BACKGROUND OF THE INVENTION
1. Field of the Invention
[0002] The present invention relates to a recording/reproducing optical disk apparatus (recording
type optical disk apparatus) for recording or reproducing data by a very small optical
spot and a two-layer optical disk used with the recording type optical disk apparatus.
2. Description of the Related Art
[0003] In the field of optical disks which record or reproduce data by a very small optical
spot, in addition to reproduction only optical disk ROM (Read Only Memory) media on
which embossed data pit arrays are formed in advance, CD-Rs (Compact Disc-Recordable)
and DVD-Rs (Digital Versatile Disc-Recordable), which are optical disks capable of
recording data, have been widely used. Also, CD-RWs (CD-ReWritable) and DVD-RWs (DVD-ReWritable),
which can rewrite recorded data, have been used. Moreover, as a next-generation DVD,
an optical disk format referred to as an HD DVD-R which can record using a blue light
source have been developed. In this description, the optical disks which can record
or rewrite data are generically referred to as recording type optical disks.
[0004] On the recording type optical disks, a spiral groove track (or a pre-groove) for
tracking is formed on an optical disk substrate, and a recording layer composed of
multilayer films including an organic material are formed on the optical disk substrate
with the spiral groove track. Date is recorded by forming recording pits by condensing
a high-power laser beam on the recording layer and partially transforming the recording
layer. After the recording, because a servo signal which has similar characteristics
to a ROM medium on which embossed data pit arrays are formed can be obtained with
a same data format as the ROM medium, it has the advantage that reproduction can be
readily performed by a reproduction only driving device.
[0005] Further, recently, in such recording type optical disks, optical disk media which
realize increase of recording capacity by forming two recording layers and recording
or reproducing from a same substrate incident surface have been developed and manufactured.
For example, in the DVD-Rs, such two-layer media have been manufactured.
[0006] In the reproduction only ROM media, also in the DVD-Rs, the two-layer optical disks
have already been widely manufactured. However, in order to allow the recording optical
disks to have the two layers, it is necessary to solve their peculiar problems.
[0007] Particularly, as shown in Fig. 7, the two-layer optical disk has two recording layers
referred to as a zeroth recording layer and a first recording layer. Access to the
two recording layers by a laser beam is performed from an incident surface 4 respectively.
When a recording is performed to the first recording layer which is relatively far
from the incident surface 4, the condensed beam always penetrates the zeroth recording
layer. Then, in an unrecorded part 5 and a recorded part 6 of the zeroth recording
layer, generally, transmittances are different form each other. Accordingly, if a
recording operation is performed to the first recording layer across the recorded
pert and the unrecorded part of the zeroth layer, the power of the condensed beam
to be reached to the first recording layer is changed during the recording, comes
off the optimal condition, and it is difficult to record in a good condition.
[0008] To solve this problem, a method that after all of the first recording layer is recorded,
a recording on the zeroth recording layer is performed so that the recording on the
first recording layer is performed always under the same condition has been described
in
Japanese Unexamined Patent Application Publication No. 10-26957.
[0009] Further, for a two-layer medium of the DVD-R, a format when a data recording is performed
onto the first recording layer, the recording is performed through a part of the zeroth
recording layer where is in a recorded state has been established.
[0010] In the method that the recording on the zeroth recording layer is performed after
all of the first recording layer is recorded, a control data recording area for recording
control which is generally provided in an inner circumferential part of the disk has
to be provided to each of the two recording layers respectively, and the processing
is complicated. Moreover, recording state of the overall two-layer optical disk cannot
be checked by just reproducing the control data recording area of one of the recording
layers.
[0011] When data is recorded onto the first recording layer, in the format that the recording
is always performed through the recorded part of the zeroth recording layer, in a
test zone for optimizing and checking a recording condition set to an inner circumference
part or an outer circumference part of the optical disk, because the corresponding
zeroth recording layer is not always recorded, an optimum recording condition in the
recorded part has to be estimated using the optimum recording condition checked by
test recording in the unrecorded state.
[0012] Moreover, if an interval between the two recording layers becomes narrow, other problem
described below occurs.
[0013] That is, as shown in Fig. 8, a recording or reproducing is performed on one recording
layer by condensing a laser beam (shown by a solid line), reflection from another
recording layer returns to the optical head which is used for recording or reproducing
as coherent light (shown by a dotted line). In Fig. 8, in the right-hand side, a case
in which the laser beam is condensed on the zeroth recording layer is shown and in
substantially center and left-hand side, a case in which the laser beam is condensed
on the first recording layer is shown.
[0014] When the laser beam is condensed on the zeroth recording layer, the coherent light
from the first recording layer becomes to the same reflected light as in the case
in which a virtual condensing point appears at back side twice far of the interval
between the recording layers, and when the laser beam is condensed on the first recording
layer, the coherent light from the zeroth recording layer becomes to the same reflected
light as in the case in which a virtual condensing point appears at front side twice
far of the interval between the recording layers.
[0015] If the interval between the recording layers is wide, because these coherent lights
can be considered as reflected lights from the virtual condensing points largely displaced
from the actual condensing points, a percentage of the coherent lights which reaches
a photodetector in the optical head is small and substantially, there is no problem.
However, if the interval between the recording layers becomes narrow and an amount
of the coherent light reaches the photodetector becomes to a considerable level, problems
occur. A salient problem is the two positions of the condensed beams shown in the
right-hand side of the drawing in a case in which the reflected lights are generated
at the border parts between the recorded part 6 and the unrecorded part 5. In this
case, imbalance of optical power is generated in the coherent light. In the optical
head for the recording type optical disk, a push-pull method in which imbalance in
the cross section of the reflected light generated from a pre-groove is detected to
be a track error signal is employed. Accordingly, if an imbalanced coherent light
is received by the optical head, the possibility to be an offset of the track error
signal is high. If such offset amount becomes significant, not only the recording
operation but also the reproduction operation cannot be stably realized.
[0016] Such imbalance of the coherent light can be generated not only at the border between
the recorded part and the unrecorded part but as the position of the condensed beam
in the left-hand side in the drawing, at the border between a reproduction only pit
area 3 which is often provided on an optical disk inner circumference part for control
information recording and the unrecorded area 5.
[0017] As described above, the known recording type optical disk has the problem that the
recording processing on the control data recording area is complicated and in order
to know a recording state, it is necessary to access to the control data recording
areas of the two recording layers. In addition, other known recording type optical
disks have the problem that the optimum recording condition has to be estimated. Moreover,
the known recording optical disks has the problem that the narrower the interval between
the recording layers becomes, the more affected by the coherent light.
SUMMARY OF THE INVENTION
[0018] Accordingly, it is an object of the present invention to provide an optical disk
and an optical disk apparatus which reduces the above-described problems.
[0019] According to one aspect of the present invention, a two-layer optical disk has two
layers of recording layer on which a recordable spiral track is formed and recording
or reproduction is performed through a transparent substrate from a same incident
surface, from an inner circumference side to an outer circumference side of each recording
layer, a track is divided in an inner circumference control data recording area, an
user data recording area, and an outer circumference control data recording area,
and each of the inner circumference control data recording area and the outer circumference
control data recording area has a test zone for checking a recording condition within
the area respectively. The two-layer optical disk has a guard zone which has address
set positions of an inner circumference end and an outer circumference end separated
greater or equal to a predetermined clearance value on the inner circumference side
and the outer circumference side from address positions of an inner circumference
end and an outer circumference end of each test zone on a different recording layer
from the recording layer on which the test zone exists.
[0020] According to another aspect of the present invention, in the two-layer optical disk,
the guard zone is an area on which dummy data is recorded or an area on which recording
data is not formed, and the guard zone set on a recording layer closer to the incident
surface is an area for recording dummy data.
[0021] According to yet another aspect of the present invention, a two-layer optical disk
has two layers of recording layer on which a recordable spiral track is formed and
recording or reproduction is performed through a transparent substrate from a same
incident surface, and from an inner circumference side to an outer circumference side
of each recording layer, a track is divided in a reproduction only pit area, an unrecorded
area, an inner circumference control data recording area, and an user data recording
area. Two border set address positions of a border (border A) between the unrecorded
area and the inner circumference control data recording area and a border (border
B) between the inner circumference control data recording area and the user data recording
area on each recording layer are set to address positions separated grater or equal
to a predetermined clearance value on the inner circumference side or the outer circumference
side against three border set address positions of a border (border C) between the
reproduction only pit area and the unrecorded area, the border A and the border B
on a different recording layer.
[0022] According to still yet another aspect of the present invention, in the two-layer
optical disk, an interval between the two layers of recording layer is less than 40
µm and a NA of an optical head for recording data on the optical disk or reproducing
the data from the optical disk is less or equal to 0.65.
[0023] According to still yet another aspect of the present invention, a recording/reproducing
optical disk apparatus is for recording or reproducing an optical disk having two
layers of recording layer on which a recordable spiral track is formed and recording
or reproduction is performed through a transparent substrate from a same incident
surface. A recording operation or a reproducing operation on each recording layer
is performed by distinguishing whether an address is within or without a predetermined
clearance value against an address position of a border between a recorded part and
an unrecorded part formed on a different recording layer.
[0024] According to still yet another aspect of the present invention, a two-layer optical
disk has two layers of recording layer on which a test zone for checking a recording
condition is provided. A guard zone is provided on one of the recording layers so
as to correspond to the test zone provided on another recording layer and an inner
circumference end of the guard zone is arranged on more inner circumference side than
an inner circumference end of the test zone by greater or equal to a predetermined
clearance value and an outer circumference end of the guard zone is arranged on more
outer circumference side than an outer circumference end of the test zone by greater
or equal to the predetermined clearance value.
[0025] According to the present invention, in the two-layer recording type optical disk
which has a narrow interval between recording layers, stable recording and reproduction
can be realized.
BRIEF DESCRIPTION OF THE DRAWINGS
[0026]
Fig. 1 is a plan view illustrating a recording type optical disk to which the present
invention is applied;
Fig. 2 is a view for explaining a principle of the present invention;
Fig. 3 is a graph illustrating a measured result of relation between a recording layer
interval and a coherent light amount;
Fig. 4 is a view illustrating an example of format of an optical disk according to
a first embodiment of the present invention;
Fig. 5 is a view illustrating an example of format of an optical disk according to
a second embodiment of the present invention;
Fig. 6 is a view illustrating a configuration of a recording/reproducing optical disk
apparatus according to a third embodiment of the present invention;
Fig. 7 is a view for explaining a problem of a known two-layer optical disk; and
Fig. 8 is a view for explaining other problem of a known two-layer optical disk.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0027] With reference to the following attached drawings, an optical disk and an optical
disk apparatus according to the present invention are described.
[0028] Fig. 1 is a view illustrating an example of an optical disk to which the present
invention is applied. On an optical disk 1, a spiral recording track 2 is formed.
In an inner circumference area of the recording track 2, a reproduction only pit area
3 can be formed. Two recording layers which have such a recording track are formed
in a vertical direction to the surface in the drawing, and surfaces are referred to
as a zeroth recording layer and a first recording layer in order from closer side
to the incident surface. In the two-layer recording type optical disk, often a recording
format is used that a recording is performed from the inner circumference side to
the outer circumference side of the zeroth recording layer and in the first recording
layer, a recording is performed from the outer circumference side to the inner circumference
side. However, the present invention is not limited to the format, and the recording
direction can differ from the format.
[0029] The biggest feature of the present invention is that a recording on one recording
layer or reproduction of one recording layer is performed by avoiding the border between
a recorded part and an unrecorded part of another layer (hereinafter, simply referred
to as a border). Thus, it is required to calculate a relative accuracy of address
positions of the two recording layers and determine a certain clearance value necessary
to prevent affection from the border of one recording layer.
[0030] The recording track on each recording layer is divided into units of a predetermined
length and a specific address is given to each unit. According to the design, the
center of the recording track of the zeroth recording layer and the center of the
recording track of the first recording layer correspond with each other and the same
address is given to track areas whose distances from the centers are equal in the
two recording layers. Thus, firstly, relative difference between the track position
of the zeroth recording layer and the track position of the first recording layer
which should be the same address according to the design is estimated to find out
how much degree the relative differ is on the actual optical disk.
[0031] Fig. 2 is a view illustrating an example of a relation between the track of the zeroth
recording layer and the track of the first recording layer which have the same address
(to be the same radius) according to the design. A first factor for determining the
predetermined clearance value is a relative displacement amount of the track radius
|R0-R1| =Rr which is supposed to be the same. The relative displacement amount Rr
is calculated from a manufacturing accuracy, for example, the value is about 40 µm.
[0032] A second factor to determine the predetermined clearance value is eccentricity. In
the two-layer optical disk, a different allowable upper limit of eccentric amount
is often set to each recording layer. For example, the upper limit of the zeroth recording
layer is 40 µmp-p and the upper limit of the first recording layer is 60 µmp-p. In
this case, a maximum relative eccentric displacement amount Re between the tracks
of the two recording layers is (40+ 60)/2=50 µm. Accordingly, in the above examples
of the numeric values, the maximum displacement amount in the radius direction between
two tracks is 90 µm.
[0033] Then, a radius Rb of a reflected light (coherent light) at a surface of one recording
layer in a case in which a light is condensed on another recording layer (in Fig.
8, if a laser beam is condensed on the zeroth recording layer, the under surface of
the first recording layer, and if the laser beam is condensed on the first recording
layer; the under surface of the zeroth recording layer) is estimated. For example,
if it is given that an interval between the recording layers is 30 µm, a numerical
aperture NA of the condensed beam is 0.65, and a refractive index of a material between
the recording layers is 1.5, Rb = about 15 µm. However, actually, effect to a detection
signal is small when the peripheral part of the condensed beam which has a cross section
of round shape covers on a border part of another recording layer and it is experimentally
confirmed that it is enough to consider from about two thirds of a theoretical radius.
Accordingly, in this numeric value example, the radius Rb is 10 µm.
[0034] In the end, the sum of the three values, Rr + Re + Rb is the predetermined clearance
and in the above numeric value example, the value is 100 µm. That is, when the border
of one recording layer is at an address, if an address is separated greater or equal
to the clearance value = 100 µm in a direction of the inner circumference or the outer
circumference, the effect from the border on another recording layer can be ignored.
[0035] Effect of a coherent light from one recording layer in a case in which a condensed
beam is formed on another recording layer becomes more significant as the interval
between the recording layers becomes narrower. This is because a focus of the condensed
beam and an apparent condensing point of the coherent light approach with each other.
Moreover, because even if the interval between the recording layers is the same, if
a spread angle of the condensed beam is small, that is, as a numerical aperture NA
of the lens to be condensed becomes smaller, an amount of a coherent light to be taken
by the optical head increases, the effect increases.
[0036] In Fig. 3, a coherent light amount to be detected is actually measured with an optical
head of a general condition that a size of a light reception part of a photodetector
in the optical head which receives a reflected light from an optical disk corresponds
to 10 × 10 µm converted as a condensing point of the condensed beam on the optical
disk. The NA of the condenser lens is 0.65. If the layer interval becomes smaller
than 40 µm, the amount of the coherent light to be detected exceeds an allowable coherent
light amount. The allowable coherent light amount denotes a condition that no significant
change can be found on a track error signal. The reflection coefficient of the layer
which generates the coherent light is twice as large as the reflection coefficient
of the layer on which the focus exists. The reflection coefficient difference is the
maximum value allowed in a general format of the two-layer optical disk.
[0037] As a result, in the optical disk which has the recording layer interval of less or
equal to 40 µm, the coherent light from the border cannot be ignored. In the present
invention, by employing the above-described clearance value, the effect of the sizes
of the recording layer interval can be reduced. Moreover, if the numerical aperture
NA of the condenser lens becomes smaller, the coherent light amount tends to increase
as a whole. However, by the same reason, the effect of the sizes of the numerical
aperture NA of the condenser lens can be reduced. Accordingly, the present invention
is effective to the optical disks which have the recording layer interval of less
or equal to 40 µm. The present invention is also effective to the system of less or
equal to NA 0.65.
[0038] With reference to Fig. 4, an example of a format arrangement of an optical disk according
to a first embodiment of the present invention is described. In Fig. 4, the left-hand
side is an inner circumference side of the optical disk and the right-hand side is
an outer circumference side of the optical disk.
[0039] In each recording layer, from the inner circumference side, it is divided into an
inner circumference control data recording area, a user data recording area, and an
outer circumference control data recording area.
[0040] The inner circumference control data recording area of the zeroth recording layer
has a blank zone 13, a guard zone 10, a test zone 11, and another recording zone 12.
The other recording zone 12 has a part for appropriately recording control information
about address position under recording or the like. The inner circumference control
data recording area of the first recording layer has the blank zone 13, the test zone
11, and the guard zone 10.
[0041] The outer circumference control data recording area of the zeroth recording layer
has the guard zone 10, the test zone 11, and the blank zone 13. The outer circumference
control data recording area of the first recording layer has the guard zone 10, the
test zone 11, and the blank zone 13. The guard zone 10 is an area for recording dummy
data and the blank zone 13 is an area where no recording is performed. The guard zone
10 is in common with the blank zone 13 that the guard zone 10 and the blank zone 13
have no border between a recorded part and an unrecorded part. Accordingly, the blank
zone 13 can be considered as a kind of the guard zones.
[0042] In the above arrangement, at a position of one recording layer corresponding to a
position of another recording layer where the test zone 11 is provided, the guard
zone 10 or the blank zone 13 which is wider than the test zone 11 is always provided.
That is, the inner circumference end of the guard zone 10 or the blank zone 13 corresponding
to each test zone 11 is arranged at an inner side greater or equal to the above-described
predetermined clearance value than the inner circumference end of the corresponding
test zone. Moreover, the outer circumference end of the guard zone 10 or the blank
zone 13 corresponding to each test zone 11 is arranged at an outer side greater or
equal to the above-described predetermined clearance value than the outer circumference
end of the corresponding test zone. Two-way allows between the two recording layers
shown in the drawing denote distances longer than the predetermined clearance value
against the test zone 11.
[0043] According to the recording format shown in Fig. 4, even if any test zone in the zeroth
recording layer and the first recording layer is used, it is possible to operate without
effect of the border between the recorded part and the unrecorded part of another
recording layer.
[0044] Further, before the test zone 11 of the first recording layer is used, if a recording
onto the guard zone 10 of the zeroth recording layer is finished, it is possible to
optimize the recording condition through the recorded zeroth recording layer. That
is, when a recording is performed onto the user data recording area, if the recording
on the first recording layer is performed after the recording onto the zeroth recording
layer is finished, a test under the same condition as in the case of recording onto
the user recording area of the first recording layer using the test zone 11 is possible.
[0045] The test zone 11 can have a recording zone for a product inspection by a disk manufacturer.
After a recording onto the recording zone, the optical disk has a partial recorded
part. If the recording zone is large, as well as in known arts, the problem due to
the border between the recorded part and the unrecorded part occurs. However, if the
width of the recording zone is set, for example, less or equal to 10 percent of the
condensed beam diameter, the change of the coherent light on another recording layer
can be mostly ignored. Accordingly, there is no problem even if only this recording
zone has already been recorded before a user uses the optical disk. In the above-described
examples of numeric value, the width of the recording zone in the radius direction
can be limited to less or equal to 3 µm.
[0046] In the case of the optical disk shown in Fig. 4 which has the area arrangement from
the inner circumference to the outer circumference and data is sequentially recorded
on the user data recording area on the zeroth recording layer from the inner circumference
to the outer circumference and from the outer circumference to the inner circumference
on the first recording layer, by the following recording procedure, a stable recording
can be performed without effect from the border.
[0047] First, an optimization of recording condition is performed in the test zone 11 of
the inner circumference control data recording area of the zeroth recording layer.
Then, necessary control information is recorded in the other recording zone 12. Then,
dummy data is recorded on the guard zone 10 of the inner circumference control data
recording area. Finally, a recording is sequentially performed on the user data recording
area in a direction to the outer circumference. During the recording, if necessary,
a recording condition test in the test zone 11 of the inner circumference or the outer
circumference, or, an additional recording of recording control data onto the other
recording zone 12 is performed.
[0048] After all recordings onto the user data recording area of the zeroth recording layer
are finished, dummy data is recorded onto the guard zone 10 of the outer circumference
control data recording area of the zeroth recording layer. In this state, a recording
onto the first recording layer is started for the first time. Then, because the test
zone of the inner circumference or the outer circumference of the first recording
layer has already been recordable through the recorded part of the zeroth recording
layer, a recording condition test of the first recording layer can be performed at
any time. Moreover, on the user data recording area of the first recording layer,
similarly, a recording through the recorded part of the zeroth recording layer is
possible.
[0049] After the above-described process, dummy data is recorded onto the guard zone of
the outer circumference of the first recording layer and a recording onto the user
data recording area is sequentially performed in a direction to the inner circumference.
During the recording, if necessary, a recording of additional control information
onto the other recording zone 12 can be performed.
[0050] When all user data recording areas on the first recording layer are recorded, a post-processing
of recording is performed.
[0051] First, the rest of the test zone 11 in the inner circumference control data recording
area of the zeroth recording layer and all (or almost all) of the unrecorded part
of the other recording zone 12 are made to be recorded state. Then, dummy data is
recorded onto the guard zone 10 of the inner circumference control data recording
area of the first recording layer and the process is finished.
[0052] During the above-described recording process, the recording on one recording layer
is always performed under the condition that the predetermined clearance value is
ensured from the border between the recorded part and the unrecorded part of another
recording layer, and stable recording can be realized.
[0053] In the other recording zone 12, a part can be left as unrecorded state. In this case,
there is no effect to the recording operation of another recording layer if the width
of the unrecorded area in the radius direction is narrow enough as well as in the
case that the recording zone for an optical disk manufacturer is provided.
[0054] With reference to Fig. 5, a format arrangement of an optical disk according to a
second embodiment of the present invention is described. As well as shown in Fig.
4, in Fig. 5, the left-hand side is the inner circumference side and the right-hand
side is the outer circumference side of the optical disk.
[0055] In Fig. 5, each recording layer, from the inner circumference side, has a reproduction
only pit area, an unrecorded area, an inner circumference control data recording area,
and a user data recording area.
[0056] Two borders of one recording layer, a border A which is between the unrecorded area
and the inner circumference control data recording area and a border B which is between
the inner circumference control data recording area and user data recording area,
are arranged with a margin greater or equal to a predetermined clearance value against
three borders of another recording layer, the border A, the border B, and a border
C which is between the reproduction only pit area and the unrecorded area. The border
C is between the reproduction only pit area and the unrecorded area also adversely
affects to recording on another recording layer or reproduction of another recording
layer as well as the border between the recorded area and the unrecorded area.
[0057] Two-way allows between the recording layers shown in the drawing denote distances
with consideration of the clearance value. By such consideration, also, by the recording
format shown in Fig. 5, recording or reproduction can be performed without effect
to the track error by the coherent light.
[0058] Fig. 6 is a view illustrating a structural example of a recording/reproducing optical
disk apparatus according to a third embodiment of the present invention.
[0059] The optical disk apparatus has a driving mechanism 60, a signal detection circuit
61, an address determination circuit 62, and an optical head position control circuit
63. The driving mechanism 60 has a spindle 20 for rotatively driving an optical disk
1 and an optical head 21 for writing information onto the optical disk and reading
the recorded information.
[0060] The optical disk apparatus records or reproduces a signal by the optical head 21
to the two-layer optical disk 1 set to the spindle 20. The reproduction signal from
the optical head 21 is sent to the address determination circuit 62 through the signal
detection circuit 61 and a current address position of the condensed beam is detected.
By this operation, it is determined whether the condensed beam is within or without
the clearance value where the condensed beam is affected by a coherent light from
a different recording layer from the currently accessing recording layer, a necessary
operation is determined, and position control of the optical head 21 is performed
by the optical head position control circuit 63.
[0061] If an area to be accessed corresponds to a border between a recorded part and an
unrecorded part of another recording layer in the manner the area across the border,
in the vicinity of the border, by accessing using a method which does not need to
use a track servo by a push-pull signal, stable operation can be realized.
[0062] If it is necessary to detect a signal from the recorded part in the corresponding
area over the border of another recording part, tracking by different methods from
the push-pull method, for example, a phase difference detection method which is less
affected by imbalance of a reflected light is also effective.
[0063] As described above, the optical disk apparatus according to the present invention
enables to perform stable recording or reproducing operation by performing the recording
or reproducing operation on each recording layer by defining whether an address is
within or without a predetermined clearance value against an address position of a
border between a recorded part and an unrecorded part formed on another recording
layer.