUMINUM-MAGENSIUM-FOR CASTINGS SUBJECTHERMAL STRESS" ALUMINIUM, ALUMINIUDE,	I-SILIZIUM-GUSSLEGIERUNG ECHSELBEANSPRUCHTE SISTANT SILICON CASTING ALLOYS T TO FLUCTUATING M VERLAG, DUESSELDORF, 1980 (1980-05), Seiten	1-17	INV. C22C21/08
A,D	ZYLINDERKOEPFE" GIESSEREI-PRAXIS, S DE,	GUSSLEGIERUNGEN FUER SCHIELE & SCHON. BERLIN, 1 50-57, XP009054925	1-17	RECHERCHIERTE SACHGEBIETE (IPC)
A,D	US 3 868 250 A (ZIM 25. Februar 1975 (1 * das ganze Dokumer	975-02-25)	1-17	C22C
A,D	EP 1 234 893 A (ALC MANAGEMENT AG) 28. August 2002 (20 * das ganze Dokumer	02-08-28)	1-17	
Der vo	rliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche	<u> </u>	Prüfer
	München	15. Mai 2006	Swi	atek, R
X : von Y : von ande A : tech O : nich	NTEGORIE DER GENANNTEN DOKL besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kateg nologischer Hintergrund tschriftliche Offenbarung schenliteratur	E : älteres Patentdol et nach dem Anmel mit einer D : in der Anmeldun orie L : aus anderen Gri	kument, das jedoo dedatum veröffen g angeführtes Dol nden angeführtes	tlicht worden ist kument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 06 40 5085

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

15-05-2006

lm Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung	
US 3868250	A	25-02-1975	CA DE FR IT JP	987138 2129352 2142335 947446 53013569	A1 A5 B	13-04-1976 21-12-1972 26-01-1973 21-05-1973 11-05-1978	
EP 1234893	A	28-08-2002	AT CA DE ES PT US	283380 2371318 50104594 2232584 1234893 2002155022	A1 D1 T3	15-12-2004 21-08-2002 30-12-2004 01-06-2005 31-03-2005 24-10-2002	

EPO FORM P0461

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- US 3868250 A [0004]
- WO 9615281 A [0005]

- WO 0043560 A **[0006]**
- EP 1234893 A [0007]

In der Beschreibung aufgeführte Nicht-Patentliteratur

Optimierung von Aluminium-Silicium-Gusslegierungen für Zylinderköpfe. F. J. FEIKUS. Giesserei-Praxis. 1999, 50-57 [0003]