(11) **EP 1 757 775 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

28.02.2007 Patentblatt 2007/09

(21) Anmeldenummer: 06013281.8

(22) Anmeldetag: 27.06.2006

(51) Int Cl.:

F01D 17/16 (2006.01) F01D 11/00 (2006.01) F02C 9/20 (2006.01)

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

(30) Priorität: 26.08.2005 DE 102005040574

(71) Anmelder: Rolls-Royce Deutschland Ltd & Co KG 15827 Dahlewitz (DE)

(72) Erfinder: Jahns, Ingo 12305 Berlin (DE)

(74) Vertreter: Weber, Joachim Hoefer & Partner Patentanwälte Gabriel-Max-Strasse 29 81545 München (DE)

(54) Dichtvorrichtung für eine verstellbare Statorschaufel

(57) Die Erfindung bezieht sich auf eine Spindelkontrollvorrichtung für eine Gasturbine mit zumindest einer Reihe von verstellbaren Schaufeln 2 sowie mit einer an eine Schaufelreihe angrenzenden, gasumströmten Fläche 4, dadurch gekennzeichnet, dass die Fläche 4 im Wesentlichen in Form eines Kugelflächenrings ausgebildet ist und gleichzeitig eine Verengung des Gaskanals mit einer aerodynamisch günstigen Form des Ringraumes erreicht wird.

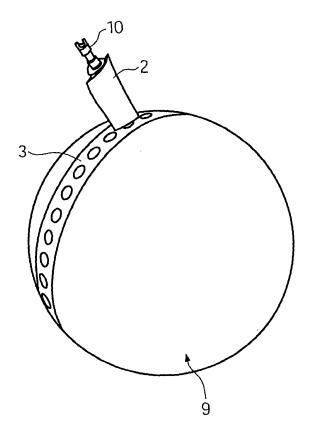


Fig.7

EP 1 757 775 A2

20

40

50

Beschreibung

[0001] Die Erfindung bezieht sich auf eine Spaltkontrollvorrichtung für eine Gasturbine.

1

[0002] Aus dem Stand der Technik sind unterschiedliche Lösungen vorbekannt, um eine Spaltkontrolle bei verstellbaren Statorschaufeln eines Verdichters einer Gasturbine zu ermöglichen.

[0003] Die GB 2 235 730 A sieht vor, die Spaltkontrolle am Gehäuse über ein verstellbares äußeres Deckband vorzunehmen. Die Verstellung des jeweiligen Deckbandsegments wird dabei über einen am Gehäuse montierten Verstellmechanismus gewährleistet. Das Gehäuse und das Innendeckband bilden somit die Grenzflächen für den Gasstrom

[0004] Die DE 42 137 16 A1 sieht vor, das innere Schaufelspitzenende der verstellbaren Statorschaufel und die gegenüberliegende Wandung kugelförmig auszugestalten, wobei die Achse der Verstellschaufeln senkrecht zur Maschinenachse steht.

[0005] Die US 2002/0061249 A1 hat für jede Verstellschaufel lokale kugelförmige Aussparungen im Gehäuse. Die verstellbaren Statorschaufelachsen sind dort zur Maschinenachse geneigt, um die lokalen Sicken strömungsgünstiger zu gestalten.

[0006] Neben einen geringen Spalt zwischen den verstellbaren Statorschaufeln und den Gehäusen bzw. Innendeckband ist es auch wichtig Vorsprünge, Wendungen und Unstetigkeiten im Gaskanal zu vermeiden, da diese zu Strömungsverlusten und - ablösungen führen können.

[0007] Allgemein ist es bekannt, dass die Verdichtung der Luft durch die Verdichterrotorschaufeln es erforderlich macht, den Gaskanal immer enger auszugestalten und somit das Gehäuse und/oder die Innendeckbänder mit einer Neigung zu versehen, die besonders in den vorderen Stufen sehr groß sein kann. Die vorderen Statorreihenschaufeln des Verdichters sind meistens verstellbar. Bedingt durch diese Drehung ändert sich jedoch bei herkömmlicher Bauart der Spalt zwischen dem Gehäuse und der variablen Statorschaufel ebenso, wie der Spalt zwischen dem Innendeckband und der variablen Statorschaufel. Diese Spaltbildung erweist sich als nachteilig und führt zu aerodynamischen Verlusten.

[0008] Die DE 42 137 16 A1 und US 2002/006-1249 A1 lösen dieses Problem. Der Nachteil dieser Gestaltungsvarianten liegen in der Gaskanalgeometrie, die wie oben beschrieben frei von Vorsprüngen und Wendungen und Unstetigkeiten sein sollen.

[0009] Der Erfindung liegt die Aufgabe zugrunde, eine Spaltkontrollvorrichtung der eingangs genannten Art zu schaffen, welche bei einfachem Aufbau und einfacher, kostengünstiger Herstellbarkeit eine Minimierung des Spalts ermöglicht und aerodynamische Verluste minimiert und gleichzeitig eine aerodynmaisch optimierte Gestaltung des Gaskanals ermöglicht.

[0010] Erfindungsgemäß wird die Aufgabe durch die Merkmalskombination des Hauptanspruchs gelöst, die Unteransprüche zeigen weitere vorteilhafte Ausgestaltungen der Erfindung. [0011] Erfindungsgemäß ist vorgesehen, dass der ra-

diale Höhenunterschied des Ringraumes durch ein Ku-

gelsegment erreicht wird, wobei das Kugelsegment vor/bzw. hinter dem Äquator geschnitten wird. Die Drehachse der verstellbaren Statorschaufeln geht durch den Kugelmittelpunkt und ist mit einem Winkel (α) zur Maschinenachse geneigt. Der Radius des Kugelsegmentes (R kugel) ergibt sich aus dem radialen Abstand der Schaufelspitze im Schnittpunkt der Statorschaufeldrehachse (R_{ma}) zur Maschinendrehachse geteilt durch sin (α) . Der Winkel (α) wird erfindungsgemäß so gewählt, dass die gewünschte Einengung des Strömungskanals entsteht. [0012] Weiterhin ist es günstig, wenn der Winkel der Drehachse so gelegt wird, dass die Vorderkante des radial äußeren Endes der verstellbaren Statorschaufel durch die Drehspindel abgedeckt wird. Der Spalt zwischen der Hinterkante des radialen äußeren Endes der Statorschaufel und dem Gehäuse kann durch die gegenläufige Neigung des Ringraumes in axialer Richtung und der Neigung des Ringkanals in Umfangsrichtung bei Drehung der verstellbaren Statorschaufel minimiert werden. Dem kugelförmig ausgebildeten Bereich des Innendeckbandes folgt die Gaskanalgeometrie der nächsten Rotorscheibe. Dadurch, dass das Kugelsegment nicht im Bereich des Äquators der Kugel liegt, kommt es zu keinem Wendepunkt im Gaskanal. An dem Schnittpunkt des Rinkanalsegmentes des benachbarten Rotors kann es zu einer Krümmungsunstetigkeitstelle kommen. Diese wird so gelegt, dass sie in dem erforderlichen Laufspalt zwischen dem statischen Innendeckband und dem Rotor liegt. Das ist bei einseitig gelagerten verstellbaren Statorschaufeln nicht machbar, da es dort diesen Laufspalt nicht gibt.

[0013] Erfindungsgemäß ist somit vorgesehen, dass die jeweils an die Schaufelreihe angrenzende, gasumströmte Fläche im Wesentlichen in Form eines Kugelflächenrings ausgebildet ist. Erfindungsgemäß ist es dabei möglich, diesen speziell ausgeformten gasumströmten Bereich entweder am Gehäuse, am Innendeckband oder an dem Rotor (einseitige Lagerung der variablen Statorschaufel) vorzusehen. Die Erfindung ist somit sowohl auf den radial innenliegenden Bereich der Schaufel als auch auf den radial außenliegenden Bereich der Schaufel anwendbar.

[0014] Die erfindungsgemäß vorgesehene Form eines Kugelflächenrings definiert sich aus der Oberfläche einer flachen Scheibe, die aus einer Kugeloberfläche ausgeschnitten wird. Es liegt somit in Axialrichtung eine gleichmäßige Wölbung dieser Fläche vor.

[0015] Besonders vorteilhaft ist es, wenn die Drehachsen der verstellbaren Statorschaufeln senkrecht zur Oberfläche der gasumströmten Fläche angeordnet sind. Es ist somit sichergestellt, dass die Drehachse stets durch den Kugelmittelpunkt verläuft. Die Flächen der variablen Statorschaufeln, die mit dem kugeligen Bereich der gasumströmten Flächen in Kontakt stehen, werden mit einer leicht größeren Kugel verschnitten. Somit ergibt sich in jeder Verdrehstellung der Schaufel ein konstanter Spalt zwischen dem Gehäuse bzw. dem Innendeckband/Rotor und dem jeweiligen axial äußeren oder axial inneren Ende der Schaufel.

[0016] Besonders günstig ist es, wenn die gasumströmte Fläche zur horizontalen, die Drehachse der Gasturbine umfassenden Ebene in axialer Richtung geneigt ist. Der Kugelflächenring wird somit nicht im Äquator der Kugel angeordnet, sondern seitlich versetzt. Somit ist eine Verjüngung oder Verengung des Strömungsquerschnitts des Verdichters möglich. Da die Drehachse der verstellbaren Statorschaufel durch den Kugelmittelpunkt verläuft, ist somit die Drehachse axial nach vorne geneigt.

[0017] Durch die erfindungsgemäße Spaltkontrollvorrichtung ist es somit möglich, eine exakte Spaltkontrolle vorzunehmen. Der Spalt bleibt dabei über den gesamten Verstellbereich der Schaufel konstant. Es ergeben sich somit kleinere Spalte im Betriebspunkt des Kompressors, wodurch der Wirkungsgrad erhöht und die aerodynamischen Verluste verringert werden.

[0018] Erfindungsgemäß versteht es sich, dass die Form einer Kugelfläche auch geringfügig verlassen werden kann, so dass von der Idealform geringfügig abgewichen wird. Dies ist durch die Erfindung mit abgedeckt. [0019] Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels in Verbindung mit der Zeichnung beschrieben. Dabei zeigt:

- Fig. 1 eine schematische Seiten-Teil-Schnittansicht einer verstellbaren, variablen Verdichterschaufel,
- Fig. 2 eine perspektivische Teilansicht einer Schaufelreihe mit Gehäuse und Innendeckband,
- Fig. 3 eine schematische Seitenansicht des Innendeckbands sowie der Schaufel,
- Fig. 4 eine perspektivische Ansicht der Darstellung der Fig. 3,
- Fig. 5 eine vergrößerte Teilansicht, analog der Darstellung der Fig. 3,
- Fig. 6 eine weitere vergrößerte Teilansicht der erfindungsgemäßen Anordnung,
- Fig. 7 eine perspektivische Ansicht zur Erklärung des Kugelflächenrings,
- Fig. 8 eine vergrößerte Teildarstellung der erfindungsgemäßen Schaufel mit Spindel,
- Fig. 9 eine schematische Seiten-Teil-Schnittansicht eines weiteren Ausführungsbeispiels, und

Fig. 10 eine vergrößerte Teilansicht des Ausführungsbeispiels in Fig. 9.

[0020] Die erfindungsgemäße Spaltkontrollvorrichtung umfasst ein aus dem Stand der Technik bekanntes Gehäuse 1 einer Gasturbine, an welchem mittels einer Spindel 10 und eines im Einzelnen nicht weiter zu erläuternden, da aus dem Stand der Technik bekannten Verstellmechanismus eine Schaufel 2 gelagert ist. Diese ist Teil eines Verdichters (Kompressors), so wie dies aus dem Stand der Technik ebenfalls bekannt ist.

[0021] Der radial innenliegende Bereich der Schaufel 2 kann, wie in Fig.3 gezeigt, an einem Innendeckband 3 gelagert sein oder, wie in Fig. 1 gezeigt, gegen eine Rotortrommel laufen. Die Fig. 1 zeigt weiterhin die Darstellung einer Drehachse 7 der Schaufel 2 sowie die sich zwischen den Enden der Schaufel 2 ergebenden Spalte 8 oder Abstände 8.

[0022] Erfindungsgemäß ist vorgesehen, dass, aus aerodynamischen Gründen, eine gasumströmte Fläche 4 (siehe beispielsweise Fig. 2) des Gehäuses 1 und/oder des Innendeckbandes 3 eine Neigung zur Triebwerksdrehachse in axialer Richtung aufweisen, so dass sich der Gaskanal während der Verdichtung der Luft verengt (siehe Fig. 1).

[0023] Erfindungsgemäß wird das radial innere Ende der verstellbaren Statorschaufel und die gasumströmte Fläche (4) des Innendeckbandes (3) kugelförmig ausgestaltet ist. Der Radius der Kugel (R kugel) zum Verschneiden der Statorschaufelspitze ist erfindungsgemäß gleich dem radialen Abstand von der Maschinenachse zur Schaufelspizte am Knotenpunkt der Statorschaufeldrehachse (R ma) dividiert durch dem Sinus des Neigungswinkel der Statorschaueldrehachse 7 zur Maschinenachse (α). Die Neigung der Drehachse 7 wird erfindungsgemäß so gewählt, dass der geforderte Höhenunterschied zwischen der Eintritts- und Austrittskante am axial geschnittenen Innendeckband entsteht (3).

[0024] Das in den Figuren dargestellte Beispiel geht von einem ansteigenden Gaskanal aus. Eine entsprechende Gestaltung ist auch mit einem fallenden Gaskanal möglich.

[0025] Auch der im Gasstrom liegende Teil 5 einer Spindel 9 der Schaufel 2 wird erfindungsgemäß in günstiger Weiterbildung mit der Form einer Kugel verschnitten und steht somit nicht mehr im Gasstrom.

[0026] In einer günstigen Weiterentwicklung ist bei einer einseitig gelagerten Statorschaufel 12 auch der Bereich 6 des Rotors entsprechend den oben genannten Kriterien kugelförmig gestaltet, so dass mit dem kugelförmigen radial inneren Ende der Statorschaufel ein gleichmäßiger Laufspalt entsteht. Der Bereich 6 entspricht mindestens der maximalen axialen Ausdehnung der verstellbaren Statorschaufel in ihrem Verdrehbereich

[0027] Die gasumströmten Flächen bei einem Schnitt quer zur Triebwerksachse sind ringförmig oder kreisförmig, so wie dies durch das Bezugszeichen 5 der Fig. 4

10

15

20

30

35

40

dargestellt ist.

[0028] Erfindungsgemäß ist die Drehachse 7 der variablen Statorschaufel (Schaufel 2) so angeordnet, dass sie senkrecht auf der Oberfläche des Innendeckbandes 3 liegt. Die Drehachse 7 der Schaufel 2 ist somit, abhängig von der geforderten Neigung der gasumströmten Fläche 4, axial nach vorne geneigt.

[0029] In axialer Richtung wird die gasumströmte Fläche 4 erfindungsgemäß so gestaltet, dass sie dieselbe Krümmung (Bezugszeichen 6 in Fig. 3) hat, wie in Umfangsrichtung (Bezugszeichen 5 der Kreisform gemäß Fig. 4). Die gasumströmte Fläche 4 bildet somit einen Ausschnitt aus einer Kugel oder einen Kugelflächenring, so wie sich dies aus der Darstellung einer Kugel 9 in Fig. 7 ergibt.

[0030] Die Schaufel 2 (Statorschaufel) wird mit einem Abstand (Spalt 8) zum Innendeckband 3 angeordnet ist so ausgebildet, dass das Ende der Schaufel 2 ebenfalls einen Teil einer Kugelfläche bildet. Der Abstand bzw. Spalt 8 ist somit lediglich abhängig von den Fertigungstoleranzen und den thermischen Ausdehnungen. Im Übrigen bleibt der Abstand bei jeder Drehung oder Verstellung der Schaufel 2 konstant, da zwei Kugeloberflächenteile relativ zueinander bewegt werden.

[0031] Die Fig. 5 zeigt die variable Statorschaufel im voll geöffneten Zustand, während in Fig. 6 die Statorschaufel im vollständig geschlossenen Zustand dargestellt ist. Es ergibt sich, dass in beiden diesen Betriebszuständen der Spalt 8 konstant bleibt.

[0032] Auch der im Gasstrom liegende Teil einer Spindel 10 der Schaufel 2 wird erfindungsgemäß in günstiger Weiterbildung mit der Form einer Kugel verschnitten und steht somit nicht mehr im Gasstrom.

[0033] Erfindungsgemäß ist es somit möglich, Anforderungen der Gaskanaloberfläche hinsichtlich Stetigkeit und Anströmwinkel in dem gasumströmten Bereich des Rotors zu realisieren.

[0034] Die vorstehenden Ausführungen haben sich auf das Innendeckband 3 bezogen. Es ist selbstverständlich, dass die radial innenliegende Fläche des Gehäuses 1 sowie der radial außenliegende Endbereich der Schaufel 2 ebenfalls in der beschriebenen Kugelform ausgebildet sein können.

[0035] In einer günstigen Weiterentwicklung der Erfindung ist die verstellbare Statorschaulel einseitig gelagert (Fig. 12). Die Statorschaufel hat keine innere Spindel. Der radial innenliegende Bereich der verstellbaren Statorschaufel läuft gegen die Rotortrommel 11. Die gegenüberliegenden Flächen der variablen Verstellschaufel (12) und des Rotors (11) sind wie oben beschrieben kugelförmig ausgebildet.

Bezugszeichenliste

[0036]

- 1 Gehäuse
- 2 Verstellbare Statorschaufel

- 3 Innendeckband
- 4 Gasumströmte Fläche
- 5 Kreisform
- 6 Krümmung
- 7 Drehachse
 - 8 Spalt/Abstand
 - 9 Kugel
 - 10 Spindel
 - 11 Rotor mit integrierten Schaufeln/konventioneller Rotor mit Umfangsnuten für Rotorschaufeln
 - 12 Einseitig gelagerte verstellbare Statorschaufel

Patentansprüche

- Spindelkontrollvorrichtung für eine Gasturbine mit zumindest einer Reihe von verstellbaren Statorschaufeln (2), die am radial äußeren Ende von einem Gehäuse (1) gehalten werden und am radial inneren Ende ein Innendeckband (3) lokalisieren, wobei das radial innere Ende der verstellbaren Statorschaufel und die gasumströmte Fläche (4) des Innendeckbandes (3) kugelförmig ausgestaltet ist, dadurch gekennzeichnet,
- dass der Radius der Kugel (R _{kugel}) zum Verschneiden der Statorschaufelspitze gleich dem radialen Abstand von einer Maschinenachse zur Schaufelspitze am Knotenpunkt der Statorschaufeldrehachse (7) (R_{ma}) dividiert durch den Sinus des Neigungswinkel der Statorschaueldrehachse zur Maschinenachse (α) ist,

dass der Radius der Kugel zum Verschneiden des Innendeckbandes (3) kleiner als der zum Verschneiden der inneren Statorschaufelspitze ist, um Toleranzen oder Thermalbewegungen auszugleichen, dass der Neigungswinkel (α) so gewählt wird, dass ein aerodynamisch erforderlicher radialer Höhenunterschied zwischen der Eintritts- und Austrittskante am axial geschnittenen Innendeckband entsteht (3), und

dass der Abstand aller Punkte am axial geschnittenen Innendeckband (3) zur Maschinenachse kleiner dem Kugelradius ist.

- 45 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass Krümmungsunstetigkeiten im Gaskanal in dem Spalt zwischen Innendeckband (3) und nachfolgender Rotorstufe gelegt werden.
- 50 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der im Gasstrom liegende Teil 5 einer Spindel 9 der Schaufel 2 mit der Form einer Kugel verschnitten wird und somit nicht mehr den Gasstrom behindert.
 - Spindelkontrollvorrichtung für eine Gasturbine mit zumindest einer Reihe von einseitig gelagerten verstellbaren Schaufeln (11), die am radial äußeren En-

55

de von einem Gehäuse (1) gehalten werden und am radialen inneren Ende gegen den Rotor (10) abdichten, wobei das radial innere Ende der variablen Verstellschaufel und der Bereich (6) des Rotors (9) kugelförmig ausgestaltet sind,

dadurch gekennzeichnet,

dass der Radius der Kugel zum Verschneiden einer Statorschaufelspitze gleich dem radialen Abstand von einer Maschinenachse zur Schaufelspizte am Knotenpunkt der Statorschaufeldrehachse dividiert duch den Sinus des Neigungswinkels (α) der Statorschaufeldrehachse (7) zur Maschinenachse ist, dass der Radius der Kugel zum Verschneiden des Rotors (10) im Bereich (6) kleiner als der zum Verschneiden der inneren Statorschaufelspitze ist, um Toleranzen oder Thermalbewegungen auszugleichen,

dass der Neigungswinkel (α) so gewählt wird, dass ein aerodynamisch erforderlicher radialer Höhenunterschied im Bereich (6) des Rotors (10) entsteht, und

dass der Abstand aller Punkte im Bereich (6) zur Maschinenachse kleiner dem Kugelradius ist.

 Vorrichtung nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet dass die optimale Kugelform im heißen Triebwerkszustand erreicht wird, und die bearbeitete hergestellte kalte Geometrie von der Idealform abweicht. 5

10

15

20

30

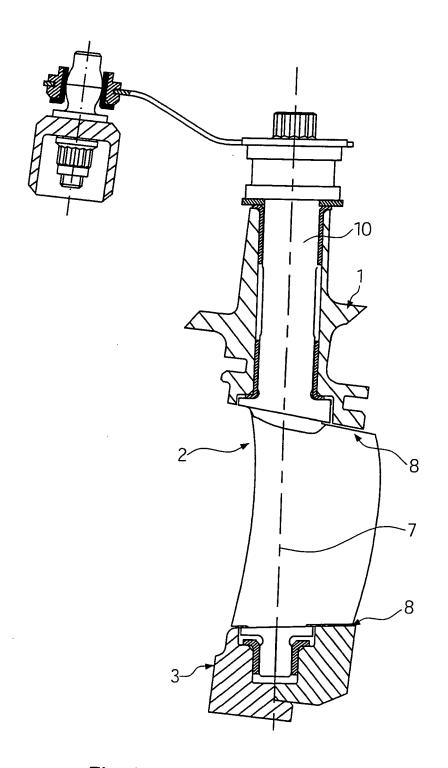
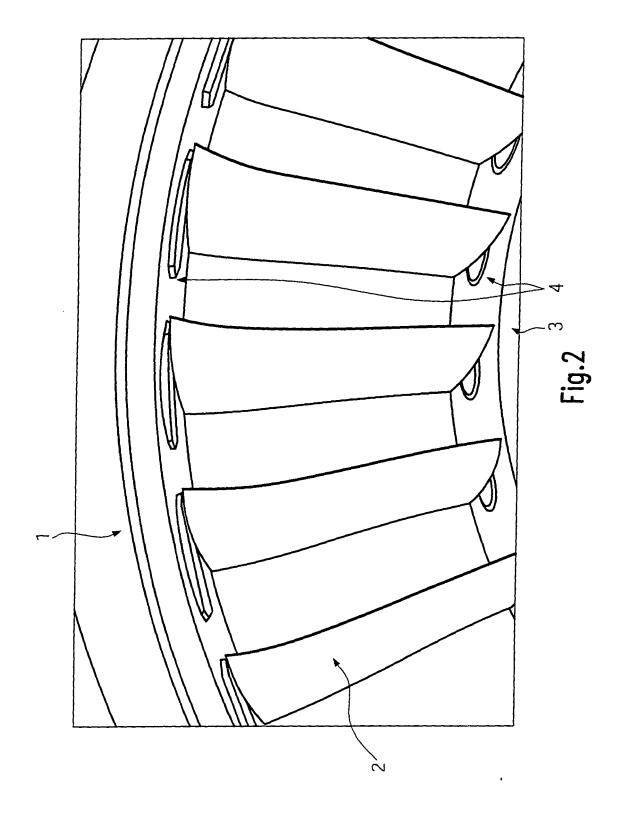
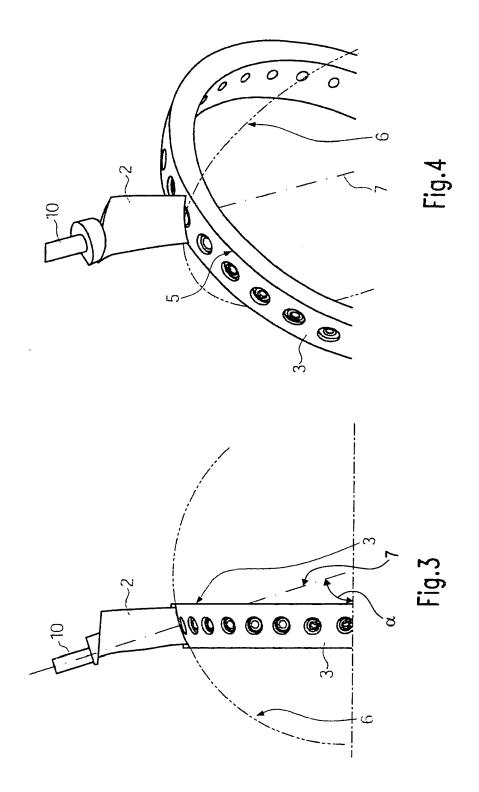
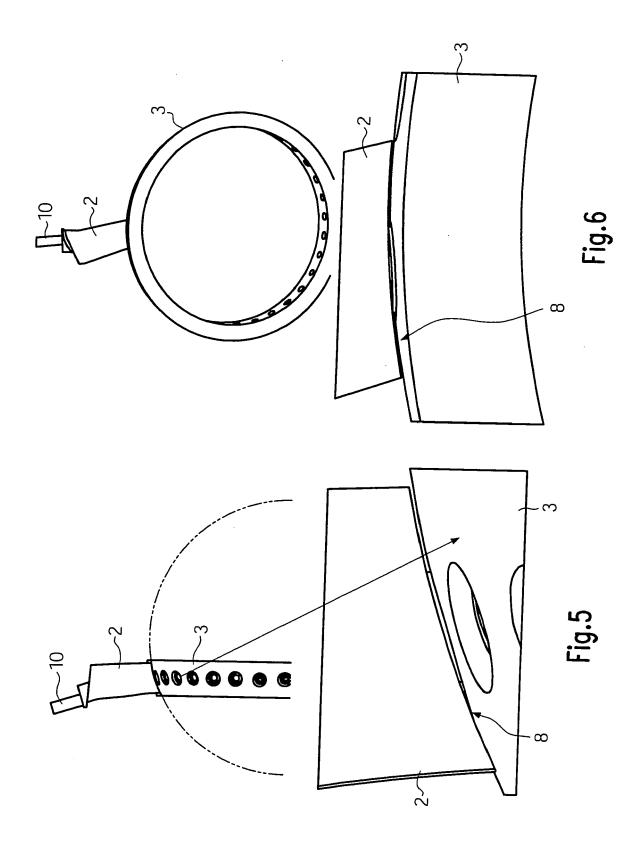
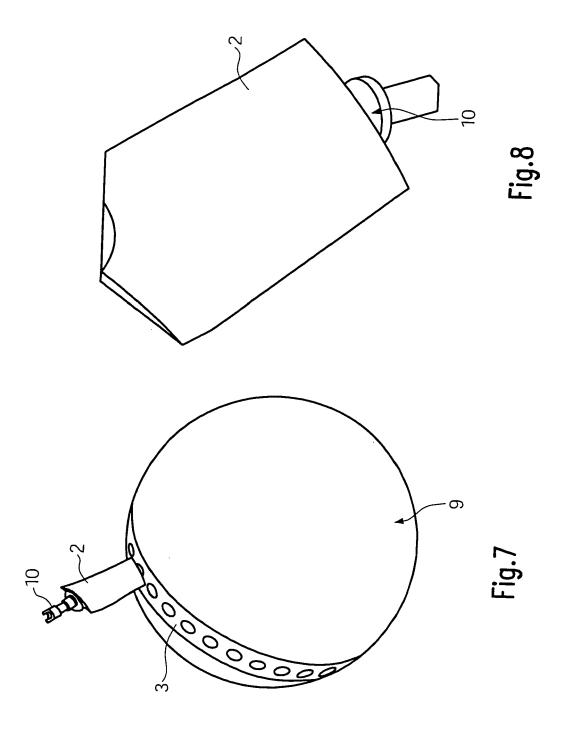
35

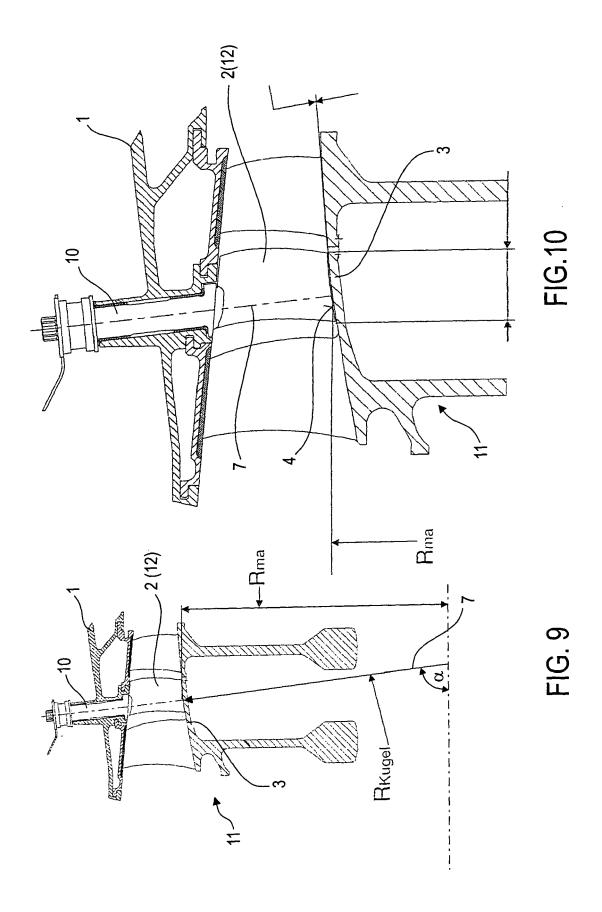
40

45

50

55


Fig.1

EP 1 757 775 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- GB 2235730 A [0003]
- DE 4213716 A1 [0004] [0008]

• US 20020061249 A1 [0005] [0008]