

(11) **EP 1 776 448 B2**

(12)

NEUE EUROPÄISCHE PATENTSCHRIFT

Nach dem Einspruchsverfahren

- (45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch: 11.10.2023 Patentblatt 2023/41
- (45) Hinweis auf die Patenterteilung: 11.12.2013 Patentblatt 2013/50
- (21) Anmeldenummer: 05776193.4
- (22) Anmeldetag: 28.07.2005

- (51) Internationale Patentklassifikation (IPC): C11D 17/04^(2006.01) B65B 9/04^(2006.01) B65D 65/46^(2006.01)
- (52) Gemeinsame Patentklassifikation (CPC):C11D 17/044; B65B 9/042; C11D 17/0052
- (86) Internationale Anmeldenummer: **PCT/EP2005/008176**
- (87) Internationale Veröffentlichungsnummer: WO 2006/018108 (23.02.2006 Gazette 2006/08)
- (54) **VERFAHREN ZUR HERSTELLUNG PORTIONIERTER WASCH- ODER REINIGUNGSMITTEL**METHOD FOR PRODUCING PORTIONED DETERGENTS OR CLEANING AGENTS
 PROCEDE DE FABRICATION D'AGENTS DE LAVAGE OU DE NETTOYAGE EN PORTIONS
- (84) Benannte Vertragsstaaten:

 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
 HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI
- (30) Priorität: 14.08.2004 DE 102004039472
- (43) Veröffentlichungstag der Anmeldung: **25.04.2007 Patentblatt 2007/17**
- (73) Patentinhaber: Henkel AG & Co. KGaA 40589 Düsseldorf (DE)
- (72) Erfinder:

SK TR

- BARTHEL, Wolfgang 40764 Langenfeld (DE)
- BURG, Birgit 46519 Alpen (DE)
- FILECCIA, Salvatore 46049 Oberhausen (DE)

- DÜFFELS, Arno 40479 Düsseldorf (DE)
- JEKEL, Maren 47877 Willich (DE)
- TIMMANN, Ulf, Arno 50825 Köln (DE)
- NITSCH, Christian 40591 Düsseldorf (DE)
- (56) Entgegenhaltungen:

EP-A- 1 319 707 EP-A1- 0 321 179
EP-A1- 1 319 707 WO-A-92/20774
WO-A1-03/097785 DE-A1- 10 244 802
GB-A- 2 361 010 GB-A- 2 370 553
US-A- 4 569 780 US-A- 4 828 745
US-A- 4 913 832 US-A- 6 124 250
US-A1- 2002 169 092 US-A1- 2003 114 333

US-A1- 2004 029 764

EP 1 776 448 B2

Beschreibung

30

35

50

55

[0001] Die vorliegende Erfindung betrifft stabilisierte portionierte wasserlösliche Wasch- oder Reinigungsmittel sowie Verfahren zu Herstellung hiervon.

[0002] Wasch- oder Reinigungsmittel sind heute für den Verbraucher in vielfältigen Angebotsformen erhältlich. Neben Waschpulvern und -granulaten umfaßt dieses Angebot beispielsweise auch Reinigungsmittelkonzentrate in Form extrudierter oder tablettierter Zusammensetzungen. Diese festen, konzentrierten bzw. verdichteten Angebotsformen zeichnen sich durch ein verringertes Volumen pro Dosiereinheit aus und senken damit die Kosten für Verpackung und Transport. Insbesondere die Wasch- oder Reinigungsmitteltabletten erfüllen dabei zusätzlich den Wunsch des Verbrauchers nach einfacher Dosierung.

[0003] Als Alternative zu den zuvor beschriebenen partikulären oder kompaktierten Wasch- oder Reinigungsmitteln werden in den letzten Jahren zunehmend feste oder flüssige Wasch- oder Reinigungsmittel beschrieben, welche eine wasserlösliche oder wasserdispergierbare Umhüllung wie Folien aufweisen. Diese Mittel zeichnen sich wie die Tabletten durch eine vereinfachte Dosierung aus, da sie zusammen mit der wasserlöslichen Umhüllung in die Waschmaschine oder die Geschirrspülmaschine dosiert werden können, andererseits ermöglichen sie aber gleichzeitig auch die Konfektionierung flüssiger oder pulverförmiger Wasch- oder Reinigungsmittel, welche sich gegenüber den Kompaktaten durch eine bessere Auflösung und schnellere Wirksamkeit auszeichnen. Die auf diese Weise zu einzelnen Dosiereinheiten verpackten Reinigungsmittel können in einfacher Weise durch Einlegen eines oder mehrerer Beutel direkt in die Wasch- oder Geschirrspülmaschine bzw. in deren Einspülkammer, oder durch Einwerfen in eine vorbestimmte Menge Wasser, beispielsweise in einem Eimer oder im Handwasch- bzw. Spülbecken, dosiert werden.

[0004] Zur Herstellung und räumlichen Ausgestaltung dieser wasserlöslichen Verpackungen stehen dem Fachmann eine Reihe unterschiedlicher Verfahren zur Verfügung. Zu diesen Verfahren zählen u.a. das Flaschenblasen, der Spritzguß, Gießen sowie unterschiedliche Tiefziehverfahren. Gegenüber den Tabletten zeichnen sich die nach diesen Verfahren hergestellten Mittel zwar in der Regel durch verbesserte Auflösungseigenschaften aus, gleichzeitig ist das Volumen dieser Mittel pro Dosiereinheit auf Grund der fehlenden Kompaktierung jedoch größer als das Volumen in ihrer Leistung vergleichbarer Tabletten. Durch dieses vergrößerte Volumen ergeben sich jedoch Probleme bei der Dosierung dieser Mittel, insbesondere bei der Dosierung von Wasch- oder Reinigungsmitteln über das Dosierfach von Waschmaschinen oder Geschirrspülmaschinen, wenn die Dosierfächer kein ausreichend großes Volumen aufweisen. Insbesondere bei maschinellen Geschirrspülmitteln, aber auch bei Textilwaschmittein, besteht das Bedürfnis, die in den entsprechenden Geräten vorgegebenen Spülkammem bezüglich des Volumens so weit wie möglich auszunutzen. Es besteht somit das Bedürfnis nach portionierten stabilen Wasch- oder Reinigungsmitteln, die an die Form der Einspülkammern optimal angepasst sind. Da insbesondere die Einspülkammern häufig quaderförmig ausgebildet sind, wäre es demzufolge wünschenswert, möglichst quaderförmige Wasch- und/oder Reinigungsmittel vorliegen zu haben, um das Volumen der Kammern ausnutzen zu können.

[0005] Einhergehend mit diesem vergrößerten Volumen zeichnen sich insbesondere die mittels Tiefziehverfahren hergestellten verpackten Mittel durch eine unattraktive Optik und Haptik aus. Die Beutel sind schlaff und nicht formstabil; das Verpackungsmaterial zeigt für das bloße Auge sichtbare Falten und Verwerfungen. Diese Instabilität solcher verpackter Mittel, insbesondere solcher, bei denen die Hülle durch Tiefziehen hergestellt wurde, bedingt weitere Probleme. Durch die Instabilität kann es leichter zu Beschädigungen des Behälters kommen, insbesondere bei mit Pulver gefüllten Behältern, bei denen das Pulver die Hülle bei einer Verformung des Behälters durch Reibung beschädigen kann. Zudem ist die Handhabung derartiger schlaffer Beutel gegenüber in sich stabilen Körpern erschwert.

[0006] Eine Aufgabe der vorliegenden Anmeldung ist daher die Bereitstellung eines Verfahrens zur Herstellung formstabiler portionierter Wasch- oder Reinigungsmittel.

[0007] Eine weitere Aufgabe ist es, formstabile portionierte Wasch- oder Reinigungsmittel bereitzustellen, die das Volumen üblicher Einspülkammern von Waschmaschinen oder Geschirrspülmaschinen soweit wie möglich ausfüllen.

[0008] Eine weitere Aufgabe ist es, das oben erwähnte Problem der mechanischen Beschädigung wasserlöslicher oder wasserdispergierbarer Hüllen zu vermeiden, insbesondere wenn das Waschoder Reinigungsmittel eine pulverförmige wasch- oder reinigungsaktive Substanz enthält.

[0009] Es wurde nun festgestellt, daß zumindest eine dieser Aufgaben durch ein Verfahren zur Herstellung portionierter Wasch- oder Reinigungsmittel gelöst werden kann, welches die folgenden Schritte aufweist:

a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters mit mindestens einer Öffnung, einer diese Öffnung umgebenden Kante und mindestens einer weiteren Ecke und/oder Kante; b) Einfüllen einer waschoder reinigungsaktiven Schmelze und Erstarren der Schmelze; c) Befüllen des Behälters mit mindestens einem weiteren Wasch- oder Reinigungsmittel; und d) Konfektionieren des befüllten Behälters, dadurch gekennzeichnet, daß der in Schritt a) ausgebildete Behälter in Schritt b) derart mit der Schmelze befüllt wird, daß zumindest die weitere(n) Ecke(n) und/oder Kante(n) des Behälters wenigstens anteilsweise durch die erstarrte Schmelze ausgefüllt wird/werden, dass in Schritt a) ein quaderförmiger Behälter ausgebildet wird und in Schritt b) neben der/den weiteren

Ecke(n) und/oder Kante(n) weiterhin mindestens eine Seitenwand des quaderförmigen Behälters vollständig durch die erstarrte Schmelze ausgefüllt wird/werden sowie dass in Schritt c) ein pulverförmiger weiterer Wasch- und/oder Reinigungsmittelbestandteil eingefüllt wird.

- ⁵ **[0010]** Die vorliegende Erfindung betrifft weiterhin durch das Verfahren erhältliche portionierte Wasch- oder Reinigungsmittel. Die vorliegende Erfindung betrifft portionierte Wasch- oder Reinigungsmittel mit folgenden Merkmalen;
 - a) einem Behälter aus wasserlöslichem Material mit mindestens einer von einer Kante umgebenen Öffnung und mindestens einer weiteren Ecke und/oder Kante;
 - b) einer in dem Behälter befindlichen wasch- oder reinigungsaktiven erstarrten Schmelze, wobei die erstarrte Schmelze zumindest die weitere(n) Ecke(n) und/oder Kante(n) des Behälters zumindest anteilsweise ausfüllt;
 - c) mindestens einem weiteren Wasch- oder Reinigungsmittel in dem verbleibenden Hohlraum des Behälters mit erstarrter Schmelze; und
 - d) mindestens einem Verschluß, welcher den Behälter an der/den von einer Kante umgebenen Öffnung(en) abschließt, dadurch gekennzeichnet, dass als weiteres Wasch- und/oder Reinigungsmittel zumindest ein pulverförmiges Wasch- oder Reinigungsmittel und wahlweise ein oder mehrere weitere Wasch- oder Reinigungsmittel enthalten sind und dass der Behälter ein quaderförmiger Behälter ist, wobei in dem quaderförmigen Behälter neben der/den weiteren Ecke(n) und/oder Kante(n) weiterhin mindestens eine Seitenwand vollständig durch die erstarrte Schmelze bedeckt sind.

[0011] Die Verfahrensschritte der vorliegenden Erfindung werden im folgenden ausführlicher beschrieben.

Schritt a)

10

15

20

50

[0012] Gemäß Schritt a) des Verfahrens der vorliegenden Erfindung wird ein wasserlösliches bzw, wasserdispergierbares Material zu einem Behälter verformt, der mindestens eine Öffnung aufweist. An der Öffnung weist dieser Behälter unvermeidbar eine die Öffnung umgebende Kante bzw. einen Rand auf, Je nach eingesetztem Herstehungsverfahren des Behälters in Schritt a), z.B. durch Tiefziehen, kann sich angrenzend an die die Öffnung umgebende Kante eine umlaufende Fläche (Krempe) des Behältermaterials befinden. Geeignete Verformungsverfahren zur Ausbildung des Behälters sind unten ausführlich beschrieben.

[0013] Durch das formgebende Verfahren wird erfindungsgemäß ein Behälter hergestellt, der neben der die Öffnung umgebenden Kante mindestens eine weitere Ecke und/oder Kante aufweist.

[0014] Erfindungsgemäße Raumkörper mit mehreckiger Grundfläche, wobei der Körper eine Fortsetzung der mehreckigen Grundfläche im Raum darstellt, sind prismenförmige Körper in Quaderform.

[0015] Die Form des Behälters kann auch an beliebige unregelmäßige Formen von Dosierfächern/ Einspülkammern verschiedener Waschmaschinen und Geschirrspülmaschinen angepasst werden.

[0016] Gemäß der vorliegenden Erfindung kann beim fertigen portionierten Wasch- oder Reinigungsmittel die jeweilige ideale Raumform bzw. die durch das Verformungsverfahren vorgegebene Raumform gestört sein, bspw. können die Kanten eines Körpers nach außen gewölbt sein. Dies beruht u.a. auf dem Bestreben des Hüllmaterials, nach dem Verformungsvorgang in die ursprüngliche Form zurückzukehren. Gegenüber bekannten Verfahren ist in der vorliegenden Erfindung eine solche Abweichung von der Idealform bzw. der vorgegebenen Form vermindert. Auch sind unter den Quadern, erfindungsgemäß noch solche Körper zu verstehen, bei denen geringe Abweichungen von der idealwinkligkeit, bspw. von bis etwa $\pm 5^{\circ}$, bevorzugt bis etwa $\pm 3^{\circ}$, bevorzugter bis etwa $\pm 1^{\circ}$, auftreten.

[0017] Wie oben erwähnt, handelt es sich bei dem in Schritt a) hergestellten Behälter um einen quaderförmigen Behälter. Bevorzugt ist hierbei eine ganze Fläche des Körpers als Öffnung vorgesehen. Es kann erfindungsgemäß aber auch nur ein Teil einer Fläche als Öffnung vorgesehen sein.

[0018] Eine Quaderform ist erfindungsmäß, als hierdurch übliche quaderförmige Einspülkammern oder Geschirrspülmaschinen bezüglich des Volumens am besten ausgefüllt werden können. Zudem lassen sich quaderförmig proportionierte Wasch- oder Reinigungsmittel sehr gut platzsparend lagern.

[0019] Das Hüllmaterial aus einer wasserlöslichen oder wasserdispergierbaren Substanz ist bevorzugt so dünn wie möglich. Eine zu dicke Ausgestaltung des Hüllmaterials kann die Freisetzung des in dem Behälter befindlichen Waschmittels nachteiligerweise verzögern. Insbesondere durch Tiefziehen können ausreichend dünne Hülldicken erzielt werden. Bevorzugt erfolgt die Verformung nach Schritt a) daher durch Tiefziehen. Bevorzugt weist mindestens eine Behälterwand oder ein Verschlussteil des Behälters eine Wanddicke unterhalb 200 μ m, bevorzugt unterhalb 120 μ m, besonders bevorzugt unterhalb 90 μ m und insbesondere bevorzugt unterhalt 70 μ m auf. In einer besonders bevorzugten Ausführungsform weisen sowohl der wasserlösliche oder wasserdispergierbare Behälter, als auch das Verschlussteil jeweils eine Wanddicke unter 200 μ m, bevorzugt unterhalt 100 μ m und besonders bevorzugt unterhalb 70 μ m auf.

[0020] Die inSchritt a) verwendeten Materialien zur Ausbildung des Behälters sowie die Verformungsverfahren sind

weiter unten ausführlicher beschrieben.

Schritt b)

10

20

30

35

50

[0021] Durch das Einführen einer wasch- oder reinigungsaktiven Schmelze und Erstarren der Schmelze derart, daß zumindest die weitere(n) Ecke(n) und/oder Kante(n) des Behälters zumindest anteilsweise durch die erstarrte Schmelze ausgefüllt wird/werden, wird der in Schritt a) gebildete Behälter stabilisiert, so daß die durch das Formgebungsverfahren vorgegebene Form des Körpers auch nach Einführen weiterer Wasch- und/oder Reinigungsmittel und in der späteren Konfektionierung weitgehend beibehalten wird.

[0022] Gemäß einem anderen Aspekt der vorliegenden Erfindung ist es aber auch bevorzugt, daß neben der mindestens anteilsweisen Befüllung der weitere(n) Ecke(n) und/oder Kante(n) sich die erstarrte Schmelze auch in anderen Bereichen des Behälters befindet. Bei dieser Ausführungsform kann eine weitere Stabilisierung des gebildeten Behälters erreicht werden, und es kann zusätzlich die Hülle besser vor weiteren wasch- oder reinigungsaktiven Substanzen geschützt werden, die die Hülle ggf. beschädigen könnten oder die mit der Hülle nicht verträglich sind. Insbesondere kann nach einer bevorzugten Ausführungsform die erstarrte Schmelze so ausgebildet sein, daß durch die erstarrte Schmelze ein muldenförmiger Hohlraum gebildet wird, wobei bevorzugt der in Richtung zur Öffnung des Behälters tiefstgelegene Punkt der Mulde im zentralen Bereich des Behälters liegt.

[0023] Erfindungsgemäß ist es weiterhin möglich, daß auch der Bereich der die Öffnung umgebenden Kante, wo sich bei dem fertigen portionierten Wasch- oder Reinigungsmittel der Verschluß befindet, zumindest teilweise mit der erstarrten Schmelze versehen ist.

[0024] Unter anteilsweise Ausfüllen der weiteren Ecke(n) und/oder Kante(n) ist erfindungsgemäß zumindest ein solcher Anteil zu verstehen, daß das portionierte Wasch- oder Reinigungsmittel durch die erstarrte Schmelze stabilisiert wird. Bevorzugt beträgt der Anteil der weiteren Ecke(n) und/oder Kante(n), die mit der erstarrten Schmelze ausgefüllt sind, mindestens 50% der weiteren Ecke(n) und/oder Kante(n), bevorzugter mindestens 60%, bevorzugter mindestens 70%, noch bevorzugter mindestens 80%, noch bevorzugter 90% und am bevorzugtesten 100%. Die Prozentangaben beziehen sich dabei auf die Gesamtlänge der in dem Behälter befindlichen Kanten und Ecken. Naturgemäß erstreckt sich die erstarrte Schmelze nicht nur in den Kanten/Ecken, sondern bedeckt auch den direkt and die Ecken oder Kanten angrenzenden Bereich. Das Ausmaß dieses weiteren Bereichs kann erfindungsgemäß variiert werden, je nach gewünschter Stabilisierung des Behälters. Im Fall eines Mehrkammerwasch- oder reinigungsmittels, kann die erstarrte Schmelze die Ecke(n) und/oder Kante(n) einer Kammer zumindest anteilsweise, bevorzugt aber vollständig, ausfüllen, oder dies kann bei mehreren oder allen Kammern der Fall sein.

[0025] Die Dicke der Schmelze kann vom Fachmann weitgehend variiert werden. Da es sich bei den portionierten Wasch- oder Reinigungsmitteln aber um mehrphasige Mittel handelt, d. h. mindestens ein weiteres Wasch- oder Reinigungsmittel sich in dem Behälter befindet, welches eine feste oder flüssige Konsistenz aufweisen kann, ist es bevorzugt, daß die Schichtdicke der erstarrten Schmelze so ausgestaltet wird, daß noch ein genügend großer Hohlraum für ein oder mehrere wasch- oder reinigungsaktive Mittel verbleibt, das Problem der Stabilität des Behälters aber gelöst wird. [0026] Um die Stabilität eines mehreckigen und mehrkantigen, insbesondere prismenförmigen, portionierten Waschoder Reinigungsmittels zu erhöhen, ist es bevorzugt, daß in dem Behälter neben der/den weiteren Ecke(n) und oder Kante(n) vollständig, durch die erstarrte Schmelze ausgefüllt wird/werden. Quaderförmige verpackte Wasch- oder Reinigungsmittel können beispielsweise hergestellt werden, indem Behälter aus wasserlöslichem Material geformt werden, die nach der Formgebung am Boden, d.h. der unteren Fläche des Behälters, einschließlich der unteren Ecken und einem Teil der Seitenkanten, mit einer Schmelze eines Wasch- oder Reinigungsmittels befüllt werden, die sich dann verfestigt. Anschließend wird ein Teil des verbleibenden Hohlraums mit einem weiteren pulverförmigen Wasch- oder Reinigungsmittel und einem flüssigen oder gelförmigen Wasch- oder Reinigungsmittel befüllt und der Behälter dann verschlossen. Bei einem derartig hergestellten Mittel wird zwar das Problem der Stabilisierung in vielen Fällen ausreichend gelöst, es besteht aber manchmal noch das Problem, daß aufgrund einer verbleibenden Instabilität der Hülle an den nicht mit Schmelze bedeckten Stellen bei einer Verformung der Hülle Pulver zwischen Folie und Schmelze gelangen kann. Dies kann bei weiterer mechanischer Beanspruchung verbunden mit einer Reibung des Pulvers an der Hülle zu einer Lochbildung in der wasserlöslichen Hülle führen. Zudem kann sich die Folie häufig oberhalb der Schmelze im Bereich des Pulvers in den Ecken manchmal zusammenziehen, so daß die quaderförmige Optik des Beutels verloren geht. Diese Probleme können durch die oben beschriebene Stabilisierung von Seitenwänden mit erstarrter Schmelze gelöst werden, so daß dies eine bevorzugte Ausführungsform der Erfindung ist.

[0027] Im Fall eine Quaders ist es bevorzugt, wenn eine Seitenwand, vorzugsweise zwei Seitenwände, weiterhin bevorzugt zwei gegenüberliegende Seitenwände, noch bevorzugter alle vier Seitenwände, des quaderförmigen Behälters durch die erstarrte Schmelze ausgefüllt wird/werden. Weitere Ausführungsformen sind ebenfalls möglich, beispielsweise ein Heraufziehen der Schmelze an zwei benachbarten Seitenwänden oder an drei Seitenwänden des quaderförmigen Behälters. Weiterhin ist bevorzugt, daß der Boden des Behälters, bevorzugt quaderförmigen Behälters, mit der erstarrten Schmelze bedeckt ist. Besonders bevorzugt ist ein quaderförmig portioniertes Wasch- oder Reinigungsmittel,

bei dem sämtliche Ecken und Kanten des Quaders vollständig mit der erstarrten Schmelze ausgefüllt sind und auch der Boden des quaderförmigen Behälters mit der erstarrten Schmelze ausgefüllt ist.

[0028] Bei einem derartig ausgebildeten Quader, wie soeben beschrieben, kann insbesondere das Problem gelöst werden, daß pulverförmiges Wasch- oder Reinigungsmittel zwischen Schmelze und Folie gelangt bzw. überhaupt an die Folie gelangt, so daß das Problem einer Beschädigung der Folie durch Eindringen von Pulver zwischen Folie und Schmelze gelöst werden kann und gleichzeitig ein stabiler Körper gebildet wird.

[0029] Das Erstarren der Schmelze in Schritt b) kann entweder passiv durch Stehenlassen oder aktiv durch Kühlen erfolgen.

[0030] Die in Schritt b) des erfindungsgemäßen Verfahrens erwähnte wasch- oder reinigungsaktive Schmelze wird unten ausführlicher beschrieben. Erfindungsgemäß ist hiermit eine Schmelze gemeint, die mindestens anteilsweise eine wasch- oder reinigungsaktive Substanz enthält.

Schritt c)

10

15

30

35

45

50

55

[0032] An Schritt b) schließt sich das Befüllen mit mindestens einem weiteren Wasch- oder Reinigungsmittel an.
[0032] Hierfür eignen sich. Als fließfähig gelten Wirkstoffe oder Wirkstoffkombinationen dann, wenn sie keine Eigen-Formstabilität aufweisen, die sie befähigt, unter üblichen Bedingungen der Herstellung, der Lagerung, des Transports und der Handhabung durch den Verbraucher eine nicht desintegrierende Raumform einzunehmen, wobei diese Raumform unter den genannten Bedingungen auch über längere Zeit, vorzugsweise 4 Wochen, besonders bevorzugt, 8 Wochen und insbesondere 32 Wochen, nicht verändert, das heißt unter den üblichen Bedingungen der Herstellung, der Lagerung, des Transports und der Handhabung durch den Verbraucher in der durch die Herstellung bedingten räumlichgeometrischen Form verharrt, das heißt, nicht zerfließt. Die Bestimmung der Fließfähigkeit bezieht sich dabei insbesondere auf die für die Lagerung und den Transport üblichen Bedingungen, also insbesondere auf Temperaturen unterhalb 50°C, vorzugsweise unterhalb 40°C. Als Flüssigkeiten gelten daher insbesondere Wirkstoffe oder Wirkstoffkombinatio-

nen mit einem Schmelzpunkt unterhalb 25°C, vorzugsweise unterhalb 20°C, besonders bevorzugt unterhalb 15°C.

[0033] Das Befüllen des Behälters mit mindestens einem weiteren Wasch- und/oder Reinigungsmittel gemäß Schritt c) umfasst die Befüllung zumindest mit einem pulverförmigen weiteren Wasch- oder Reinigungsmittel. Wahlweise können zur Herstellung drei- oder höherphasiger portionierter Wasch- oder Reinigungsmittel weitere Wasch- oder Reinigungsmittelbestandteile zugegeben werden. Bevorzugt ist beispielsweise, daß zunächst nach Erstarren der Schmelze ein pulverförmiges Wasch- oder Reinigungsmittel zugegeben und anschließend ein gelförmiges Mittel zugegeben wird.

[0034] Die Zusammensetzungen verwendbarer Wasch- und Reinigungsmitteln sind weiter unten ausführlich beschrieben.

Schritt d)

Comitted

[0035] Der Begriff Konfektionieren umfasst in der vorliegenden Erfindung das Verschließen und/oder Versiegeln des gefüllten Behälters sowie das Ausbilden von Einzelportionen des Wasch- oder Reinigungsmittels. Das Verschließen und/oder Versiegeln erfolgt nach bekannten Verfahren, bspw. durch Heißversiegeln mit einer Folie. Das Material des Verschlusses/der Versiegelung kann bevorzugt aus dem gleichen Material wie der Behälter sein. Das Portionieren kann durch übliche Verfahren wie Zuschneiden zu Einzelportionen oder Ausstanzen erfolgen.

[0036] Die erfindungsgemäßen Mittel in wasserlöslichen oder wasserdispergierbaren Verpackungen können beispielsweise als Behälter mit einer, zwei, drei, vier oder mehr Aufnahmekammern konfektioniert werden.

[0037] Die Konfektionierung mit mehr als einer Kammer geschieht allgemein, indem zunächst eine Befüllung des in Schritt a) gebildeten Behälters nur bis zu einer bestimmten Höhe durchgeführt wird, sodaß ein erster befüllter Bereich erhalten wird. Bevorzugt werden hierbei Verfahren, bei denen der Füllgrad des Behälters nach der Befüllung zwischen 10 und 95 Vol.%, vorzugsweise zwischen 20 und 90 Vol.-% und insbesondere zwischen 40 und 80 Vol.-% beträgt. Je nach Verwendungzweck der erfindungsgemäßen portionierten Mittel kann es bevorzugt sein, einen hohen Füllgrad für die erste Aufnahmekammer zu wählen. Dieser liegt bevorzugt zwischen 10 und 99 Vol.%, vorzugsweise zwischen 30 und 96 Vol.-% und insbesondere zwischen 60 und 94 Vol.-% befüllt. Dieser erste Bereich des Körpers kann dann durch eine Trennschicht, bevorzugt eine wasserlösliche oder wasserdispergierbare Folie, abgetrennt bzw. verschlossen oder versiegelt werden, wonach sich die Befüllung des verbleibenden Hohlraums des Behälters anschließt. Anschließend kann ein Verschließen und/oder eine Versiegelung erfolgen. Selbstverständlich können auf diese Weise auch mehrere Kammern gebildet werden, bevor der Behälter am Ende verschlossen und versiegelt wird.

[0038] Verschiedene Verfahren zur Konfektion als Mehrkammerbehälter sind weiter unten genauer erläutert.

[0039] Das Verfahren der vorliegenden Erfindung kann, insbesondere wenn ein Wasch- oder Reinigungsmittel mit minimiertem Volumen erhalten werden soll, bevorzugt durchgeführt werden, indem im Verlaufe des Herstellungsverfahrens in dem befüllten Behälter ein Unterdruck erzeugt wird. In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung somit ein Verfahren zur Herstellung portionierter Wasch- oder Reinigungsmittel, umfassend die Schritte:

- a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters mit mindestens einer Öffnung, einer diese Öffnung umgebenden Kante und mindestens einer weiteren Ecke und/oder Kante;
- b) Einfüllen einer wasch- oder reinigungsaktiven Schmelze und Erstarren der Schmelze derart, daß zumindest die weitere(n) Ecke(n) und/oder Kante(n) des Behälters wenigstens anteilsweise durch die erstarrte Schmelze ausgefüllt wird/werden;
- c) Befüllen des Behälters mit mindestens einem weiteren Wasch- oder Reinigungsmittel;
 - c1) Aufbringen einer wasserlöslichen Folienbahn auf den befüllten Behälter;
 - c2) Versiegeln des befüllten Behälters;

5

10

15

20

30

35

50

55

c3) Konfektionierung des versiegelten und befüllten Behälters,

dadurch gekennzeichnet, daß im Verlauf des Verfahrens in dem befüllten Behälter ein Unterdruck erzeugt wird, wobei zur Erzeugung dieses Unterdrucks die zwischen dem Füllgut und der in Schritt c1) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c1) aufgebrachten wasserlöslichen Folienbahn entweicht.

[0040] Zur Erzeugung des benötigten Unterdrucks in dem erfindungsgemäßen Verfahren eignen sich alle dem Fachmann für diese Zwecke bekannten Pumpen, insbesondere bevorzugt werden die für ein Grobvakuum einsetzbaren Wasserstrahl-, Flüssigkeitsdampfstrahl-, Wasserring- u. KolbenPumpen. Bevorzugt eingesetzt werden können aber beispielsweise auch Drehschieber-, Sperrschieber-, Trochoiden- und Sorptions-Pumpen sowie sogenannte Rootsgebläse und Kryopumpen. Zur Einstellung eines Feinvakuums sind Drehschieber-Pumpen, Diffusionspumpen, Rootsgebläse, Verdränger-, Turbomolekular-, Sorptions-, Ionengetter-Pumpen (Getter) bevorzugt.

[0041] In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens beträgt der erzeugte Unterdruck in dieser bevorzugten Verfahrensvariante zwischen -100 und -1013 mbar, vorzugsweise zwischen -200 und -1013 mbar, besonders bevorzugt zwischen -400 und -1013 mbar und insbesondere zwischen -800 und -1013 mbar. Ebenfalls bevorzugt sind Verfahren, in denen der erzeugte Unterdruck zwischen -50 und -1013 mbar, vorzugsweise zwischen -100 und -800 mbar und insbesondere zwischen -200 und -500 mbar beträgt.

[0042] In einer bevorzugten Verfahrensvariante wird der Unterdruck in dem befüllten Behälter nach dem Aufbringen der wasserlöslichen Folienbahn auf den befüllten Behälter in Schritt c1) und vor dem Versiegeln in Schritt c2) erzeugt. [0043] In einer weiteren bevorzugten Verfahrensvariante wird der Unterdruck in dem befüllten Behälter nach dem Versiegeln in Schritt c2) und vor dem Konfektionieren in Schritt d) erzeugt.

[0044] Besonders bevorzugt sind erfindungsgemäße Verfahren, bei denen der Unterdruck sowohl in den befüllten Behältern, also unterhalb der in Schritt c1) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c1) aufgebrachten Folienbahn erzeugt wird. Eine solche besonders vorteilhafte Verfahrensführung ist beispielsweise dadurch zu realisieren, daß das unter Ausbildung eines Behälters verformte wasserlösliche Material mit einem Mittel befüllt und diese Füllung anschließend durch Aufbringen einer wasserlöslichen Folienbahn abgedeckt wird. Der befüllte und abgedeckte Behälter wird anschließend in eine Unterdruckkammer verbracht. Aufgrund in der aufgebrachten wasserlöslichen Folienbahn befindlichen Öffnungen, wird bei Anlegen eines Vakuums an die Unterdrucckammer sowohl in den befüllten Behältern, also unterhalb der in Schritt c1) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c1) aufgebrachten Folienbahn (aber in der Unterdruckkammer) ein Unterdruck erzeugt, da die unterhalb der in Schritt c1) aufgebrachten Folienbahn befindliche Luft durch diese Öffnungen in den Raum oberhalb der in Schritt c1) aufgebrachten Folienbahn gelangt und von dort durch das angelegte Vakuum aus der Unterdruckkammer entfernt wird. In einem nachfolgenden Verfahrensschritt wird die in Schritt c1) aufgebrachte Folienbahn mit dem befüllten Behälter derart versiegelt, daß der Behälter allseits verschlossen wird und insbesondere keine Luft mehr durch die Öffnungen der in Schritt c1) aufgebrachten Folienbahn in den Behälter gelangen kann. Wird dann der versiegelte Behälter aus der Unterdruckkammer entfernt, bewirkt der von außen auf den Behälter einwirkende Atmosphärendruck, daß sich die Außenwände des Behälters, insbesondere die in Schritt c1) aufgebrachte Folienbahn eng an das Füllgut anlegt.

[0045] Ein weiterer bevorzugter Gegenstand der vorliegenden Anmeldung ist daher ein Verfahren umfassend die Schritte:

- a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters mit mindestens einer Öffnung, einer diese Öffnung umgebenden Kante und mindestens einer weiteren Ecke und/oder Kante;
- b) Einfüllen einer wasch- oder reinigungsaktiven Schmelze und Erstarren der Schmelze derart, daß zumindest die weitere(n) Ecke(n) und/oder Kante(n) des Behälters wenigstens anteilsweise durch die erstarrte Schmelze ausgefüllt wird/werden:
- c) Befüllen des Behälters mit mindestens einem weiteren Wasch- oder Reinigungsmittel;
 - c1) Aufbringen einer wasserlöslichen Folienbahn auf den befüllten Behälter;

- c2) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
- c3) Versiegeln des befüllten Behälters;
- c4) Entlasten des Unterdrucks in der Unterdruckkammer;
- d) Konfektionierung des versiegelten und befüllten Behälters,

dadurch gekennzeichnet, daß durch die Ausbildung eines Unterdrucks in Schritt c2) sowohl in dem befüllten Behälter, also unterhalb der in Schritt c1) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c1) aufgebrachten Folienbahn ein Unterdruck erzeugt wird, wobei die zwischen dem Füllgut und der in Schritt c1) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c1) aufgebrachten wasserlöslichen Folienbahn entweicht.

[0046] Diese besonders bevorzugte Verfahrensvariante ermöglicht die Herstellung kompakter und formstabiler Portionspackungen mit geringem Volumen. Bei der Versiegelung des Behälters in Schritt c3) wird der Behälter vorzugsweise allseits vollständig verschlossen. Die Versiegelung kann dabei auf verschiedene Weise erfolgen. Besonders bevorzugt werden Heißsiegelverfahren. Bei der Versiegelung ist es insbesondere bevorzugt, daß die Öffnungen der in Schritt c1) aufgebrachten wasserlöslichen Folienbahn durch den Siegelprozeß verschlossen, das heißt verschweißt werden, oder durch die Siegelnaht vom Innenraum des Behälters abgetrennt werden. Im letzteren Fall befinden sich die Öffnungen nach der Versiegelung außerhalb der Siegelnaht und können zusammen mit dem umgebenden Folienmaterial beispielsweise im Rahmen der Konfektionierung bei der Vereinzelung abgetrennt werden.

[0047] Zur Herstellung von Mehrkammerkonfektionierungen wird in einer bevorzugten Ausführungsform der zuvor beschriebenen Verfahrensvariante der in Schritt a) gebildete Behälter und in Schritt b) mit Schmelze versehene Behälter nur teilweise befüllt. Bevorzugt werden hierbei Verfahren, bei denen der Füllgrad des Behälters nach der Befüllung zwischen 10 und 95 Vol.-%, vorzugsweise zwischen 20 und 90 Vol.-% und insbesondere zwischen 40 und 80 Vol.% beträgt. Je nach Verwendungzweck der erfindungsgemäßen portionierten Mittel kann es bevorzugt sein, einen hohen Füllgrad für die erste Aufnahmekammer zu wählen. Dieser liegt bevorzugt zwischen 10 und 99 Vol.-%, vorzugsweise zwischen 30 und 96 Vol.% und insbesondere zwischen 60 und 94 Vol.% befüllt.

[0048] Nach dem Entlasten des Unterdrucks in Schritt c4) wird die wasserlösliche Folienbahn aufgrund des einwirkenden Atmosphärendrucks in den Behälter gedrückt und legt sich dort eng an das Füllgut an. Auf diese Weise entsteht in dem Behälter eine erste abgetrennte Aufnahmekammer im Bodenbereich des Behälters, über der sich das unbefüllte Restvolumen des wasserlöslichen Behälters aus Schritt a) befindet und auf die in einem weiteren Füllvorgang ein zweites Füllgut eingefüllt werden kann. Dieses zweite Füllgut kann dann erneut mit einer Siegelfolie abgedeckt und versiegelt werden. Die resultierenden Produkte zeichnen sich durch eine 2-Phasen Optik aus, wobei die beiden gebildeten Kammern durch die in Schritt c1) aufgebrachte wasserlösliche Folienbahn voneinander getrennt werden. Wird durch die zweite Befüllung der in Schritt a) gebildete wasserlösliche Behälter erneut nur teilweise befüllt und erfolgt die zweite Versiegelung erneut in einer Unterdruckkammer nach dem vorbeschriebenen Verfahren, so lassen sich durch das erfindungsgemäße Verfahren kompakte Wasch- oder Reinigungsmittel mit 3-Phasen Optik und drei voneinander getrennten Aufnahmekammern herstellen. Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher ein Verfahren, umfassend die Schritte:

- a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters mit mindestens einer Öffnung, einer diese Öffnung umgebenden Kante und mindestens einer weiteren Ecke und/oder Kante;
- b) Einfüllen einer wasch- oder reinigungsaktiven Schmelze und Erstarren der Schmelze derart, daß zumindest die weitere(n) Ecke(n) und/oder Kante(n) des Behälters wenigstens anteilsweise durch die erstarrte Schmelze ausgefüllt wird/werden;
- c) Teilweise Befüllen des Behälters mit mindestens einem weiteren Wasch- oder Reinigungsmittel;
 - c1) Aufbringen einer wasserlöslichen Folienbahn auf den teilweise befüllten Behälter;
 - c2) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
 - c3) Versiegeln des teilweise befüllten Behälters;
 - c4) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen zweiten unbefüllten Aufnahmekammer, welche im wesentlichen dem nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht; c5
 -) Wenigstens anteilsweises Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel;
 - c6) Optionales Aufbringen einer wasserlöslichen Folienbahn auf den wenigstens anteilsweise befüllten Behälter;

7

5

10

20

15

25

30

40

35

50

45

d) Konfektionierung des versiegelten und befüllten Behälters,

dadurch gekennzeichnet, daß durch die Ausbildung eines Unterdrucks in Schritt c2) sowohl in dem befüllten Behälter, also unterhalb der in Schritt c1) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c1) aufgebrachten Folienbahn ein Unterdruck erzeugt wird, wobei die zwischen dem Füllgut und der in Schritt c1) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c1) aufgebrachten wasserlöslichen Folienbahn entweicht. Bei den Produkten dieses Verfahrens handelt es sich um kompakte, portionierte Wasch- oder Reinigungsmittelportionen mit getrennten Aufnahmekammern, sowie einer befüllten Mulde, welche nicht nach allen Seiten von wasserlöslichem Material umgeben ist. Wird in Schritt c6) eine wasserlösliche Folienbahn aufgebracht, so handelt es sich bei dem Verfahrensprodukt um eine kompakte, portionierte Wasch- oder Reinigungsmittelportion mit zwei voneinander getrennten Aufnahmekammern.

[0049] In einer bevorzugten Ausführungsform dieses Verfahrens werden im Anschluß an Schritt c6) und vor der Konfektionierung die Schritte c2) bis c4), vorzugsweise jedoch die Schritte c2) bis c5) und insbesondere die Schritt c2) bis c6) wiederholt. Mit anderen Worten werden in der vorliegenden Anmeldung Verfahren, umfassend die Schritte:

- a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters mit mindestens einer Öffnung, einer diese Öffnung umgebenden Kante und mindestens einer weiteren Ecke und/oder Kante;
- b) Einfüllen einer wasch- oder reinigungsaktiven Schmelze und Erstarren der Schmelze derart, daß zumindest die weitere(n) Ecke(n) und/oder Kante(n) des Behälters wenigstens anteilsweise durch die erstarrte Schmelze ausgefüllt wird/werden:
- c) Teilweise Befüllen des Behälters mit mindestens einem weiteren Wasch- oder Reinigungsmittel;
 - c1) Aufbringen einer wasserlöslichen Folienbahn auf den teilweise befüllten Behälter;
 - c2) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer:
 - c3) Versiegeln des teilweise befüllten Behälters;
 - c4) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen zweiten unbefüllten Aufnahmekammer, welche im wesentlichen dem nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht;
 - c5) Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel;
 - c6) Aufbringen einer wasserlöslichen Folienbahn auf den wenigstens anteilsweise befüllten Behälter;
 - c7) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
 - c8) Versiegeln des teilweise befüllten Behälters;
 - c9) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen abgetrennten, befüllten zweiten Aufnahmekammer:
- d) Konfektionierung des versiegelten und befüllten Behälters,

dadurch gekennzeichnet, daß durch die Ausbildung eines Unterdrucks in den Schritten c2) und c7) sowohl in dem befüllten Behälter, also unterhalb der in Schritt c1) bzw. Schritt c6) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c1) bzw. in Schritt c6) aufgebrachten Folienbahn ein Unterdruck erzeugt wird, wobei die zwischen dem Füllgut und der in Schritt c) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c1) bzw. in Schritt c6) aufgebrachten wasserlöstichen Folienbahn entweicht, besonders bevorzugt. Bei den Produkten dieses Verfahrens handelt es sich um kompakte, portionierte Waschoder Reinigungsmittel mit zwei voneinander getrennten Aufnahmekammern.

- [0050] Bevorzugter Gegenstand der vorliegenden Anmeldung ist weiterhin ein Verfahren, umfassend die Schritte:
 - a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters mit mindestens einer Öffnung, einer diese Öffnung umgebenden Kante und mindestens einer weiteren Ecke und/oder Kante;
 - b) Einfüllen einer wasch- oder reinigungsaktiven Schmelze und Erstarren der Schmelze derart, daß zumindest die weitere(n) Ecke(n) und/oder Kante(n) des Behälters wenigstens anteilsweise durch die erstarrte Schmelze ausgefüllt wird/werden;
 - c) Teilweise Befüllen des Behälters mit mindestens einem weiteren Wasch- oder Reinigungsmittel;

20

15

10

25

30

35

40

50

- c1) Aufbringen einer wasserlöslichen Folienbahn auf den teilweise befüllten Behälter;
- c2) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
- c3) Versiegeln des teilweise befüllten Behälters;

5

10

15

20

30

35

40

45

50

55

- c4) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen befüllten zweiten Aufnahmekammer, welche im wesentlichen des nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht:
- c5) Wenigstens anteilsweises Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel;
- c6) Aufbringen einer wasserlöslichen Folienbahn auf den wenigstens anteilsweise befüllten Behälter;
- c7) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
- c8) Versiegeln des teilweise befüllten Behälters;
- c9) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen abgetrennten, befüllten zweiten Aufnahmekammer, und einer oberhalb dieser befüllten zweiten Aufnahmekammer befindlichen unbefüllten dritten Aufnahmekammer, welche im wesentlichen dem nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht;
- c10) Wenigstens anteilsweises Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel;
- d) Konfektionierung des versiegelten und befüllten Behälters,
- dadurch gekennzeichnet, daß durch die Ausbildung eines Unterdrucks in den Schritten c2) und c7) sowohl in dem befüllten Behälter, also unterhalb der in Schritt c1) bzw. Schritt c6) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c1) bzw. in Schritt c6) aufgebrachten Folienbahn ein Unterdruck erzeugt wird, wobei die zwischen dem Füllgut und der in Schritt c1) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c1) bzw. in Schritt c6) aufgebrachten wasserlöslichen Folienbahn entweicht. Bei den Produkten dieses Verfahrens handelt es sich um kompakte, portionierte Wasch- oder Reinigungsmittelportionen mit zwei voneinander getrennten Aufnahmekammern sowie einer befüllten Mulde, wobei die Muldenfüllung nicht zu allen Seiten von einem wasserlöslichen Material umgeben ist.

[0051] Ein weiterer bevorzugter Gegenstand der vorliegenden Anmeldung ist schließlich ein Verfahren, umfassend die Schritte:

- a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters mit mindestens einer Öffnung, einer diese Öffnung umgebenden Kante und mindestens einer weiteren Ecke und/oder Kante;
- b) Einfüllen einer wasch- oder reinigungsaktiven Schmelze und Erstarren der Schmelze derart, daß zumindest die weitere(n) Ecke(n) und/oder Kante(n) des Behälters wenigstens anteilsweise durch die erstarrte Schmelze ausgefüllt wird/werden:
- c) Teilweise Befüllen des Behälters mit mindestens einem weiteren Wasch- oder Reinigungsmittel;
 - c1) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
 - c2) Versiegeln des teilweise befüllten Behälters;
 - c3) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen befüllten zweiten Aufnahmekammer, welche im wesentlichen dem nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht:
 - c5) Wenigstens anteilsweises Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel;
 - c6) Aufbringen einer wasserlöslichen Folienbahn auf den wenigstens anteilsweise befüllten Behälter;
 - c7) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer:
- c8) Versiegeln des teilweise befüllten Behälters;
 - c9) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen abgetrennten, befüllten zweiten Aufnahmekammer, und einer oberhalb dieser befüllten zweiten Aufnahmekammer befindlichen unbefüllten

dritten Aufnahmekammer, welche im wesentlichen dem nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht;

- c10) Wenigstens anteilsweises Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel;
- c11) Aufbringen einer wasserlöslichen Folienbahn auf den wenigstens anteilsweise befüllten Behälter;
- d) Konfektionierung des versiegelten und befüllten Behälters,

5

10

15

20

30

35

50

dadurch gekennzeichnet, daß durch die Ausbildung eines Unterdrucks in den Schritten c2) und c7) sowohl in dem befüllten Behälter, also unterhalb der in Schritt c1) bzw. Schritt c6) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c1) bzw. in Schritt c6) aufgebrachten Folienbahn ein Unterdruck erzeugt wird, wobei die zwischen dem Füllgut und der in Schritt c1) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c1) bzw. in Schritt c6) aufgebrachten wasserlöslichen Folienbahn entweicht. Bei den Produkten dieses Verfahrens handelt es sich um kompakte, portionierte Wasch- oder Reinigungsmittelportionen mit drei voneinander getrennten Aufnahmekammern.

[0052] Bei den zuvor beschriebenen erfindungsgemäßen Verfahren und seinen vorteilhaften Variationen ist es besonders bevorzugt, wenn die gesamte zwischen dem Füllgut und der in Schritt c1) aufgebrachten wasserlöslichen Folienbahn befindliche Luft durch Öffnungen in der in Schritt c1) aufgebrachten wasserlöslichen Folienbahn entweicht. [0053] Bei den zuvor beschriebenen Verfahren ist es weiterhin besonders bevorzugt, die in Schritt a) gebildeten Behälter nach dem Verbringen in die Unterdruckkammer in ihrer räumlichen Form zu stabilisieren um eine Kollaps des Behälters durch den zwischen Füllgut und wasserlöslicher Folienbahn erzeugten Unterdruck zu vermeiden. Dies gilt insbesondere für Verfahren, bei denen die im Schritt a) hergestellten Behälter eine Wanddicke unterhalb 800 μm, bevorzugt unterhalb 600 μm, besonders bevorzugt unterhalb 400 μm und insbesondere unterhalb 200 μm aufweisen. Diese Vorraussetzungen treffen beispielsweise für solche erfindungsgemäßen Verfahren zu, bei denen die Verformung des wasserlöslichen Materials in Schritt a) durch Tiefziehen einer wasserlöslichen Folienbahn erfolgt. In diesen Verfahren ist es insbesondere bevorzugt, die Behälter während der Einwirkung des in der Unterdruckkammer erzeugten Unterdrucks durch eine Unterstützungsform von unten zu halten. Besonders bevorzugt ist es, als Unterstützungsform die beim Tiefziehen der Behälter eingesetzten Tiefziehmatrizen oder mit diesen Matrizen vergleichbare oder mit diesen Matrizen identische Matrizen einzusetzen. Insbesondere ist es bevorzugt, zwischen der Unterstützungsform und dem Behälter zur Stabilisierung des Behälters in der Unterdruckkammer einen zweiten Unterdruck zu erzeugen. Dieser zweite Unterdruck beträgt vorzugsweise zwischen zwischen -100 und -1013 mbar, vorzugsweise zwischen -200 und -1013 mbar, besonders bevorzugt zwischen -400 und -1013 mbar und insbesondere zwischen -800 und-1013 mbar. Ebenfalls bevorzugt sind Verfahren, in denen der erzeugte Unterdruck zwischen -50 und -1013 mbar, vorzugsweise zwischen -100 und -800 mbar und insbesondere zwischen -200 und -500 mbar beträgt. Es ist insbesondere bevorzugt, daß dieser zwischen der Unterstützungsform und dem Behälter ausgebildete zweite Unterdruck in seinem Betrag höher ist als der in der Unterdruckkammer ausgebildete Unterdruck.

[0054] Diese Verfahren, bei denen während des Herstellungsverfahrens von Mehrkammerbehältern ein Unterdruck erzeugt wird, können so durchgeführt werden, daß sich die erstarrte Schmelze in einer, mehreren oder allen Kammern befindet.

[0055] Alternativ kann auch der gesamte in Schritt a) gebildete Behälter zumindest teilweise, bevorzugt vollständig, in den weiteren Ecken und/oder Kanten mit Schmelze gefüllt werden. Das Befüllen mit weiterem Wasch- oder Reinigungsmittel erfolgt dann zunächst bis zu einer bestimmten Höhe, dann wird eine Trennfolie eingebracht, um die Kammern zu bilden. Bei dieser Variante kann die erstarrte Schmelze als Teil des Behälters angesehen werden, der dann mit verschiedenen Wasch- oder Reinigungsmitteln gefüllt wird, die in verschiedenen Kammern vorliegen.

[0056] Gemäß der vorliegenden Erfindung kann ein Mehrkammerbehälter auch wie folgt hergestellt werden. Es wird zunächst eine erste Folie in eine Form unter Bildung einer ersten Kammer ausgezogen. Diese Kammer wird nach dem Verfahren der vorliegenden Erfindung befüllt. Dann wird eine zweite Folie in die Form eingezogen, um eine zweite Kammer zu bilden, welche im Folgenden mit einer Waschmittelzusammensetzung befüllt wird. Abschließend erfolgt eine Versiegelung. Bei diesem Verfahren ist die genannte erste Folie perforiert, und die zweite Folie wird mittels eines Ansaugens durch die erste Folie in die Form gezogen. Folglich kann in die erste Aufnahmekammer, in welche die zweite Folie unter Ausbildung einer weiteren Aufnahmekammer gezogen wird, nur mit festen Mitteln befüllt werden, da flüssige Mittel oder Gele durch den Unterdruck aus durch die Perforation austreten würden. Ein derartiges Verfahren ist beispielsweise in WO 03/031266 (Procter & Gamble) beschrieben, worauf hier bezüglich weiterer Einzelheiten zur Durchführung des Verfahrens verwiesen wird. Das Verfahren eignet sich auch zur Herstellung von Behältern mit mehr als zwei Kammern. Es ist jedoch aus den oben genannten Gründen auf den Einsatz fester Zusammensetzungen in den Aufnahmekammern, durch welche die jeweils aufgebrachten Folien in die Form gezogen wurden, beschränkt.

Gemäß der vorliegenden Erfindung können bei diesem Verfahren eine oder mehrere Kammern des gesamten Behälters nach dem erfindungsgemäßen Verfahren befüllt werden. Um eine gute Stabilität zu gewährleisten, ist es bevorzugt, alle

Kammern des Mehrkammerbehälters nach dem erfindungsgemäßen Verfahren zu befüllen. Als Füllung können aufgrund des Verbringens des gesamten Behälters in eine Unterdruckkammer auch Flüssigkeiten und Gele eingesetzt werden. Auch hier kann alternativ der gesamte in Schritt a) gebildete Behälter zumindest teilweise, bevorzugt vollständig, in den weiteren Ecken und/oder Kanten mit Schmelze gefüllt werden. Das Befüllen mit weiterem Wasch- oder Reinigungsmittel erfolgt dann zunächst bis zu einer bestimmten Höhe, dann wird eine Trennfolie eingebracht, um die Kammern zu bilden. Bei dieser Variante kann die erstarrte Schmelze als Teil des Behälters angesehen werden, der dann mit verschiedenen Wasch- oder Reinigungsmitteln gefüllt wird, die in verschiedenen Kammern vorliegen.

Formgebende Verfahren

10

30

35

50

[0057] Als formgebende Verfahren zur Verarbeitung der Hüllmateriallen, das heißt zur Herstellung des wasserlöslichen oder wasserdispergierbaren Behälters in Schritt a), eignen sich beispielsweise Tiefziehverfahren, Spritzgußverfahren oder Gießverfahren. Das erfindungsgemäß bevorzugte Verfahren ist Tiefziehen.

[0058] Als "Tiefziehverfahren" werden im Rahmen der vorliegenden Anmeldung dabei solche Verfahren bezeichnet, bei denen ein erstes folienartiges Hüllmaterial nach Verbringen über eine in einer die Tiefziehebene bildenden Matrize befindlichen Aufnahmemulde und Einformen des Hüllmaterials in diese Aufnahmemulde durch Einwirkung von Druck und/oder Vakuum verformt wird. Das Hüllmaterial kann vor dabei vor oder während des Einformens durch die Einwirkung von Wärme und/oder Lösungsmittel und/oder Konditionierung durch gegenüber Umgebungsbedingungen veränderten relativen Luftfeuchten und/oder Temperaturen vorbehandelt werden. Die Druckeinwirkung kann durch zwei Teile eines Werkzeugs erfolgen, welche sich wie Positiv und Negativ zueinander verhalten und einen zwischen diese Werkzeuge verbrachten Film beim Zusammendrücken verformen. Als Druckkräfte eignet sich jedoch auch die Einwirkung von Druckluft und/oder das Eigengewicht der Folie und/oder das Eigengewicht einer auf die Oberseite der Folie verbrachten Aktivsubstanz.

[0059] Das tiefgezogenen Hüllmaterialien werden nach dem Tiefziehen vorzugsweise durch Einsatz eines Vakuums innerhalb der Aufnahmemulden und in ihrer durch den Tiefziehvorgang erzielten Raumform fixiert. Das Vakuum wird dabei vorzugsweise kontinuierlich vom Tiefziehen bis zum Befüllen bevorzugt bis zum Versiegeln und insbesondere bis zum Vereinzeln der Aufnahmekammern angelegt. Mit vergleichbarem Erfolg ist allerdings auch der Einsatz eines diskontinuierlichen Vakuums, beispielsweise zum Tiefziehen der Aufnahmekammern und (nach einer Unterbrechung) vor und während des Befüllens der Aufnahmekammern, möglich. Auch kann das kontinuierliche oder diskontinuierliche Vakuum in seiner Stärke variieren und beispielsweise zu Beginn des Verfahrens (beim Tiefziehen der Folie) höhere Werte annehmen als zu dessen Ende (beim Befüllen oder Versiegeln oder Vereinzeln).

[0060] Wie bereits erwähnt, kann das Hüllmaterial vor oder während des Einformens in die Aufnahmemulden der Matrizen durch die Einwirkung von Wärme vorbehandelt werden. Das Hüllmaterial, vorzugsweise ein wasserlöslicher oder wasserdispergierbarer Polymerfilm, werden dabei für bis zu 5 Sekunden, vorzugsweise für 0.1 bis 4 Sekunden, besonders bevorzugt für 0,2 bis 3 Sekunden und insbesondere für 0,4 bis 2 Sekunden auf Temperaturen oberhalb 60°C, vorzugsweise oberhalb 80°C, besonders bevorzugt zwischen 100 und 120°C und insbesondere auf Temperaturen zwischen 105 und 115°C erwärmt. Zur Abführung dieser Wärme, insbesondere aber auch zur Abführung der durch die in die tiefgezogenen Aufnahmekammern gefüllten Mittel eingebrachten Wärme (insbesondere Schmelzen), ist es bevorzugt die eingesetzten Matrizen und die in diesen Matrizen befindlichen Aufnahmemulden zu kühlen. Die Kühlung erfolgt dabei vorzugsweise auf Temperaturen unterhalb 20°C, bevorzugt unterhalb 15°C, besonders bevorzugt auf Temperaturen zwischen 2 und 14°C und insbesondere auf Temperaturen zwischen 4 und 12°C. Vorzugsweise erfolgt die Kühlung kontinuierlich vom Beginn des Tiefziehvorganges bis zur Versiegelung und Vereinzelung der Aufnahmekammern. Zur Kühlung eignen sich insbesondere Kühlflüssigkeiten, vorzugsweise Wasser, welche in speziellen Kühlleitungen innerhalb der Matrize zirkuliert werden.

[0061] Diese Kühlung hat ebenso wie das zuvor beschriebene kontinuierliche oder diskontinuierliche Anlegen eines Vakuums den Vorteil, ein Zurückschrumpfen der tiefgezogenen Behältnisse nach dem Tiefziehen zu verhindern, wodurch nicht nur die Optik des Verfahrensproduktes verbessert wird, sondern gleichzeitig auch das Austreten der in die Aufnahmekammern gefüllten Mittel über den Rand der Aufnahmekammer, beispielsweise in die Siegelbereiche der Kammer, vermieden wird. Probleme bei der Versiegelung der befüllten Kammern werden so vermieden.

[0062] Bei den Tiefziehverfahren läßt sich zwischen Verfahren, bei denen das Hüllmaterial horizontal in eine Formstation und von dort in horizontaler Weise zum Befüllen und/oder Versiegeln und/oder Vereinzeln geführt wird und Verfahren, bei denen das Hüllmaterial über eine kontinuierlich umlaufende Matrizenformwalze (gegebenenfalls optional mit einer gegenläufig geführten Patrizenformwalze, welche die ausformenden Oberstempel zu den Kavitäten der Matrizenformwalze führen) geführt wird, unterscheiden. Die zuerst genannte Verfahrensvariante des Flachbettprozesses ist dabei sowohl kontinuierlich als auch diskontinuierlich zu betreiben, die Verfahrensvariante unter Einsatz einer Formwalze erfolgt in der Regel kontinuierlich. Alle genannten Tiefziehverfahren sind zur Herstellung der erfindungsgemäß en Mittel geeignet. Die in den Matrizen befindlichen Aufnahmemulden können "in Reihe" oder versetzt angeordnet sein.

gesetztes Verfahren ist das Spritzgießen. Spritzgießen bezeichnet dabei das Umformen einer Formmasse derart, daß die in einem Massezylinder für mehr als einen Spritzgießvorgang enthaltene Masse unter Wärmeeinwirkung plastisch erweicht und unter Druck durch eine Düse in den Hohlraum eines vorher geschlossenen Werkzeuges einfließt. Das Verfahren wird hauptsächlich bei nicht-härtbaren Formmassen angewendet, die im Werkzeug durch Abkühlen erstarren.

Der Spritzguß ist ein sehr wirtschaftliches modernes Verfahren zur Herstellung spanlos geformter Gegenstände und eignet sich besonders für die automatisierte Massenfertigung. Im praktischen Betrieb erwärmt man die thermoplastische Formmassen (Pulver, Körner, Würfel, Pasten u. a.) bis zur Verflüssigung (bis 180 °C) und spritzt sie dann unter hohem Druck (bis 140 MPa) in geschlossene, zweiteilige, das heißt aus Gesenk (früher Matrize) und Kern (früher Patrize) bestehende, vorzugsweise wassergekühlte Hohlformen, wo sie abkühlen und erstarren. Einsetzbar sind Kolben- und Schneckenspritzgußmaschinen. Als Formmassen (Spritzgußmassen) eignen sich wasserlösliche Polymere wie beispielsweise die oben genannten Celluloseether, Pektine, Polyethylenglycole, Polyvinylalkohole, Polyvinylpyrrolidone, Alginate, Gelatine oder Stärke.

[0064] Die Hüllmaterialien können auch zu Hohlformen gegossen werden.

15 Behältermaterialien

[0065] Die erfindungsgemäßen Wasch- oder Reinigungsmittel zeichnen sich durch eine wasserlösliche oder wasserdispergierbare Verpackung aus. Einige besonders bevorzugte wasserlösliche oder wasserdispergierbare Verpackungsmaterialien, sind in der Folge aufgeführt:

20

25

30

35

40

45

- a) wasserlösliche nichtionische Polymere aus der Gruppe der
 - a1) Polyvinylpyrrolidone,
 - a2) Vinylpyrrolidon/Vinylester-Copolymere,
 - a3) Celluloseether
- b) wasserlösliche amphotere Polymere aus der Gruppe der
 - b1) Alkylacrylamid/Acrylsäure-Copolymere
 - b2) Alkylacrylamid/Methacrylsäure-Copolymere
 - b3) Alkylacrylamid/Methylmethacrylsäure-Copolymere
 - b4) Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere
 - b5) Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere
 - b6) Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere
 - b7) Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymere
 - b8) Copolymere aus
 - b8i) ungesättigten Carbonsäuren
 - b8ii) kationisch derivatisierten ungesättigten Carbonsäuren
 - b8iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
- c) wasserlösliche zwitterionische Polymere aus der Gruppe der
 - c1) Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
 - c2) Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
 - c3) Methacroylethylbetain/Methacrylat-Copolymere
- d) wasserlösliche anionische Polymere aus der Gruppe der

50

- d1) Vinylacetat/Crotonsäure-Copolymere
- d2) Vinylpyrrolidon/Vinylacrylat-Copolymere
- d3) Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere
- d4) Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen
- d5) gepfropften und vernetzten Copolymere aus der Copolymerisation von

- d5i) mindesten einem Monomeren vom nicht-ionischen Typ,
- d5ii) mindestens einem Monomeren vom ionischen Typ,
- d5iii) von Polyethylenglycol und
- d5iv) einem Vernetzter

5

10

15

20

25

30

35

- d6) durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltenen Copolymere:
 - d6i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
 - d6ii) ungesättigte Carbonsäuren,
 - d6iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe d6ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C₈₋₁₈-Alkohols
- d7) Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester
- d8) Tetra- und Pentapolymere aus
 - d8i) Crotonsäure oder Allyloxyessigsäure
 - d8ii) Vinylacetat oder Vinylpropionat
 - d8iii) verzweigten Allyl- oder Methallylestern
 - d8iv) Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
- d9) Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinylmethylether, Acrylamid und deren wasserlöslicher Salze
- d10) Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α -Stellung verzweigten Monocarbonsäure
- e) wasserlösliche kationische Polymere aus der Gruppe der
 - e1) quaternierten Cellulose-Derivate
 - e2) Polysiloxane mit quaternären Gruppen
 - e3) kationischen Guar-Derivate
 - e4) polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amide von Acrylsäure und Methacrylsäure
 - e5) Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats
 - e6) Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere
 - e7) quaternierter Polyvinylalkohol
 - e8) unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere.

40

[0066] Wasserlösliche Polymere im Sinne der Erfindung sind solche Polymere, die bei Raumtemperatur in Wasser zu mehr als 2,5 Gew.-% löslich sind.

[0067] Bevorzugte Hüllmaterialien umfassen vorzugsweise mindestens anteilsweise eine Substanz aus der Gruppe (acetalisierter) Polyvinylalkohol, Polyvinylpyrrolidon, Polyethylenoxid, Gelatine.

45 [0068] "Polyvinylalkohole" (Kurzzeichen PVAL, gelegentlich auch PVOH) ist dabei die Bezeichnung für Polymere der allgemeinen Struktur

die in geringen Anteilen (ca. 2%) auch Struktureinheiten des Typs

55

enthalten.

10

[0069] Handelsübliche Polyvinylalkohole, die als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 100 bis 2500 (Molmassen von ca. 4000 bis 100.000 g/mol) angeboten werden, haben Hydrolysegrade von 98-99 bzw. 87-89 Mol-%, enthalten also noch einen Restgehalt an Acetyl-Gruppen. Charakterisiert werden die Polyvinylalkohole von Seiten der Hersteller durch Angabe des Polymerisationsgrades des Ausgangspolymeren, des Hydrolysegrades, der Verseifungszahl bzw. der Lösungsviskosität.

[0070] Polyvinylalkohole sind abhängig vom Hydrolysegrad löslich in Wasser und wenigen stark polaren organischen Lösungsmitteln (Formamid, Dimethylformamid, Dimethylsulfoxid); von (chlorierten) Kohlenwasserstoffen, Estern, Fetten und Ölen werden sie nicht angegriffen. Polyvinylalkohole werden als toxikologisch unbedenklich eingestuft und sind biologisch zumindest teilweise abbaubar. Die Wasserlöslichkeit kann man durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure od. Borax verringern. Die Beschichtungen aus Polyvinylalkohol sind weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.

[0071] Im Rahmen der vorliegenden Erfindung ist es bevorzugt, daß ein erfindungsgemäßes Mittel mindestens ein Verpackungs- bzw. Hüllmaterial aufweist, welches wenigstens anteilsweise einen Polyvinylalkohol umfaßt, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt. In einer bevorzugten Ausführungsform besteht das mindestens ein eingesetztes Hüllmaterial zu mindestens 20 Gew.%, besonders bevorzugt zu mindestens 40 Gew.%, ganz besonders bevorzugt zu mindestens 60 Gew.% und insbesondere zu mindestens 80 Gew.% aus einem Polyvinylalkohol, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol% beträgt. Vorzugsweise besteht das gesamte eingesetzte Hüllmaterial zu mindestens 20 Gew.-%, besonders bevorzugt zu mindestens 40 Gew.-%, ganz besonders bevorzugt zu mindestens 60 Gew.-% und insbesondere zu mindestens 80 Gew.% aus einem Polyvinylalkohol, dessen Hydrolysegrad 70 bis 100 Mol%, vorzugsweise 80 bis 90 Mol%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt.

[0072] Vorzugsweise werden als Hüllmaterialien Polyvinylalkohole eines bestimmten Molekulargewichtsbereichs eingesetzt, wobei erfindungsgemäß bevorzugt ist, daß das Hüllmaterial einen Polyvinylalkohol umfaßt, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol⁻¹ vorzugsweise von 11.000 bis 90.000 gmol⁻¹, besonders bevorzugt von 12.000 bis 80.000 gmol⁻¹ und insbesondere von 13.000 bis 70.000 gmol⁻¹ liegt.

[0073] Der Polymerisationsgrad solcher bevorzugten Polyvinylalkohole liegt zwischen ungefähr 200 bis ungefähr 2100, vorzugsweise zwischen ungefähr 220 bis ungefähr 1890, besonders bevorzugt zwischen ungefähr 240 bis ungefähr 1680 und insbesondere zwischen ungefähr 260 bis ungefähr 1500. Erfindungsgemäß bevorzugte Wasch- oder Reinigungsmittel mit wasserlöslicher oder wasserdispergierbarer Verpackung sind dadurch gekennzeichnet, daß das wasserlösliche oder wasserdispergierbare Verpackungsmaterial Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren durchschnittlicher Polymerisationsgrad zwischen 80 und 700, vorzugsweise zwischen 150 und 400, besonders bevorzugt zwischen 180 bis 300 liegt und/oder deren Molekulargewichtsverhältnis MG(50%) zu MG(90%) zwischen 0,3 und 1, vorzugsweise zwischen 0,4 und 0,8 und insbesondere zwischen 0,45 und 0,6 liegt.

[0074] Die vorstehend beschriebenen Polyvinylalkohole sind kommerziell breit verfügbar, beispielsweise unter dem Warenzeichen Mowiol® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88, Mowiol® 8-88 sowie L648, L734, Mowiflex LPTC 221 ex KSE sowie die Compounds der Firma Texas Polymers wie beispielsweise Vinex 2034.

[0075] Weitere als Verpackungsmaterial besonders geeignete Polyvinylalkohole sind der nachstehenden Tabelle zu entnehmen:

Bezeichnung	Hydrolysegrad [%]	Molmasse [kDa]	Schmelzpunkt [°C]
Airvol® 205	88	15-27	230
Vinex® 2019	88	15-27	170
Vinex® 2144	88	44-65	205
Vinex® 1025	99	15-27	170
Vinex® 2025	88	25-45	192
Gohsefimer® 5407	30-28	23.600	100
Gohsefimer® LL02	41-51	17.700	100

[0076] Weitere als Material für die wasserlösliche oder wasserdispergierbaren Folien und/oder Behälter geeignete Polyvinylalkohole sind ELVANOL® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (Warenzeichen der Du Pont),

14

45

30

35

40

50

 $ALCOTEX^{\circledR}72.5, 78, B72, F80/40, F88/4, F88/26, F88/40, F88/47 (Warenzeichen der Harlow Chemical Co.), Gohsenol^{\circledR}NK-05, A-300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, MM11Q, KZ-06 (Warenzeichen der Nippon Gohsei K.K.). Auch geeignet sind ERKOL-Typen von Wacker.$

[0077] Der Wassergehalt bevorzugter PVAL-Verpackungsmaterialien beträgt vorzugsweise weniger als 10 Gew.%, bevorzugt weniger als 8 Gew.%, besonders bevorzugt weniger als 6 Gew.% und insbesondere weniger als 4 Gew.-%. [0078] Die Wasserlöslichkeit von PVAL kann durch Nachbehandlung mit Aldehyden (Acetalisierung) oder Ketonen (Ketalisierung) verändert werden. Als besonders bevorzugt und aufgrund ihrer ausgesprochen guten Kaltwasserlöslichkeit besonders vorteilhaft haben sich hierbei Polyvinylalkohole herausgestellt, die mit den Aldehyd bzw. Ketogruppen von Sacchariden oder Polysacchariden oder Mischungen hiervon acetalisiert bzw. ketalisiert werden. Als äußerst vorteilhaft einzusetzen sind die Reaktionsprodukte aus PVAL und Stärke.

[0079] Weiterhin läßt sich die Wasserlöslichkeit durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure, Borax verändern und so gezielt auf gewünschte Werte einstellen. Folien aus PVAL sind weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.

[0080] Beispiele geeigneter wasserlöslicher PVAL-Folien sind die unter Bezeichnung "SOLUBLON®" von der Firma Syntana Handelsgesellschaft E. Harke GmbH & Co. erhältlichen PVAL-Folien. Deren Löslichkeit in Wasser läßt sich Grad-genau einstellen, und es sind Folien dieser Produktreihe erhältlich, die in allen für die Anwendung relevanten Temperaturbereichen in wäßriger Phase löslich sind.

[0081] Bevorzugte erfindungsgemäße Wasch- oder Reinigungsmittel mit einer wasserlöslichen oder wasserdispergierbaren Verpackung sind dadurch gekennzeichnet, daß die wasserlösliche oder wasserdispergierbare Verpackung Hydroxypropylmethylcellulose (HPMC) umfaßt, die einen Substitutionsgrad (durchschnittliche Anzahl von Methoxygruppen pro Anhydroglucose-Einheit der Cellulose) von 1,0 bis 2,0, vorzugsweise von 1,4 bis 1,9, und eine molare Substitution (durchschnittliche Anzahl von Hydroxypropoxylgruppen pro Anhydroglucose-Einheit der Cellulose) von 0,1 bis 0,3, vorzugsweise von 0,15 bis 0,25, aufweist.

[0082] Polyvinylpyrrolidone, kurz als PVP bezeichnet, lassen sich durch die folgende allgemeine Formel beschreiben:

[0083] PVP werden durch radikalische Polymerisation von 1-Vinylpyrrolidon hergestellt. Handelsübliche PVP haben Molmassen im Bereich von ca. 2.500 bis 750.000 g/mol und werden als weiße, hygroskopische Pulver oder als wäßrige Lösungen angeboten.

[0084] Polyethylenoxide, kurz PEOX, sind Polyalkylenglykole der allgemeinen Formel

H-[O-CH₂-CH₂]_n-OH

10

15

30

35

40

45

50

55

die technisch durch basisch katalysierte Polyaddition von Ethylenoxid (Oxiran) in meist geringe Mengen Wasser enthaltenden Systemen mit Ethylenglykol als Startmolekül hergestellt werden. Sie haben Molmassen im Bereich von ca. 200 bis 5.000.000 g/mol, entsprechend Polymerisationsgraden n von ca. 5 bis >100.000. Polyethylenoxide besitzen eine äußerst niedrige Konzentration an reaktiven Hydroxy-Endgruppen und zeigen nur noch schwache Glykol-Eigenschaften.

[0085] Gelatine ist ein Polypeptid (Molmasse: ca. 15.000 bis >250.000 g/mol), das vornehmlich durch Hydrolyse des in Haut und Knochen von Tieren enthaltenen Kollagens unter sauren oder alkalischen Bedingungen gewonnen wird. Die Aminosäuren-Zusammensetzung der Gelatine entspricht weitgehend der des Kollagens, aus dem sie gewonnen wurde, und variiert in Abhängigkeit von dessen Provenienz. Die Verwendung von Gelatine als wasserlösliches Hüllmaterial ist insbesondere in der Pharmazie in Form von Hart- oder Weichgelatinekapseln äußerst weit verbreitet. In Form von Folien findet Gelatine wegen ihres im Vergleich zu den vorstehend genannten Polymeren hohen Preises nur geringe Verwendung.

[0086] Bevorzugt sind im Rahmen der vorliegenden Erfindung Hüllmaterialien, welche ein Polymer aus der Gruppe Stärke und Stärkederivate, Cellulose und Cellulosederivate, insbesondere Methylcellulose und Mischungen hieraus umfassen

[0087] Stärke ist ein Homoglykan, wobei die Glucose-Einheiten α -glykosidisch verknüpft sind. Stärke ist aus zwei

Komponenten unterschiedlichen Molekulargewichts aufgebaut: aus ca. 20 bis 30% geradkettiger Amylose (MG. ca. 50.000 bis 150.000) und 70 bis 80% verzweigtkettigem Amylopektin (MG. ca. 300.000 bis 2.000.000). Daneben sind noch geringe Mengen Lipide, Phosphorsäure und Kationen enthalten. Während die Amylose infolge der Bindung in 1,4-Stellung lange, schraubenförmige, verschlungene Ketten mit etwa 300 bis 1.200 Glucose-Molekülen bildet, verzweigt sich die Kette beim Amylopektin nach durchschnittlich 25 Glucose-Bausteinen durch 1,6-Bindung zu einem astähnlichen Gebilde mit etwa 1.500 bis 12.000 Molekülen Glucose. Neben reiner Stärke sind zur Herstellung wasserlöslicher Umhüllungen der Waschmittel-, Spülmittel- und Reinigungsmittel-Portionen im Rahmen der vorliegenden Erfindung auch Stärke-Derivate geeignet, die durch polymeranaloge Reaktionen aus Stärke erhältlich sind. Solche chemisch modifizierten Stärken umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Stärken, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Stärke-Derivate einsetzen. In die Gruppe der Stärke-Derivate fallen beispielsweise Alkalistärken, Carboxymethylstärke (CMS), Stärkeester und -ether sowie Aminostärken.

[0088] Reine Cellulose weist die formale Bruttozusammensetzung (C₆H₁₀O₅)_n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5.000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.

Schmelzen

25

30

40

50

55

[0089] Die wasch- oder reinigungsaktive Schmelze kann eine aufgeschmolzene Reinsubstanz oder ein Gemisch mehrerer Substanzen sein. Es ist selbstverständlich möglich, die einzelnen Substanzen einer Mehrsubstanz-Schmelze vor dem Aufschmelzen zu mischen oder separate Schmelzen herzustellen, die danach vereinigt werden. Schmelzen aus Substanzgemischen können z.B. von Vorteil sein, wenn sich eutektische Gemische bilden, die deutlich niedriger schmelzen und damit die Verfahrenskosten senken.

[0090] Gemäß der vorliegenden Erfindung umfaßt das Schmelzematerial wenigstens anteilsweise Wasch- oder Reinigungsmittel. Bevorzugt ist es, wenn die Schmelze vollständig aus ein oder mehreren wasch- oder reinigungsaktiven Substanzen besteht.

[0091] Bevorzugt ist es, wenn die Schmelze aus mindestens einem Material oder Materialgemisch besteht, dessen Schmelzpunkt im Bereich von 40 bis 1000°C, vorzugsweise von 42,5 bis 500°C, besonders bevorzugt von 45 bis 200°C und insbesondere von 50 bis 160°C, liegt.

[0092] Vorzugsweise weist das Material der Schmelze eine hohe Wasserlöslichkeit auf, die beispielsweise oberhalb von 100 g/l liegt, wobei Löslichkeiten oberhalb von 200 g/l in destilliertem Wasser bei 20°C besonders bevorzugt sind. [0093] Solche Stoffe stammen aus den unterschiedlichsten Substanzgruppen. Im Rahmen der vorliegenden Erfindung haben sich insbesondere solche Schmelzen als geeignet erwiesen, die aus den Gruppen der Carbonsäuren, Carbonsäureanhydride, Dicarbonsäuren, Dicarbonsäureanhydride, Hydrogencarbonate, Hydrogensulfate, Polyethylengylcole, Polypropylengylcole Natriumacetat-Trihydrat und/oder Harnstoff stammen. Hier sind erfindungsgemäße portionierte Mittel besonders bevorzugt, bei denen das Material der Hohlform einen oder mehrere Stoffe aus den Gruppen der Carbonsäuren, Carbonsäureanhydride, Dicarbonsäuren, Dicarbonsäureanhydride, Hydrogencarbonate, Hydrogensulfate, Polyethylengylcole, Polypropylengylcole Natriumacetat-Trihydrat und/oder Harnstoff in Mengen von mindestens 40 Gew.%, vorzugsweise mindestens 60 Gew.-% und insbesondere mindestens 80 Gew.-%, jeweils bezogen auf das Gewicht der Hohlform, umfaßt.

[0094] Neben den Dicarbonsäuren sind auch Carbonsäuren und ihre Salze als Materialien für die Herstellung der erstarrten Schmelze geeignet. Aus dieser Stoffklasse haben sich insbesondere Citronensäure und Trinatriumcitrat sowie Salicylsäure und Glycolsäure als geeignet erwiesen. Mit besonderem Vorteil lassen sich auch Fettsäuren, vorzugsweise mit mehr als 10 Kohlenstoffatomen und ihre Salze als Material für die offene Hohlform einsetzen. Im Rahmen der vorliegenden Erfindung einsetzbare Carbonsäuren sind beispielsweise Hexansäure (Capronsäure), Heptansäure (Önanthsäure), Octansäure (Caprylsäure), Nonansäure (Pelargonsäure), Decansäure (Caprinsäure), Undecansäure usw.. Bevorzugt ist im Rahmen der vorliegenden Verbindung der Einsatz von Fettsäuren wie Dodecansäure (Laurinsäure), Tetradecansäure (Myristinsäure), Hexadecansäure (Palmitinsäure), Octadecansäure (Stearinsäure), Eicosansäure (Arachinsäure), Docosansäure (Behensäure), Tetracosansäure (Lignocerinsäure), Hexacosansäure (Cerotinsäure), Triacotansäure (Melissinsäure) sowie der ungesättigten Sezies 9c-Hexadecensäure (Palmitoleinsäure), 6c-Octa-

decensäure (Petroselinsäure), 6t-Octadecen-säure (Petroselaidinsäure), 9c-Octadecensäure (Ölsäure), 9t-Octadecensäure ((Elaidinsäure), 9c,12c-Octadecadiensäure (Linolsäure), 9t,12t-Octadecadiensäure (Linolaidinsäure) und 9c,12c,15c-Octade-catreinsäure (Linolensäure). Aus Kostengründen ist es bevorzugt, nicht die reinen Spezies einzusetzen, sondern technische Gemische der einzelnen Säuren, wie sie aus der Fettspaltung zugänglich sind. Solche Gemische sind beispielsweise Koskosölfettsäure (ca. 6 Gew.% C_8 , 6 Gew.-% C_{10} , 48 Gew.-% C_{12} , 18 Gew.% C_{14} , 10 Gew.-% C_{16} , 2 Gew.% C_{18} , 1 Gew.-% C_{18} , 1 Jew.-% C_{18} , 1 Jew.-% C_{18} , 1 Jew.-% C_{18} , 1 Jew.-% C_{18} , 2 Gew.-% C_{12} , 15 Gew.-% C_{13} , 1 Gew.-% C_{16} , 2 Gew.-% C_{16} , 2 Gew.-% C_{18} , 1 Gew.-% C_{18} , 3 Gew. C_{18} , 1 Gew.-% C_{18} , 2 Gew.-% C_{16} , 2 Gew.-% C_{18} , 1 Gew.-% C_{18} , 1 Gew.-% C_{18} , 1 Gew.-% C_{18} , 2 Gew.-% C_{18} , 2 Gew.-% C_{16} , 3 Gew.-% C_{16} , 5 Gew.-% C_{16} , 6 Gew.-% C_{16} , 1 Gew.-% C_{16} , 2 Gew.-% C_{16} , 5 Gew.-% C_{16} , 6 Gew.-% C_{16} , 1 Gew.-% C_{16} , 2 Gew.-% C_{16} , 5 Gew.-% C_{16} , 6 Gew.-% C_{16} , 7 Gew.-% C_{16} , 7 Gew.-% C_{16} , 8 Gew.-% C_{16} , 7 Gew.-% C_{16} , 8 Gew.-% C_{16} , 9 Gew.-% $C_{$

[0095] Die vorstehend genannten Carbonsäuren werden technisch größtenteils aus nativen Fetten und Ölen durch Hydrolyse gewonnen. Während die bereits im vergangenen Jahrhundert durchgeführte alkalische Verseifung direkt zu den Alkalisalzen (Seifen) führte, wird heute großtechnisch zur Spaltung nur Wasser eingesetzt, das die Fette in Glycerin und die freien Fettsäuren spaltet. Großtechnisch angewendete Verfahren sind beispielsweise die Spaltung im Autoklaven oder die kontinuierliche Hochdruckspaltung. Auch die Alkalimetallslaze der vorstehend genannten Carbonsäuren bzw. Carbonsäuregemische lassen sich - gegebenenfalls in Mischung mit anderen Materialien - für die Herstellung der offenen Hohlform nutzen. Ebenfalls einsetzbar sind beispielsweise Salicylsäure und/oder Acetysalicylsäure bzw. ihre Salze, vorzugsweise ihre Alkalimetallsalze.

[0096] Weitere geeignete Materialien, die sich über den Zustand der Schmelze zu offenen Hohlformen verarbeiten lassen, sind Hydrogencarbonate, insbesondere die Alkalimetallhydrogencarbonate, speziell Natrium- und Kaliumhydrogencarbonat, sowie die Hydrogensulfate, insbesondere Alkalimetallhydrogensulfate, speziell Kaliumhydrogensulfat und/oder Natriumhydrogensulfat. Als besonders geeignet hat sich auch das eutektische Gemisch von Kaliumhydrogensulfat und Natriumhydrogensulfat erwiesen, das zu 60 Gew.% aus NaHSO₄ und zu 40 Gew.% aus KHSO₄ besteht.

[0097] Besonders geeignete weitere Schmelzematerialien sind der nachstehenden Tabelle zu entnehmen:

30

35

40

45

50

	Schmelzpunkt [°C]	Löslichkeit [g/I H ₂ O]
Ammoniumaluminiumsulfat-Dodecahydrat	93	150
Kaliumaluminiumsulfat-Dodecahydrat	92	110
Aluminiumsulfat-Monohydrat	90	600
Aluminiumsulfat-Octadecahydrat	90	600
Natriumphosphinat-Monohydrat	90	1000
Natriumdihydrogenphosphat	100	1103
Natriumdihydrogenphosphat-Monohydrat	100	1103
Natriumammoniumhydrogenphosphat-Tetrahydrat	79	167
Dinatriumhydrogenphosphat-Heptahydrat	48	154
Trinatriumphosphat-Dodecahydrat	75	258
Trikaliumphosphat-Heptahydrat	46	900
Ammoniumeisen(II)sulfat-Hexahydrat	100	269
Eisensulfat-Heptahydrat	64	400
Glucose	83	820
Magnesiumacetat-Tetrahydrat	80	1200
Mangan(II)chlorid-Tetrahydrat	58	1980
Natriumacetat-Trihydrat	58	762
Natriumhydrogensulfat-Monohydrat	58	670
Natriumcarbonat-Peroxohydrat	60	150

(fortgesetzt)

	Schmelzpunkt [°C]	Löslichkeit [g/l H ₂ O]
Natriumthiosulfat-Pentahydrat	48	680
Kaliumnatriumtartrat-Tetrahydrat	70-80	630
D(+)-Glucose-Monohydrat	83	820
Zinkacetat-Dihydrat	100	430
Zinksulfat-Heptahydrat	40	960

5

10

15

20

25

35

50

[0098] Wie der Tabelle zu entnehmen ist, sind auch Zucker geeignete Materialien für die Schmelze. Weiter bevorzugt sind daher auch Mittel, die dadurch gekennzeichnet sind, daß das Material der Hohlform einen oder mehrere Stoffe aus der Gruppe der Zucker und/oder Zuckersäuren und/oder Zuckeralko-hole, vorzugsweise aus der Gruppe der Zucker, besonders bevorzugt aus der Gruppe der Oligosaccharide, Oligosaccharidderivate, Monosaccharide, Disaccharide, Monosaccharidderivate und Disaccharidderivate sowie deren Mischungen, insbesondere aus der Gruppe Glucose und/oder Fructose und/oder Ribose und/oder Maltose und/oder Lactose und/oder Saccharose und/oder Maltodextrin und/oder Isomalt[®] umfaßt.

[0099] Als besonders geeignete Materialien für die Schmelze haben sich im Rahmen der vorliegenden , Erfindung die Zucker, Zuckersäuren und Zuckeralkohole erwiesen. Diese Substanzen sind generell nicht nur ausreichend löslich sondern zeichnen sich zudem durch geringe Kosten und gute Verarbeitbarkeit aus. So lassen sich Zucker und Zuckerderivate, insbesondere die Mono- und Disaccharide und ihre Derivate, beispielsweise in Form ihrer Schmelzen verarbeiten, wobei diese Schmelzen ein gutes Lösevermögen sowohl für Farbstoffe als auch für viele wasch- und reinigungsaktive Substanzen aufweisen. Die aus der Erstarrung der Zuckerschmelzen resultierenden festen Körper zeichnen sich zudem durch eine glatte Oberfläche und eine vorteilhafte Optik, wie eine hohe Oberflächenbrillanz oder transparentes Aussehen, aus.

[0100] Zur Gruppe der als Material für die Schmelze im Rahmen der vorliegenden Anmeldung bevorzugten Zucker zählen aus der Gruppe der Mono- und Disaccharide und Derivaten von Mono- und Disacchariden insbesondere Glucose, Fructose, Ribose, Maltose, Lactose, Saccharose, Maltodextrin und Isomalt[®] sowie Mischungen von zwei, drei, vier oder mehr Mono- und/oder Disacchariden und/oder den Derivaten von Mono- und/oder Disacchariden. So sind Mischungen aus Isomalt[®] und Glucose, Isomalt[®] und Lactose, Isomalt[®] und Fructose, Isomalt[®] und Ribose, Isomalt[®] und Maltose, Glucose und Saccharose, Isomalt[®] und Maltodextrin oder Isomalt[®] und Saccharose als Materialien für die Schmelze besonders bevorzugt. Der Gewichtsanteil des Isomalt[®] am Gesamtgewicht der vorgenannten Mischungen beträgt vorzugsweise mindestens 20 Gew.-%, besonders bevorzugt mindestens 40 Gew.-%, und insbesondere mindestens 80 Gew.-%.

[0101] Weiterhin als Material für die Schmelze besonders bevorzugt sind Mischungen aus Maltodextrin und Glucose, Maltodextrin und Lactose, Maltodextrin und Fructose, Maltodextrin und Ribose, Maltodextrin und Maltose oder Maltodextrin und Saccharose. Der Gewichtsanteil des Maltodextrins am Gesamtgewicht der vorgenannten Mischungen beträgt vorzugsweise mindestens 20 Gew.-%, besonders bevorzugt mindestens 40 Gew.-%, und insbesondere mindestens 80 Gew.-%.

[0102] Als Maltodextrin werden im Rahmen der vorliegenden Anmeldung durch enzymatischen Abbau von Stärke gewonnene wasserlösliche Kohlenhydrate (Dextrose-Äquivalente, DE 3-20) mit einer Kettenlänge von 5-10 Anhydroglucose-Einheiten und einem hohen Anteil an Maltose bezeichnet. Maltodextrin werden Lebensmitteln zur Verbesserung der rheologischen u. kalorischen Eigenschaften zugesetzt, schmecken nur wenig süß u. neigen nicht zur Retrogradation. Handelsprodukte, beispielsweise der Firma Cerestar, werden in der Regel als sprühgetrocknete frei fließende Pulver angeboten und weisen einen Wassergehalt von 3 bis 5 Gew.% auf.

[0103] Als Isomalt® wird im Rahmen der vorliegenden Anmeldung eine Mischung aus $6\text{-}O\text{-}\alpha\text{-}D\text{-}glucopyrano-syl-D-sorbitol}$ (1,6-GPS) und $1\text{-}O\text{-}\alpha\text{-}D\text{-}glucopyranosyl-D-mannitol}$ (1,1-GPM) bezeichnet. In einer bevorzugten Ausführungsform beträgt der Gewichtsanteil des 1,6-GPS am Gesamtgewicht der Mischung weniger als 57 Gew.%. Derartige Mischungen lassen sich technisch beispielsweise durch enzymatische Umlagerung von Saccharose in Isomaltose und anschließende katalytische Hydrierung der erhaltenen Isomaltose unter Bildung eines geruchlosen, farblosen und kristallinen Feststoffs herstellen.

[0104] Die erstarrte Schmelze kann eine Hohlform bilden. Bevorzugt werden solche Holhlformen, die mindestens einen weiteren Festkörper umfassen, wobei der mindestens eine weitere Festkörper mindestens anteilsweise in die Wandung der Hohlform eingegossen vorliegt.

[0105] Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Hohlform" eine mindestens einen Raum umschließende Form, wobei der umschlossene Raum befüllt werden bzw. sein kann. Neben dem mindestens einen

umschlossenen Raum kann die Hohlform weitere umschlossene Räume und/oder nicht vollständig umschlossene Räume aufweisen. Die Hohlform muß im Rahmen der vorliegenden Erfindung nicht aus einem einheitlichen Wandmaterial bestehen, sondern kann auch auch mehreren unterschiedlichen Materialien zusammengesetzt sein.

[0106] Der Einschluß mindestens eines Festkörpers in die Wandung der Hohlform ist beispielsweise möglich, wenn die erstarrte Schmelze mindestens einen Festkörper mindestens anteilsweise umschließt. Diese Hohlform kann anschließend befüllt und - beispielsweise durch eine anders zusammengesetzte Schmelze - verschlossen werden.

Inhaltsstoffe der Wasch- oder Reinigungsmittel

[0107] Die zuvor beschriebenen erfindungsgemäßen Mittel bzw. die nach dem zuvor beschriebenen erfindungsgemäßen Verfahren hergestellten Mittel enthalten wasch- oder reinigungsaktive Substanzen, vorzugsweise wasch- und reinigungsaktive Substanzen aus der Gruppe der Gerüststoffe, Tenside, Polymere, Bleichmittel, Bleichaktivatoren, Enzyme, Glaskorrosionsinhibitoren, Korrosionsinhibitoren, Desintegrationshilfsmittel, Duftstoffe und Parfümträger. Diese bevorzugten Inhaltsstoffe werden in der Folge näher beschrieben.

Gerüststoffe

15

30

35

50

[0108] Zu den Gerüststoffe zählen insbesondere die Zeolithe, Silikate, Carbonate, organische Cobuilder und -wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate.

[0109] Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel

n Na₂O (1-n)
$$K_2O \cdot Al_2O_3 \cdot (2 - 2,5) SiO_2 \cdot (3,5 - 5,5) H_2O$$

beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" einer granularen Mischung, vorzugsweise einer zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.% an gebundenem Wasser. [0110] Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSi_xO_{2x+1} · H₂O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na₂Si₂O5 · y H₂O bevorzugt.

[0111] Mit besonderem Vorzug, insbesondere als Bestandteil maschineller Geschirrspülmittel, werden kristalline schichtförmige Silikate der allgemeinen Formel NaMSi $_x$ O $_{2x+1}$ · y H $_2$ O eingesetzt, worin M Natrium oder Wasserstoff darstellt, x eine Zahl von 1,9 bis 22, vorzugsweise von 1,9 bis 4, ist und y für eine Zahl von 0 bis 33 steht. Die kristallinen schichtförmigen Silikate der Formel NaMSi $_x$ O $_2$ O $_{2x+1}$ · y H $_2$ O werden beispielsweise von der Firma Clariant GmbH (Deutschland) unter dem Handelsnamen Na-SKS vertrieben. Beispiele für diese Silikate sind Na-SKS-1 (Na $_2$ Si $_2$ O $_4$ 5 · x H $_2$ O, Kenyait), Na-SKS-2 (Na $_2$ Si $_4$ O $_9$ 9 · x H $_2$ O, Magadiit), Na-SKS-3 (Na $_2$ Si $_8$ O $_1$ 7 · x H $_2$ O) oder Na-SKS-4 (Na $_2$ Si $_4$ O $_9$ 0 · x H $_2$ O, Makatit).

[0112] Für die Zwecke der vorliegenden Erfindung besonders geeignet sind kristalline Schichtsilikate der Formel NaMSi $_x$ O $_{2x+1}$ · y H $_2$ O, in denen x für 2 steht. Von diesen eignen sich vor allem Na-SKS-5 (α -Na $_2$ Si $_2$ O $_5$), Na-SKS-7 (ß-Na $_2$ Si $_2$ O $_5$, Natrosilit), Na-SKS-9 (NaHSi $_2$ O $_5$ · H $_2$ O), Na-SKS-10 (NaH-Si $_2$ O $_5$ · 3 H $_2$ O, Kanemit), Na-SKS-11 (t-Na $_2$ Si $_2$ O $_5$) und Na-SKS-13 (NaHSi $_2$ O $_5$), insbesondere aber Na-SKS-6 (δ -Na $_2$ Si $_2$ O $_5$),

[0113] Werden die Silikate als Bestandteil maschineller Geschirrspülmittel eingesetzt, so enthalten diese Mittel vorzugsweise einen Gewichtsanteil des kristallinen schichtförmigen Silikats der Formel NaMSi $_x$ O $_{2x+1}$ · y H $_2$ O von 0,1 bis 20 Gew.% von 0,2 bis 15 Gew.-% und insbesondere von 0,4 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht dieser Mittel. Besonders bevorzugt ist es insbesondere, wenn solche maschinellen Geschirrspülmittel einen Gesamtsitikatgehalt unterhalb 7 Gew.%, vorzugsweise unterhalb 6 Gew.-%, bevorzugt unterhalb 5 Gew.-%, besonders bevorzugt unterhalb 4 Gew.-%, ganz besonders bevorzugt unterhalb 3 Gew.% und insbesondere unterhalb 2,5 Gew.-% aufweisen, wobei es sich bei diesem Silikat, bezogen auf das Gesamtgewicht des enthaltenen Silikats, vorzugsweise zu mindestens 70 Gew.-%, bevorzugt zu mindestens 80 Gew.% und insbesondere zu mindestens 90 Gew.-% um Silikat der allgemeinen Formel NaMSi- $_x$ O $_{2x+1}$ · y H $_2$ O handelt.

[0114] Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na₂O: SiO₂ von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe zehn bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.

[0115] Im Rahmen der vorliegenden Erfindung ist es bevorzugt, daß diese(s) Silikat(e), vorzugsweise Alkali-silikate, besonders bevorzugt kristalline oder amorphe Alkalidisilikate, in Wasch- oder Reinigungsmitteln in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels, enthalten sind.

[0116] Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Dies gilt insbesondere für den Einsatz erfindungsgemäßer oder durch erfindungsgemäße Verfahren hergestellter Mittel als maschinelle Geschirrspülmittel, welcher im Rahmen der vorliegenden Anmeldung besonders bevorzugt ist. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.

[0117] Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natriumund Kalium-) Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO₃)_n und Orthophosphorsäure H₃PO₄ neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.

[0118] Geeignete Phosphate sind beispielsweise das Natriumdihydrogenphosphat, NaH_2PO_4 , in Form des Dihydrats (Dichte 1,91 gcm⁻³, Schmelzpunkt 60°) oder in Form des Monohydrats (Dichte 2,04 gcm⁻³), das Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na_2HPO_4 , welches wasserfrei oder mit 2 Mol (Dichte 2,066 gcm⁻³, Wasserverlust bei 95°), 7 Mol (Dichte 1,68 gcm⁻³, Schmelzpunkt 48° unter Verlust von 5 H_2O) und 12 Mol Wasser (Dichte 1,52 gcm⁻³, Schmelzpunkt 35° unter Verlust von 5 H_2O) eingesetzt werden kann, insbesondere jedoch das Trinatriumphosphat (tertiäres Natriumphosphat) Na_3PO_4 , welches als Dodecahydrat, als Decahydrat (entsprechend 19-20% P_2O_5) und in wasserfreier Form (entsprechend 39-40% P_2O_5) eingesetzt werden kann.

[0119] Ein weiteres bevorzugtes Phosphat ist das Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K_3PO_4 . Weiterhin bevorzugt werden das Tetranatriumdiphosphat (Natriumpyrophosphat), $Na_4P_2O_7$, welches in wasserfreier Form (Dichte 2,534 gcm⁻³, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm⁻³, Schmelzpunkt 94° unter Wasserverlust) existiert, sowie das entsprechende Kaliumsalz Kaliumdiphosphat (Kaliumpyrophosphat), $K_4P_2O_7$.

[0120] Das technisch wichtige Pentanatriumtriphosphat, $Na_5P_3O_{10}$ (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H₂O kristallisierendes, nicht hygroskopisches, farbloses, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]_n-Na mit n=3. Das entsprechende Kaliumsalz Pentakaliumtriphos-phat, $K_5P_3O_{10}$ (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P₂O₅, 25% K₂O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:

$$(NaPO_3)_3 + 2 KOH \rightarrow Na_3K_2P_3O_{10} + H_2O$$

30

35

50

55

[0121] Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.

[0122] Werden im Rahmen der vorliegenden Anmeldung Phosphate als wasch- oder reinigungsaktive Substanzen in Wasch- oder Reinigungsmitteln eingesetzt, so enthalten bevorzugte Mittel diese(s) Phosphat(e), vorzugsweise Alkali-

metallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 15 bis 75 Gew.-% uns insbesondere von 20 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels.

[0123] Bevorzugt ist es insbesondere Kaliumtripolyphosphat und Natriumtripolyphosphat in einem Gewichtsverhältnis von mehr als 1:1, vorzugsweise mehr als 2:1, bevorzugt mehr als 5:1, besonders bevorzugt mehr als 10:1 und insbesondere mehr als 20:1 einzusetzen. Besonders bevorzugt ist es, ausschließlich Kaliumtripolyphosphat ohne Beimischungen anderer Phosphate einzusetzen.

[0124] Weitere Gerüststoffe sind die Alkaliträger. Als Alkaliträger gelten beispielsweise Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetallsesquicarbonate, die genannten Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat. Aufgrund ihrer im Vergleich mit anderen Buildersubstanzen geringen chemischen Kompatibilität mit den übrigen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, werden die Alkalimetallhydroxide bevorzugt nur in geringen Mengen, vorzugsweise in Mengen unterhalb 10 Gew.-%, bevorzugt unterhalb 6 Gew.-%, besonders bevorzugt unterhalb 4 Gew.-% und insbesondere unterhalb 2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels, eingesetzt. Besonders bevorzugt werden Mittel, welche bezogen auf ihr Gesamtgewicht weniger als 0,5 Gew.-% und insbesondere keine Alkalimetallhydroxide enthalten.

10

15

20

30

35

50

[0125] Besonders bevorzugt ist der Einsatz von Carbonat(en) und/oder Hydrogencarbonat(en), vorzugsweise Alkalicarbonat(en), besonders bevorzugt Natriumcarbonat, in Mengen von 2 bis 50 Gew.-%, vorzugsweise von 5 bis 40 Gew.-% und insbesondere von 7,5 bis 30 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels. Besonders bevorzugt werden Mittel, welche bezogen auf das Gewicht des Wasch- oder Reinigungsmittels weniger als 20 Gew.-%, vorzugsweise weniger als 17 Gew.-%, bevorzugt weniger als 13 Gew.-% und insbesondere weniger als 9 Gew.% Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonat(e), besonders bevorzugt Natriumcarbonat enthalten.

[0126] Als organische Cobuilder sind insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate zu nennen. Diese Stoffklassen werden nachfolgend beschrieben.

[0127] Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.

[0128] Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.

[0129] Als Gerüststoffe sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.

[0130] Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen M_w der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.

[0131] Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.

[0132] Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000

g/mol und insbesondere 30000 bis 40000 g/mol.

[0133] Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt von Wasch- oder Reinigungsmitteln an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.

[0134] Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.

[0135] Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkoholbzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.

[0136] Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.

[0137] Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze.

[0138] Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.

[0139] Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.

[0140] Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren.

[0141] Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.

[0142] Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.

[0143] Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Gerüststoffe eingesetzt werden.

Tenside

30

35

40

50

[0144] Zur Gruppe der Tenside werden die nichtionischen, die anionischen, die kationischen und die amphoteren Tenside gezählt.

[0145] Als nichtionische Tenside können alle dem Fachmann bekannten nichtionischen Tenside eingesetzt werden. Als bevorzugte Tenside werden schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten Wasch- oder Reinigungsmittel, insbesondere Reinigungsmittel für das maschinelle Geschirrspülen nichtionische Tenside, insbesondere nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafter-weise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 Mol EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C₁₂₋₁₄-Alkohole mit 3 EO oder 4 EO, C₉₋₁₁-Alkohol mit 7 EO, C₁₃₋₁₅-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C₁₂₋₁₈-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C₁₂₋₁₄-Alkohol mit 3 EO und C₁₂₋₁₈-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar,

die für ein spezielles Produkt einer ganzen oder einer gebrochenen Zahl entsprechen können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.

[0146] Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)_x eingesetzt werden, in der R einem primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen entspricht und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.

[0147] Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.

[0148] Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylamin-oxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.

[0149] Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel,

10

20

35

40

50

R-CO-N-[Z]

in der R für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R¹ für Wasserstoff, einen Alkyl- oder Hydrox-yalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.

[0150] Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel

in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R^1 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R^2 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C_{1-4} -Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.

[0151] [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryl-oxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.

[0152] Mit besonderem Vorzug werden weiterhin Tenside eingesetzt, welche ein oder mehrere Talgfettalkohole mit 20 bis 30 EO in Kombination mit einem Silikonentschäumer enthalten.

[0153] Niotenside aus der Gruppe der alkoxylierten Alkohole, besonders bevorzugt aus der Gruppe der gemischt alkoxylierten Alkohole und insbesondere aus der Gruppe der EO-AO-EO-Niotenside, werden ebenfalls mit besonderem Vorzug eingesetzt.

[0154] Insbesondere bevorzugt sind nichtionische Tenside, die einen Schmelzpunkt oberhalb Raumtemperatur aufweisen. Nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, ist/sind besonders bevorzugt. [0155] Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden Niotenside eingesetzt, die bei Raumtemperatur hochviskos sind, so ist bevorzugt, daß

diese eine Viskosität oberhalb von 20 Pa·s, vorzugsweise ober-halb von 35 Pa·s und insbesondere oberhalb 40 Pa·s aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.

[0156] Bevorzugt einzusetzende Tenside, die bei Raumtemperatur fest sind, stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen ((PO/EO/PO)-Tenside). Solche (PO/EO/PO)-Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.

[0157] In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.

[0158] Ein besonders bevorzugtes, bei Raumtemperatur festes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C_{16-20} -Alkohol), vorzugsweise einem C_{18} -Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten "narrow range ethoxylates" (siehe oben) besonders bevorzugt.

[0159] Mit besonderem Vorzug werden daher ethoxylierte Niotenside, die aus C_{6-20} -Monohydroxyalkanolen oder C_{6-20} -Alkylphenolen oder C_{16-20} -Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurden, eingesetzt.

[0160] Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkyl-phenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte Mittel sind dadurch gekennzeichnet, daß sie ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen.

[0161] Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen-Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan, enthält.

[0162] Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent[®] SLF-18 von der Firma Olin Chemicals erhältlich.

[0163] Tenside der Formel

10

30

35

40

45

50

$R^{1}O[CH_{2}CH(CH_{3})O]_{x}[CH_{2}CH_{2}O]_{y}CH_{2}CH(OH)R^{2}$,

in der R¹ für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R² einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 sowie y für einen Wert von mindestens 15 steht, sind weitere besonders bevorzugte Niotenside.

[0164] Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel

$R^{1}O[CH_{2}CH(R^{3})O]_{x}[CH_{2}]_{k}CH(OH)[CH_{2}]_{i}OR^{2},$

in der R^1 und R^2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R^3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert $x \ge 2$ ist, kann jedes R^3 in der obenstehenden Formel $R^1O[CH_2CH(R^3)O]_x[CH_2]_kCH(OH)[CH_2]_jOR^2$ unterschiedlich sein. R^1 und R^2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R^3 sind H, CH_3 oder CH_2CH_3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.

[0165] Wie vorstehend beschrieben, kann jedes R^3 in der obenstehenden Formel unterschiedlich sein, falls $x \ge 2$ ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für x, kann der Rest x0 ausgewählt werden, um Ethylenoxid- (x0 = H) oder Propylenoxid- (x0 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO),

(PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.

[0166] Besonders bevorzugte endgruppenverschlossene poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu

$$\mathsf{R}^1\mathsf{O}[\mathsf{CH}_2\mathsf{CH}(\mathsf{R}^3)\mathsf{O}]_{\mathsf{x}}\mathsf{CH}_2\mathsf{CH}(\mathsf{OH})\mathsf{CH}_2\mathsf{OR}^2$$

5

10

15

20

25

30

35

40

50

55

vereinfacht. In der letztgenannten Formel sind R¹, R² und R³ wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R¹ und R² 9 bis 14 C-Atome aufweisen, R³ für H steht und x Werte von 6 bis 15 annimmt.

[0167] Fasst man die letztgenannten Aussagen zusammen, sind endgruppenverschlossene poly(oxyalky-lierten) Niotenside der Formel

$$\mathsf{R}^1\mathsf{O}[\mathsf{CH}_2\mathsf{CH}(\mathsf{R}^3)\mathsf{O}]_{\mathsf{X}}[\mathsf{CH}_2]_{\mathsf{k}}\mathsf{CH}(\mathsf{OH})[\mathsf{CH}_2]_{\mathsf{j}}\mathsf{OR}^2,$$

in der R¹ und R² für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R³ für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, bevorzugt, wobei Tenside des Typs

$$R^{1}O[CH_{2}CH(R^{3})O]_{x}CH_{2}CH(OH)CH_{2}OR^{2},$$

in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18 steht, besonders bevorzugt sind

[0168] Als besonders bevorzugte Niotenside haben sich im Rahmen der vorliegenden Erfindung schwachschäumende Niotenside erwiesen, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier sind nichionisches Tenside der allgemeinen Formel

bevorzugt, in der R^1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C_{6-24} -Al-kyl- oder -Alkenylrest steht; jede Gruppe R^2 bzw. R^3 unabhängig voneinander ausgewählt ist aus -CH $_3$, -CH $_2$ CH $_3$, -CH $_2$ CH $_3$, CH(CH $_3$) $_2$ und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.

[0169] Die bevorzugten Niotenside der vorstehenden Formel lassen sich durch bekannte Methoden aus den entsprechenden Alkoholen R¹-OH und Ethylen- bzw. Alkylenoxid herstellen. Der Rest R¹ in der vorstehenden Formel kann je nach Herkunft des Alkohols variieren. Werden native Quellen genutzt, weist der Rest R¹ eine gerade Anzahl von Kohlenstoffatomen auf und ist in der Regel unverzweigt, wobei die linearen Reste aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, bevorzugt sind. Aus synthetischen Quellen zugängliche Alkohole sind beispielsweise die Guerbetalkohole oder in 2-Stellung methylverzweigte bzw. lineare und methylver-zweigte Reste im Gemisch, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Unabhängig von der Art des zur Herstellung der in den Mitteln enthaltenen Niotenside eingesetzten Alkohols sind Niotenside bevorzugt, bei denen R¹ in der vorstehenden Formel für einen Alkylrest mit 6 bis 24, vorzugsweise 8 bis 20, besonders bevorzugt 9 bis 15 und insbesondere 9 bis 11 Kohlenstoffatomen steht.

[0170] Als Alkylenoxideinheit, die alternierend zur Ethylenoxideinheit in den bevorzugten Niotensiden enthalten ist, kommt neben Propylenoxid insbesondere Butylenoxid in Betracht. Aber auch weitere Alkylenoxide, bei denen R^2 bzw. R^3 unabhängig voneinander ausgewählt sind aus $-CH_2CH_2-CH_3$ bzw. $CH(CH_3)_2$ sind geeignet. Bevorzugt werden Niotenside der vorstehenden Formel eingesetzt, bei denen R^2 bzw. R^3 für einen Rest $-CH_3$, w und x unabhängig voneinander für Werte von 3 oder 4 und y und z unabhängig voneinander für Werte von 1 oder 2 stehen.

[0171] Zusammenfassend sind insbesondere nichtionische Tenside bevorzugt, die einen C₉₋₁₅-Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt von 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten aufweisen. Diese Tenside weisen in wässriger Lösung die erforderliche niedrige Viskosität auf und sind erfindungsgemäß mit besonderem Vorzug einsetzbar.

[0172] Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel

R10[CH2CH(R3)0]xR2,

5

10

15

20

25

30

35

in der R¹ für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, R² für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, welche vorzugsweise zwischen 1 und 5 Hydroxygruppen aufweisen und vorzugsweise weiterhin mit einer Ethergruppe funktionalisiert sind, R³ für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest und x für Werte zwischen 1 und 40 steht. [0173] In einer besonders bevorzugten Ausführungsform der vorliegenden Anmeldung steht R³ in der vorgenannten allgemeinen Formel für H. Aus der Gruppe der resultierenden endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel

$R^1O[CH_2CH_2O]_xR^2$

sind insbesondere solche Niotenside bevorzugt, bei denen R^1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 20 Kohlenstoffatomen steht, R^2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, welche vorzugsweise zwischen 1 und 5 Hydroxygruppen aufweisen und x für Werte zwischen 1 und 40 steht.

[0174] Insbesondere werden solche endgruppenverschlossene poly(oxyalkylierten) Niotenside bevorzugt, die gemäß der Formel

R¹O[CH₂CH₂O]_xCH₂CH(OH)R²

neben einem Rest R¹, welcher für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 20 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest R² mit 1 bis 30 Kohlenstoffatomen aufweisen, welcher einer monohydroxylierten Zwischengruppe -CH₂CH(OH)- benachbart ist. x steht in dieser Formel für Werte zwischen 1 und 90.

[0175] Besonders bevorzugt sind nichtionische Tenside der allgemeinen Formel

$$R^{1}O[CH_{2}CH_{2}O]_{x}CH_{2}CH(OH)R^{2}$$
,

welche neben einem Rest R^1 , der für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest R^2 mit 1 bis 30 Kohlenstoffatomen, vorzugsweise 2 bis 22 Kohlenstoffamtomen, aufweisen, welcher einer monohydroxylierten Zwischengruppe -CH $_2$ CH(OH)- benachbart ist und bei denen x für Werte zwischen 40 und 80, vorzugsweise für Werte zwischen 40 und 60 steht.

[0176] Die entsprechenden endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der vorstehenden Formel lassen sich beispielsweise durch Umsetzung eines endständigen Epoxids der Formel $R^2CH(O)CH_2$ mit einem ethoxylierten Alkohol der Formel $R^1O[CH_2CH_2O]_{x-1}CH_2CH_2OH$ erhalten.

[0177] Besonders bevorzugt werden weiterhin solche endgruppenverschlossene poly(oxyalkylierten) Niotenside der Formel

R¹O[CH₂CH₂O]_x[CH₂CH(CH₃)O]_vCH₂CH(OH)R²,

- in der R¹ und R² unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht, R³ unabhängig voneinander ausgewählt ist aus -CH₃ -CH₂CH₃, -CH₂CH₂-CH₃, CH(CH₃)₂, vorzugsweise jedoch für -CH₃ steht, und x und y unabhängig voneinander für Werte zwischen 1 und 32 stehen, wobei Niotenside mit Werten für x von 15 bis 32 und y von 0,5 und 1,5 ganz besonders bevorzugt sind.
- 55 **[0178]** Tenside der allgemeinen Formel

5

10

15

20

30

35

50

in der R^1 und R^2 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht, R^3 unabhängig voneinander ausgewählt ist aus - CH_3 - CH_2CH_3 , - CH_2CH_2 - CH_3 , $CH(CH_3)_2$, vorzugsweise jedoch für - CH_3 steht, und x und y unabhängig voneinander für Werte zwischen 1 und 32 stehen, sind erfindungsgemäß bevorzugt, wobei Niotenside mit Werten für x von 15 bis 32 und y von 0,5 und 1,5 ganz besonders bevorzugt sind.

[0179] Die angegebenen C-Kettenlängen sowie Ethoxylierungsgrade bzw. Alkoxylierungsgrade der vorgenannt-en Niotenside stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine ge-brochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus Gemischen, wodurch sich sowohl für die C-Kettenlängen als auch für die Ethoxylierungsgrade bzw. Alkoxylierungsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können.

[0180] Selbstverständlich können die vorgenannten nichtionischen Tenside nicht nur als Einzelsubstanzen, sondern auch als Tensidgemische aus zwei, drei, vier oder mehr Tensiden eingesetzt werden. Als Tensidgemische werden dabei nicht Mischungen nichtionischer Tenside bezeichnet, die in ihrer Gesamtheit unter eine der oben genannten allgemeinen Formeln fallen, sondern vielmehr solche Mischungen, die zwei, drei, vier oder mehr nichtionische Tenside enthalten, die durch unterschiedliche der vorgenannten allgemeinen Formeln beschrieben werden können.

[0181] Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C_{9-13} -Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C_{12-18} -Monoolefinen mit endoder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C_{12-18} -Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α -Sulfofettsäuren (Estersulfonate), z.B. die α -sulfo-nierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.

[0182] Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.

[0183] Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C_{12} - C_{18} -Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C_{10} - C_{20} -Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C_{12} - C_{16} -Alkylsulfate und C_{12} - C_{15} -Alkylsulfate sowie C_{14} - C_{15} -Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.

[0184] Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C_{7-21} -Alkohole, wie 2-Methyl-verzweigte C_{9-11} -Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C_{12-18} -Fett-alkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.

[0185] Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobemsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen, darstellen. Bevorzugte Sulfosuccinate enthalten C₈₋₁₈-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)yl-bernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.

[0186] Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.

[0187] Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.

[0188] Sind die Aniontenside Bestandteil maschineller Geschirrspülmittel, so beträgt ihr Gehalt, bezogen auf das Gesamtgewicht der Mittel vorzugsweise weniger als 4 Gew.-%, bevorzugt weniger als 2 Gew.-% und ganz besonders bevorzugt weniger als 1 Gew.-%. Maschinelle Geschirrspülmittel, welche keine Aniontenside enthalten, werden insbesondere bevorzugt.

[0189] An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside eingesetzt werden.

[0190] Als kationische Aktivsubstanzen können beispielsweise kationische Verbindungen der nachfolgenden Formeln eingesetzt werden:

$$R_1$$

 $+$
 $R_1-N-(CH_2)_n-T-R_2$
 $+$
 $(CH_2)_n-T-R_2$

worin jede Gruppe R^1 unabhängig voneinander ausgewählt ist aus C_{1-6} -Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R^2 unabhängig voneinander ausgewählt ist aus C_{8-28} -Alkyl-oder -Alkenylgruppen; $R^3 = R^1$ oder $(CH_2)_n$ -T- R^2 ; $R^4 = R^1$ oder R^2 oder R^2 oder R^3 oder

[0191] In maschinellen Geschirrspülmitteln, beträgt der Gehalt an kationischen und/oder amphoteren Tensiden vorzugsweise weniger als 6 Gew.-%, bevorzugt weniger als 4 Gew.-%, ganz besonders bevorzugt weniger als 2 Gew.-% und insbesondere weniger als 1 Gew.-%. Maschinelle Geschirrspülmittel, welche keine kationischen oder amphoteren Tenside enthalten, werden besonders bevorzugt.

40 Polymere

15

20

25

30

35

50

55

[0192] Zur Gruppe der Polymere zählen insbesondere die wasch- oder reinigungsaktiven Poylmere, beispielsweise die Klarspülpolymere und/oder als Enthärter wirksame Polymere. Generell sind in Wasch- oder Reinigungsmitteln neben nichtionischen Polymeren auch kationische, anionische und amphotere Polymere einsetzbar.

[0193] "Kationische Polymere" im Sinne der vorliegenden Erfindung sind Polymere, welche eine positive Ladung im Polymermolekül tragen. Diese kann beispielsweise durch in der Polymerkette vorliegende (Alkyl-)Ammoniumgruppierungen oder andere positiv geladene Gruppen realisiert werden. Besonders bevorzugte kationische Polymere stammen aus den Gruppen der quaternierten Cellulose-Derivate, der Polysiloxane mit quaternären Gruppen, der kationischen Guar-Derivate, der polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure, der Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats, der Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere, der quaternierter Polyvinylalkohole oder der unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere.

[0194] "Amphorere Poylmere" im Sinne der vorliegenden Erfindung weisen neben einer positiv geladenen Gruppe in der Polymerkette weiterhin auch negativ geladenen Gruppen bzw. Monomereinheiten auf. Bei diesen Gruppen kann es sich beispielsweise um Carbonsäuren, Sulfonsäuren oder Phosphonsäuren handeln.

[0195] Bevorzugte Wasch- oder Reinigungsmittel, insbesondere bevorzugte maschinelle Geschirrspülmittel, sind dadurch gekennzeichnet, daß sie ein Polymer a) enthalten, welches Monomereinheiten der Formel R¹R²C=CR³R⁴ aufweist,

in der jeder Rest R^1 , R^2 , R^3 , R^4 unabhängig voneinander ausgewählt ist aus Wasserstoff, derivatisierter Hydroxygruppe, C_{1-30} linearen oder verzweigten Alkylgruppen, Aryl, Aryl substitutierten C_{1-30} linearen oder verzweigten Alkylgruppen, polyalkoyxylierte Alkylgruppen, heteroatomaren organischen Gruppen mit mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N-Atom oder mindestens eine Aminogruppe mit einer positiven Ladung im Teilbereich des pH-Bereichs von 2 bis 11, oder Salze hiervon, mit der Maßgabe, daß mindestens ein Rest R^1 , R^2 , R^3 , R^4 eine heteroatomare organische Gruppe mit mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N-Atom oder mindestens eine Aminogruppe mit einer positiven Ladung ist. Im Rahmen der vorliegenden Anmeldung besonders bevorzugte kationische oder amphotere Polymere enthalten als Monomereinheit eine Verbindung der allgemeinen Formel

$$R_1$$
 R_2 R_4
 $H_2C = C - (CH_2)_x - N_+^+ (CH_2)_y - C = CH_2$ X

bei der R¹ und R⁴ unabhängig voneinander für H oder einen linearen oder verzweigten Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen steht; R² und R³ unabhängig voneinander für eine Alkyl-, Hy-droxyalkyl-, oder Aminoalkylgruppe stehen, in denen der Alkylrest linear oder verzweigt ist und zwischen 1 und 6 Kohlenstoffatomen aufweist, wobei es sich vorzugsweise um eine Methylgruppe handelt; x und y unabhängig voneinander für ganze Zahlen zwischen 1 und 3 stehen. X- repräsentiert ein Gegenion, vorzugsweise ein Gegenion aus der Gruppe Chlorid, Bromid, lodid, Sulfat, Hydrogensulfat, Methosulfat, Laurylsulfat, Dodecylbenzolsulfonat, p-Toluolsulfonat (Tosylat), Cumolsulfonat, Xylolsulfonat, Phosphat, Citrat, Formiat, Acetat oder deren Mischungen.

[0196] Bevorzugte Reste R¹ und R⁴ in der vorstehenden Formel sind ausgewählt aus -CH₃, -CH₂-CH₃, -CH₂-CH₃, -CH(CH₃)-CH₃, -CH₂-OH, -CH₂-CH₂-OH, -CH₂-CH₂-OH, -CH₂-CH₂-OH, -CH₂-CH₃, -CH(OH)-CH₃, -CH(OH)-CH₃, und -(CH₂-CH₂-O)_nH.

[0197] Ganz besonders bevorzugt werden Polymere, welche eine kationische Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R¹ und R⁴ für H stehen, R² und R³ für Methyl stehen und x und y jeweils 1 sind. Die entsprechenden Monomereinheit der Formel

$$H_2C=CH-(CH_2)-N^+(CH_3)_2-(CH_2)-CH=CH_2$$
 X

10

15

20

25

30

35

40

55

werden im Falle von X⁻ = Chlorid auch als DADMAC (Diallyldimethylammonium-Chlorid) bezeichnet.

[0198] Weitere besonders bevorzugte kationische oder amphotere Polymere enthalten eine Monomereinheit der allgemeinen Formel

$$R^{1}HC=CR^{2}-C(O)-NH-(CH_{2})_{x}-N^{+}NR^{3}R^{4}R^{5}$$
 X-

in der R¹, R², R³, R⁴ und R⁵ unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ungesättigen Alkyl-, oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen, vorzugsweise für einen linearen oder verzweigten Alkylrest ausgewählt aus -CH₃, -CH₂-CH₃, -CH₂-CH₃, -CH₂-CH₃, -CH₂-CH₃, -CH₂-CH₃, -CH₂-CH₃, -CH₂-CH₃, -CH₂-CH₂-OH, -CH₂-CH₂-OH, -CH₂-CH₂-OH, -CH₂-CH₃, and -(CH₂-CH₂-O)_nH steht und x für eine ganze Zahl zwischen 1 und 6 steht.

[0199] Ganz besonders bevorzugt werden im Rahmen der vorliegenden Anmeldung Polymere, welche eine kationsche Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R¹ für H und R², R³, R⁴ und R⁵ für Methyl stehen und x für 3 steht. Die entsprechenden Monomereinheiten der Formel

$$H_2C=C(CH_3)-C(O)-NH-(CH_2)_x-N^+(CH_3)_3$$

werden im Falle von X⁻ = Chlorid auch als MAPTAC (Methyacrylamidopropyltrimethylammonium-Chlorid) bezeichnet. **[0200]** Erfindungsgemäß bevorzugt werden Polymere eingesetzt, die als Monomereinheiten Diallyldimethylammoniumsalze und/oder Acrylamidopropyltrimethylammoniumsalze enthalten.

[0201] Die zuvor erwähnten amphoteren Polymere weisen nicht nur kationische Gruppen, sondern auch anionische Gruppen bzw. Monomereinheiten auf. Derartige anionischen Monomereinheiten stammen beispielsweise aus der Gruppe der linearen oder verzweigten, gesättigten Oder ungesättigten Carboxylate, der linearen oder verzweigten, gesättigten oder ungesättigten Sulfate oder der linearen oder verzweigten, gesättigten Oder ungesättigten Sulfate oder der linearen oder verzweigten, gesättigten Sulfate oder der linearen oder verzweigten, gesättigten Oder ungesättigten Sulfonate. Bevorzugte Monomereinheiten sind die Acrylsäure, die (Meth)acryl-säure, die (Dimethyl)acrylsäure, die (Ethyl)acrylsäure, die Cyanoacrylsäure, die Vinylessingsäure, die Ally-

lessigsäure, die Crotonsäure, die Maleinsäure, die Fumarsäure, die Zimtsäure und ihre Derivate, die Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure oder die Allylphosphonsäuren.

[0202] Bevorzugte einsetzbare amphotere Polymere stammen aus der Gruppe der Alkylacrylamid/Acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)-acrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure-Alkylaminoalkyl(meth)acrylsäure-Copolymere, der Alkylacrylamid/Alkylaminoethylmethacrylat/Alkylaminoalkyl(meth)acrylsäure-Copolymere aus ungesättigten Carbonsäuren, kationisch derivatisierten ungesättigten Carbonsäuren und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.

[0203] Bevorzugt einsetzbare zwitterionische Polymere stammen aus der Gruppe der Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze, der Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze und der Methacroylethylbetain/Methacrylat-Copolymere.

[0204] Bevorzugt werden weiterhin amphotere Polymere, welche neben einem oder mehreren anionischen Monomeren als kationische Monomere Methacrylamidoalkyl-trialkylammoniumchlorid und Dimethyl(di-allyl)ammoniumchlorid umfassen.

[0205] Besonders bevorzugte amphotere Polymere stammen aus der Gruppe der Methacrylamidoalkyltrialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Acrylsäure-Copolymere, der Methacryl-amidoalkyltrialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Methacrylsäure-Copolymere und der Methacrylamidoalkyltrialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Alkyl-(meth)acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze.

[0206] Insbesondere bevorzugt werden amphotere Polymere aus der Gruppe der Methacrylamidopropyltrimethylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Acrylsäure-Copolymere, der Methacrylamidopropyltrimethylammoniumchlorid/Dimethyl(diallyl)ammonium-chlorid/Acrylsäure-Copolymere und der Methacrylamidopropyltrimethylammonium-chlorid/Dimethyl(diallyl)ammoniumchlorid/Alkyl(meth)-acrylsäure-Copolymere sowie deren Alkali-und Ammoniumsalze.

[0207] In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung liegen die Polymere in vorkonfektionierter Form vor. Zur Konfektionierung der Polymere eignet sich dabei u.a.

- die Verkapselung der Polymere mittels wasserlöslicher oder wasserdispergierbarer Beschichtungsmittel, vorzugsweise mittels wasserlöslicher oder wasserdispergierbarer natürlicher oder synthetischer Polymere;
- die Verkapselung der Polymere mittels wasserunlöslicher, schmelzbarer Beschichtungsmittel, vorzugsweise mittels wasserunlöslicher Beschichtungsmittel aus der Gruppe der Wachse oder Paraffine mit einem Schmelzpunkt oberhalb 30°C;
- die Cogranulation der Polymere mit inerten Trägermaterialien, vorzugsweise mit Trägermaterialien aus der Gruppe der wasch- oder reinigungsaktiven Substanzen, besonders bevorzugt aus der Gruppe der Builder (Gerüststoffe) oder Cobuilder.

[0208] Wasch- oder Reinigungsmittel enthalten die vorgenannten kationischen und/oder amphoteren Polymere vorzugsweise in Mengen zwischen 0,01 und 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels. Bevorzugt werden im Rahmen der vorliegenden Anmeldung jedoch solche Wasch- oder Reinigungsmittel, bei denen der Gewichtsanteil der kationischen und/oder amphoteren Polymere zwischen 0,01 und 8 Gew.-%, vorzugsweise zwischen 0,01 und 6 Gew.-%, bevorzugt zwischen 0,01 und 4 Gew.-%, besonders bevorzugt zwischen 0,01 und 2 Gew.-% und insbesondere zwischen 0,01 und 1 Gew.-%, jeweils bezogen auf das Gesamtgewicht des maschinellen Geschirrspülmittels, beträgt.

[0209] Als Enthärter wirksame Polymere sind beispielsweise die Sulfonsäuregruppen-haltigen Polymere, welche mit besonderem Vorzug eingesetzt werden.

[0210] Besonders bevorzugt als Sulfonsäuregruppen-haltige Polymere einsetzbar sind Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren und gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.

50 [0211] Im Rahmen der vorliegenden Erfindung sind als Monomer ungesättigte Carbonsäuren der Formel

R1(R2)C=C(R3)COOH

10

15

20

25

30

35

40

55

bevorzugt, in der R¹ bis R³ unabhängig voneinander für -H, -CH₃, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH₂, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR⁴ steht, wobei R⁴ ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.

[0212] Unter den ungesättigten Carbonsäuren, die sich durch die vorstehende Formel beschreiben lassen, sind insbesondere Acrylsäure (R' $R^2 = R^3 = H$), Methacrylsäure (R' $R^2 = R^3 = H$) und/oder Maleinsäure (R' $R^2 = R^3 = H$) bevorzugt.

[0213] Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel

 $R^{5}(R^{6})C=C(R^{7})-X-SO_{3}H$

5

15

20

30

35

40

45

50

55

bevorzugt, in der R^5 bis R^7 unabhängig voneinander für -H, -CH₃, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH₂, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR⁴ steht, wobei R^4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)_n- mit n = 0 bis 4, -COO-(CH₂)_k- mit k = 1 bis 6, -C(O)-NH-C(CH₃)₂- und -C(O)-NH-CH(CH₂CH₃)-.

[0214] Unter diesen Monomeren bevorzugt sind solche der Formeln

H₂C=CH-X-SO₃H

H₂C=C(CH₃)-X-SO₃H

 $HO_3S-X-(R^6)C=C(R^7)-X-SO_3H$,

in denen R^6 und R^7 unabhängig voneinander ausgewählt sind aus -H, -CH₃, -CH₂CH₃, -CH₂CH₃, -CH(CH₃)₂ und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH₂)_n- mit n = 0 bis 4, -COO-(CH₂)_k- mit k = 1 bis 6, -C(O)-NH-C(CH₃)₂- und -C(O)-NH-CH(CH₂CH₃)-.

[0215] Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1-propansul-fonsäure, 2-Acrylamido-2-propansulfonsäure, 2-Meth-acrylamido-2-methyl-1-propansulfonsäure, 2-Meth-acrylamido-2-methyl-1-propansulfonsäure, 3-Methacrylamido-2-hydroxy-propansulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Allyloxybenzolsulfonsäure, 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2-propen1-sulfonsäure, Styrolsulfonsäure, Vinylsulfonsäure, 3-Sulfopropylacrylat, 3-Sulfopropylmethacrylat, Sulfomethacrylamid, Sulfomethylmethacrylamid sowie wasserlösliche Salze der genannten Säuren.

[0216] Als weitere ionogene oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der eingesetzten Polymere an diesen weiteren ionogene oder nichtionogenen Monomeren weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Formel $R^{1}(R^{2})C=C(R^{3})COOH$ und Monomeren der Formel $R^{5}(R^{6})C=C(R^{7})$ -X-SO $_{3}$ H.

[0217] Zusammenfassend sind Copolymere aus

i) ungesättigten Carbonsäuren der Formel

 $R^{1}(R^{2})C=C(R^{3})COOH$

in der R^1 bis R^3 unabhängig voneinander für -H, -CH $_3$, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH $_2$, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR 4 steht, wobei R^4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist,

ii) Sulfonsäuregruppen-haltigen Monomeren der Formel

 $R^{5}(R^{6})C=C(R^{7})-X-SO_{3}H$

in der R^5 bis R^7 unabhängig voneinander für -H, -CH₃, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH₂, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR⁴ steht, wobei R^4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH₂)_n- mit n = 0 bis 4, -COO-(CH₂)_k- mit k = 1 bis 6, -C(O)-NH-C(CH₃)₂- und -C(O)-NH-C(CH₂)₁- mit n = 0 bis 4, -COO-(CH₂)₁- mit k = 1 bis 6, -C(O)-NH-C(CH₃)₂- und -C(O)-NH-C(CH₃)₂- und -C(O)-NH-C(CH₃)₃- und -C(O)-NH-C(CH₃)₄- mit k = 1 bis 6, -C(O)-NH-C(CH₃)₄- und -C(O)-NH-C(CH₃- und

iii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren

besonders bevorzugt.

5

10

15

25

30

35

40

45

50

55

[0218] Weitere besonders bevorzugte Copolymere bestehen aus

- i) einer oder mehreren ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure
- ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln:

$$HO_3S-X-(R^6)C=C(R^7)X-SO_3H$$
,

in der R^3 und R^7 unabhängig voneinander ausgewählt sind aus -H, -CH₃, -CH₂CH₃, -CH₂CH₃, -CH(CH₃)₂ und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH₂)_n- mit n = 0 bis 4, -COO-(CH₂)_k- mit k = 1 bis 6, -C(O)-NH-C(CH₃)₂- und -C(O)-NH-CH(CH₂CH₃)-

iii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.

[0219] Die Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.

[0220] So sind beispielsweise Copolymere bevorzugt, die Struktureinheiten der Formel

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH_2)_n-mit n = 0 bis 4, für -O-(C_6H_4)-, für -NH-C(CH_3)₂- oder -NH-CH(CH_2CH_3)- steht, bevorzugt sind.

[0221] Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppenhaltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz ebenfalls bevorzugt ist. Die entsprechenden Copolymere enthalten die Struktureinheiten der Formel

$$-[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]0-,$$

in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacer-gruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH_2)_n- mit n = 0 bis 4, für -O-(CH_2)_n- nut n = 0 bis 4, für -O-(CH_2)_n- oder -NH-CH(CH_2)_n- steht, bevorzugt sind.

[0222] Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppenhaltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind Copolymere, welche Struktureinheiten der Formel

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für-O-(CH_2)_n-mit n = 0 bis 4, für -O-(C_6H_4)-, für -NH-C(CH_3)₂- oder -NH-CH(CH_2CH_3)- steht, ebenso bevorzugt wie Copolymere, die Struktureinheiten der Formel

$$-[\mathsf{CH}_2\text{-}\mathsf{C}(\mathsf{CH}_3)\mathsf{COOH}]_\mathsf{m}-[\mathsf{CH}_2\text{-}\mathsf{C}(\mathsf{CH}_3)\mathsf{C}(\mathsf{O})\text{-}\mathsf{Y}\text{-}\mathsf{SO}_3\mathsf{H}]_\mathsf{p}\text{-}$$

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH₂)_n-

mit n = 0 bis 4, für -O- (C_6H_4) -, für -NH-C(CH_3)₂- oder -NH-CH(CH_2CH_3)- steht, bevorzugt sind.

[0223] Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Copolymeren, die Struktureinheiten der Formel

- $[HOOCCH-CHCOOH]_m$ - $[CH_2-CHC(O)-Y-SO_3H]_p$ -

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacer-gruppen, in denen Y für -O- $(CH_2)_n$ - mit n = 0 bis 4, für -O- (C_6H_4) -, für -NH- $(CH_3)_2$ - oder -NH- (CH_2CH_3) - steht, bevorzugt sind. Erfindungsgemäß bevorzugt sind weiterhin Copolymere, die Struktureinheiten der Formel

- $[HOOCCH-CHCOOH]_m$ - $[CH_2-C(CH_3)C(O)O-Y-SO_3H]_p$ -

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH₂)_n-mit n = 0 bis 4, für -O-(C₆H₄)-, für -NH-C(CH₃)₂- oder -NH-CH(CH₂CH₃)- steht.

[0224] Zusammenfassend sind erfindungsgemäß solche Copolymere bevorzugt, die Struktureinheiten der Formeln

 $-[CH_{2}\text{-}CHCOOH]_{m}-[CH_{2}\text{-}CHC(O)\text{-}Y\text{-}SO_{3}H]_{p}-\\ -[CH_{2}\text{-}C(CH_{3})COOH]_{m}-[CH_{2}\text{-}CHC(O)\text{-}Y\text{-}SO_{3}H]_{p}-\\ -[CH_{2}\text{-}CHCOOH]_{m}-[CH_{2}\text{-}C(CH_{3})C(O)\text{-}Y\text{-}SO_{3}H]_{p}-\\ -[CH_{2}\text{-}C(CH_{3})COOH]_{m}-[CH_{2}\text{-}C(CH_{3})C(O)\text{-}Y\text{-}SO_{3}H]_{p}-\\ -[HOOCCH\text{-}CHCOOH]_{m}-[CH_{2}\text{-}CHC(O)\text{-}Y\text{-}SO_{3}H]_{p}-\\ -[HOOCCH\text{-}CHCOOH]_{m}-[CH_{2}\text{-}C(CH_{3})C(O)O\text{-}Y\text{-}SO_{3}H]_{p}-\\ -[HOOCCH\text{-}$

enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH_2)_n-mit n = 0 bis 4, für -O-(C_6H_4)-, für -NH-C(CH_3)₂- oder -NH-CH(CH_2CH_3)- steht, bevorzugt sind.

[0225] In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. daß das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäure-gruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Der Einsatz von teiloder vollneutralisierten sulfonsäuregruppenhaltigen Copolymeren ist erfindungsgemäß bevorzugt.

[0226] Die Monomerenverteilung der erfindungsgemäß bevorzugt eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe ii) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.

[0227] Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.

[0228] Die Molmasse der erfindungsgemäß bevorzugt eingesetzten Sulfo-Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Wasch- oder Reinigungsmittel sind dadurch gekennzeichnet, daß die Copolymere Molmassen von 2000 bis 200.000 gmol⁻¹, vorzugsweise von 4000 bis 25.000 gmol⁻¹ und insbesondere von 5000 bis 15.000 gmol⁻¹ aufweisen.

Bleichmittel

5

10

15

20

25

30

35

40

50

[0229] Die Bleichmittel sind eine mit besonderem Vorzug eingesetzte wasch- oder reinigungsaktive Substanz. Unter den als Bleichmittel dienenden, in Wasser H₂O₂ liefernden Verbindungen haben das Natriumpercarbonat, das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H₂O₂ liefernde persaure Salze oder Persäuren, wie Per-

benzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure.

[0230] Weiterhin können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy- α -Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ϵ -Phthalimidoperoxycapronsäure [Phthaliminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-Nonenylamidoperadipinsäure und N-Nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Di-peroxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.

[0231] Als Bleichmittel können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterozyklische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanur-säure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.

[0232] Erfindungsgemäß werden Wasch- oder Reinigungsmittel, insbesondere maschinelle Geschirrspülmittel, bevorzugt, die 1 bis 35 Gew.-%, vorzugsweise 2,5 bis 30 Gew.-%, besonders bevorzugt 3,5 bis 20 Gew.-% und insbesondere 5 bis 15 Gew.-% Bleichmittel, vorzugsweise Natriumpercarbonat, enthalten.

[0233] Der Aktivsauerstoffgehalt der Wasch- oder Reinigungsmittel, insbesondere der maschinellen Geschirrspülmittel, beträgt, jeweils bezogen auf das Gesamtgewicht des Mittels, vorzugsweise zwischen 0,4 und 10 Gew.-%, besonders bevorzugt zwischen 0,5 und 8 Gew.-% und insbesondere zwischen 0,6 und 5 Gew.-%. Besonders bevorzugte Mittel weisen einen Aktivsauerstoffgehalt oberhalb 0,3 Gew.-%, bevorzugt oberhalb 0,7 Gew.-%, besonders bevorzugt oberhalb 0,8 Gew.-% und insbesondere oberhalb 1,0 Gew.-% auf.

Bleichaktivatoren

10

25

30

35

40

45

50

[0234] Bleichaktivatoren werden in Wasch- oder Reinigungsmitteln beispielsweise eingesetzt, um beim Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.

[0235] Weitere im Rahmen der vorliegenden Anmeldung bevorzugt eingesetzte Bleichaktivatoren sind Verbindungen aus der Gruppe der kationischen Nitrile, insbesondere kationische Nitrile der Formel

in der R¹ für -H, -CH $_3$, einen C $_{2-24}$ -Alkyl- oder -Alkenylrest, einen substituierten C $_{2-24}$ -Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH $_2$, -CN, einen Alkyl- oder Alkenylarylrest mit einer C $_{1-24}$ -Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C $_{1-24}$ -Alkylgruppe und mindestens einem weiteren Substituenten am a-romatischen Ring steht, R² und R³ unabhängig voneinander ausgewählt sind aus -CH $_2$ -CN, -CH $_3$, -CH $_2$ -CH $_3$, -CH $_2$ -CH $_3$, -CH(CH $_3$)-CH $_3$, -CH $_2$ -OH, -CH $_2$ -OH, -CH $_2$ -OH, -CH $_3$ -OH, -CH $_$

in der R⁴, R⁵ und R⁶ unabhängig voneinander ausgewählt sind aus -CH₃, -CH₂-CH₃, -CH₂-CH₃, -CH_(CH₃)-CH_(CH₃)-CH_(CH₃)-CH₃, wobei R⁴ zusätzlich auch -H sein kann und X ein Anion ist, wobei vorzugsweise R⁵ = R⁶ = -CH₃ und insbesondere R⁴ = R⁵ = R⁶ = -CH₃ gilt und Verbindungen der Formeln (CH₃)₃N⁽⁺⁾CH₂-CN X⁻, (CH₃CH₂)₃N⁽⁺⁾CH₂-CN X⁻, (CH₃CH₂CH₂)₃N⁽⁺⁾CH₂-CN X⁻, oder (HO-CH₂-CH₂)₃N⁽ⁱ⁾CH₂-CN X⁻ besonders bevorzugt sind, wobei aus der Gruppe dieser Substanzen wiederum das kationische Nitril der Formel (CH₃)₃N⁽⁺⁾CH₂-CN X⁻, in welcher X⁻ für ein Anion steht, das aus der Gruppe Chlorid, Bromid, Iodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist, besonders bevorzugt wird.

[0237] Als Bleichaktivatoren können weiterhin Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexa-hydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nona-noyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA) sowie acety-liertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderi-vate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaace-tyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.

[0238] Sofern neben den Nitrilquats weitere Bleichaktivatoren eingesetzt werden sollen, werden bevorzugt Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenol-sulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n-bzw. iso-NOBS), n-Me-thyl-Morpholinium-Acetonitril-Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.% und besonders bevorzugt 2 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt.

[0239] Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren eingesetzt werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V-und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.

[0240] Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Kom-plexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.% bis 0,25 Gew.%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt werden.

Enzyme

5

30

35

45

50

[0241] Zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung von Wasch- oder Reinigungsmitteln sind Enzyme einsetzbar. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Wasch- oder Reinigungsmittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 x 10⁻⁶ bis 5 Gew.-% bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren oder dem Biuret-Verfahren bestimmt werden.

[0242] Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus *Bacillus lentus*, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase,

Proteinase K und die Proteasen TW3 und TW7. Subtilisin Carlsberg ist in weiterentwickelter Form unter dem Handelsnamen Alcalase[®] von der Firma Novozymes A/S, Bagsvaerd, Dänemark, erhältlich. Die Subtilisine 147 und 309 werden unter den Handelsnamen Esperase[®], beziehungsweise Savinase[®] von der Firma Novozymes vertrieben. Von der Protease aus *Bacillus lentus* DSM 5483 leiten sich die unter der Bezeichnung BLAP[®] geführten Varianten ab.

[0243] Weitere brauchbare Proteasen sind beispielsweise die unter den Handelsnamen Durazym[®], Relase[®], Everlase[®], Nafizym, Natalase[®], Kannase[®] und Oyozymes[®] von der Firma Novozymes, die unter den Handelsnamen, Purafect[®], Purafect[®] OxP und Properase[®] von der Firma Genencor, das unter dem Handelsnamen Protosol[®] von der Firma Advanced Biochemicals Ltd., Thane, Indien, das unter dem Handelsnamen Wuxi[®] von der Firma Wuxi Snyder Bioproducts Ltd., China, die unter den Handelsnamen Proleather[®] und Protease P[®] von der Firma Amano Pharmaceuticals Ltd., Nagoya, Japan, und das unter der Bezeichnung Proteinase K-16 von der Firma Kao Corp., Tokyo, Japan, erhältlichen Enzyme.

10

30

35

50

[0244] Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α -Amylasen aus *Bacillus licheniformis*, aus *B. amyloliquefaciens* oder aus *B. stearothermophilus* sowie deren für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Weiterentwicklungen. Das Enzym aus *B. licheniformis* ist von der Firma Novozymes unter dem Namen Termamyl[®] und von der Firma Genencor unter dem Namen Purastar[®]ST erhältlich. Weiterentwicklungsprodukte dieser α -Amylase sind von der Firma Novozymes unter den Handelsnamen Duramyl[®] und Termamyl[®]ultra, von der Firma Genencor unter dem Namen Purastar[®]OxAm und von der Firma Daiwa Seiko Inc., Tokyo, Japan, als Keistase[®] erhältlich. Die α -Amylase von *B. amyloliquefaciens* wird von der Firma Novozymes unter dem Namen BAN[®] vertrieben, und abgeleitete Varianten von der α -Amylase aus *B. stearothermophilus* unter den Namen BSG[®] und Novamyl[®], ebenfalls von der Firma Novozymes.

[0245] Desweiteren sind für diesen Zweck die α -Amylase aus *Bacillus sp.* A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus *B. agaradherens* (DSM 9948) hervorzuheben.

[0246] Darüber hinaus sind die unter den Handelsnamen Fungamyl[®] von der Firma Novozymes erhältlichen Weiterentwicklungen der α -Amylase aus *Aspergillus niger* und *A. oryzae* geeignet. Ein weiteres Handelsprodukt ist beispielsweise die Amylase-LT[®].

[0247] Erfindungsgemäß einsetzbar sind weiterhin Lipasen oder Cutinasen, insbesondere wegen ihrer Triglyceridspaltenden Aktivitäten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Sie werden beispielsweise von der Firma Novozymes unter den Handelsnamen Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® und Lipex® vertrieben. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Ebenso brauchbare Lipasen sind von der Firma Amano unter den Bezeichnungen Lipase CE®, Lipase P®, Lipase B®, beziehungsweise Lipase CES®, Lipase AKG®, Bacillis sp. Lipase®, Lipase AP®, Lipase M-AP® und Lipase AML® erhältlich. Von der Firma Genencor sind beispielsweise die Lipasen, beziehungsweise Cutinasen einsetzbar, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind. Als weitere wichtige Handelsprodukte sind die ursprünglich von der Firma Gist-Brocades vertriebenen Präparationen M1 Lipase® und Lipomax® und die von der Firma Meito Sangyo KK, Japan, unter den Namen Lipase MY-30®, Lipase OF® und Lipase PL® vertriebenen Enzyme zu erwähnen, ferner das Produkt Lumafast® von der Firma Genencor. [0248] Weiterhin können Enzyme eingesetzt werden, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und β-Glucanasen. Geeignete Mannanasen sind beispielsweise unter den Namen Gamanase® und Pektinex AR® von der Firma Novozymes, unter dem Namen Rohapec® B1L von der Firma AB Enzymes und unter dem Namen Pyrolase® von der Firma Diversa Corp., San Diego, CA, USA erhältlich. Die aus B. subtilis gewonnene β-Glucanase ist unter dem Namen Cereflo® von der Firma Novozymes erhältlich.

[0249] Zur Erhöhung der bleichenden Wirkung können erfindungsgemäß Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose-oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) eingesetzt werden. Als geeignete Handelsprodukte sind Denilite® 1 und 2 der Firma Novozymes zu nennen. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluss zu gewährleisten (Mediatoren).

[0250] Die Enzyme stammen beispielsweise entweder ursprünglich aus Mikroorganismen, etwa der Gattungen *Bacillus, Streptomyces, Humicola,* oder *Pseudomonas,* und/oder werden nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, etwa durch transgene Expressionswirte der Gattungen *Bacillus* oder filamentöse Fungi.

[0251] Die Aufreinigung der betreffenden Enzyme erfolgt vorzugsweise über an sich etablierte Verfahren, beispielsweise über Ausfällung, Sedimentation, Konzentrierung, Filtration der flüssigen Phasen, Mikrofiltration, Ultrafiltration, Einwirken von Chemikalien, Desodorierung oder geeignete Kombinationen dieser Schritte.

[0252] Die Enzyme können in jeder nach dem Stand der Technik etablierten Form eingesetzt werden. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.

[0253] Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluidbed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.

[0254] Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so daß ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.

[0255] Ein Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Wasch- oder Reinigungsmittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar.

[0256] Eine Gruppe von Stabilisatoren sind reversible Proteaseinhibitoren. Häufig werden Benzamidin-Hydrochlorid, Borax, Borsäuren, Boronsäuren oder deren Salze oder Ester verwendet, darunter vor allem Derivate mit aromatischen Gruppen, etwa ortho-substituierte, meta-substituierte und para-substituierte Phenylboronsäuren, beziehungsweise deren Salze oder Ester. Als peptidische Proteaseinhibitoren sind unter anderem Ovomucoid und Leupeptin zu erwähnen; eine zusätzliche Option ist die Bildung von Fusionsproteinen aus Proteasen und Peptid-Inhibitoren.

[0257] Weitere Enzymstabilisatoren sind Aminoalkohole wie Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen, aliphatische Carbonsäuren bis zu C₁₂, wie Bernsteinsäure, andere Dicarbonsäuren oder Salze der genannten Säuren. Auch endgruppenverschlossene Fettsäureamidalkoxylate sind geeignet. Bestimmte als Builder eingesetzte organische Säuren vermögen zusätzlich ein enthaltenes Enzym zu stabilisieren.

[0258] Niedere aliphatische Alkohole, vor allem aber Polyole, wie beispielsweise Glycerin, Ethylenglykol, Propylenglykol oder Sorbit sind weitere häufig eingesetzte Enzymstabilisatoren. Ebenso werden Calciumsalze verwendet, wie beispielsweise Calcium-Acetat oder Calcium-Formiat, und Magnesiumsalze.

[0259] Polyamid-Oligomere oder polymere Verbindungen wie Lignin, wasserlösliche Vinyl-Copolymere oder Cellulose-Ether, Acryl-Polymere und/oder Polyamide stabilisieren die Enzym-Präparation unter anderem gegenüber physikalischen Einflüssen oder pH-Wert-Schwankungen. Polyamin-N-Oxid-enthaltende Polymere wirken als Enzymstabilisatoren. Andere polymere Stabilisatoren sind die linearen C₈-C₁₈ Polyoxyalkylene. Alkylpolyglycoside können die enzymatischen Komponenten stabilisieren und sogar in ihrer Leistung steigern. Vernetzte N-haltige Verbindungen wirken ebenfalls als Enzym-Stabilisatoren.

[0260] Reduktionsmittel und Antioxidantien erhöhen die Stabilität der Enzyme gegenüber oxidativem Zerfall. Ein schwefelhaltiges Reduktionsmittel ist beispielsweise Natrium-Sulfit.

[0261] Bevorzugt werden Kombinatonen von Stabilisatoren verwendet, beispielsweise aus Polyolen, Borsäure und/oder Borax, die Kombination von Borsäure oder Borat, reduzierenden Salzen und Bernsteinsäure oder anderen Dicarbonsäuren oder die Kombination von Borsäure oder Borat mit Polyolen oder Polyaminoverbindungen und mit reduzierenden Salzen. Die Wirkung von Peptid-Aldehyd-Stabilisatoren wird durch die Kombination mit Borsäure und/oder Borsäurederivaten und Polyolen gesteigert und durch die zusätzliche Verwendung von zweiwertigen Kationen, wie zum Beispiel Calcium-lonen weiter verstärkt.

[0262] Bevorzugt werden ein oder mehrere Enzyme und/oder Enzymzubereitungen, vorzugsweise feste Protease-Zubereitungen und/oder Amylase-Zubereitungen, in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise von 0,2 bis 4,5 Gew.-% und insbesondere von 0,4 bis 4 Gew.-%, jeweils bezogen auf das gesamte enzymhaltige Mittel, eingesetzt.

Glaskorrosionsinhibitoren

10

20

30

35

40

50

55

[0263] Glaskorrosionsinhibitoren verhindern das Auftreten von Trübungen, Schlieren und Kratzern aber auch das Irisieren der Glasoberfläche von maschinell gereinigten Gläsern. Bevorzugte Glaskorrosionsinhibitoren stammen aus der Gruppe der Magnesium- und/oder Zinksalze und/oder Magnesium- und/oder Zinkkomplexe.

[0264] Eine bevorzugte Klasse von Verbindungen, die zur Verhinderung der Glaskorrosion eingesetzt werden können, sind unlösliche Zinksalze.

[0265] Unlösliche Zinksalze im Sinne dieser bevorzugten Ausführungsform sind Zinksalze, die eine Löslichkeit von maximal 10 Gramm Zinksalz pro Liter Wasser bei 20°C besitzen. Beispiele für erfindungsgemäß besonders bevorzugte unlösliche Zinksalze sind Zinksilikat, Zinkcarbonat, Zinkoxid, basisches Zinkcarbonat $(Zn_2(OH)_2CO_3)$, Zinkhydroxid, Zinkoxalat, Zinkmonophosphat $(Zn_3(PO_4)_2)$ und Zinkpyrophosphat $(Zn_2(P_2O_7))$.

[0266] Die genannten Zinkverbindungen werden vorzugsweise in Mengen eingesetzt, die einen Gehalt der Mittel an Zinkionen zwischen 0,02 und 10 Gew.-%, vorzugsweise zwischen 0,1 und 5,0 Gew.-% und insbesondere zwischen 0,2 und 1,0 Gew.%, jeweils bezogen auf das gesamte glaskorrosionsinhibitorhaltige Mittel, bewirken. Der exakte Gehalt der Mittel am Zinksalz bzw. den Zinksalzen ist naturgemäß abhängig von der Art der Zinksalze - je weniger löslich das eingesetzte Zinksalz ist, umso höher sollte dessen Konzentration in den Mitteln sein.

[0267] Da die unlöslichen Zinksalze während des Geschirreinigungsvorgangs größtenteils unverändert bleiben, ist die Partikelgröße der Salze ein zu beachtendes Kriterium, damit die Salze nicht auf Glaswaren oder Maschinenteilen anhaften. Hier sind Mittel bevorzugt, bei denen die unlöslichen Zinksalze eine Partikelgröße unterhalb 1,7 Millimeter aufweisen.

[0268] Wenn die maximale Partikelgröße der unlöslichen Zinksalze unterhalb 1,7 mm liegt, sind unlösliche Rückstände in der Geschirrspülmaschine nicht zu befürchten. Vorzugsweise hat das unlösliche Zinksalz eine mittlere Partikelgröße, die deutlich unterhalb dieses Wertes liegt, um die Gefahr unlöslicher Rückstände weiter zu minimieren, beispielsweise eine mittlere Partikelgröße kleiner 250 μm. Dies gilt wiederum umso mehr, je weniger das Zinksalz löslich ist. Zudem steigt die glaskorrosionsinhibierende Effektivität mit sinkender Partikelgröße. Bei sehr schlecht löslichen Zinksalzen liegt die mittlere Partikelgröße vorzugsweise unterhalb von 100 μm. Für noch schlechter lösliche Salze kann sie noch niedriger liegen; beispielsweise sind für das sehr schlecht lösliche Zinkoxid mittlere Partikelgrößen unterhalb von 60 μm bevorzugt. [0269] Eine weitere bevorzugte Klasse von Verbindungen sind Magnesium- und/oder Zinksalz(e) mindestens einer monomeren und/oder polymeren organischen Säure. Diese bewirken, daß auch bei wiederholter Benutzung die Oberflächen gläsernen Spülguts nicht korrosiv verändert, insbesondere keine Trübungen, Schlieren oder Kratzer aber auch kein Irisieren der Glasoberflächen verursacht werden.

[0270] Obwohl alle Magnesium- und/oder Zinksalz(e) monomerer und/oder polymerer organischer Säuren eingesetzt werden können, werden doch, die Magnesium- und/oder Zinksalze monomerer und/oder polymerer organischer Säuren aus den Gruppen der unverzweigten gesättigten oder ungesättigten Monocarbonsäuren, der verzweigten gesättigten oder ungesättigten Dicarbonsäuren, der aromatischen Mono-, Di- und Tricarbonsäuren, der Zuckersäuren, der Hydroxysäuren, der Oxosäuren, der Aminosäuren und/oder der polymeren Carbonsäuren bevorzugt.

[0271] Das Spektrum der erfindungsgemäß bevorzugten Zinksalze organischer Säuren, vorzugsweise organischer Carbonsäuren, reicht von Salzen, die in Wasser schwer oder nicht löslich sind, also eine Löslichkeit unterhalb 100 mg/l, vorzugsweise unterhalb 10 mg/l, insbesondere unterhalb 0,01 mg/l aufweisen, bis zu solchen Salzen, die in Wasser eine Löslichkeit oberhalb 100 mg/l, vorzugsweise oberhalb 500 mg/l, besonders bevorzugt oberhalb 1 g/l und insbesondere oberhalb 5 g/l aufweisen (alle Löslichkeiten bei 20°C Wassertemperatur). Zu der ersten Gruppe von Zinksalzen gehören beispielsweise das Zinkcitrat, das Zinkoleat und das Zinkstearat, zu der Gruppe der löslichen Zinksalze gehören beispielsweise das Zinkformiat, das Zinkacetat, das Zinklactat und das Zinkgluconat.

[0272] Mit besonderem Vorzug wird als Glaskorrosionsinhibitor mindestens ein Zinksalz einer organischen Carbonsäure, besonders bevorzugt um ein Zinksalz aus der Gruppe Zinkstearat, Zinkoleat, Zinkgluconat, Zinkacetat, Zinklactat und/oder Zinkcitrat eingesetzt. Auch Zinkricinoleat, Zinkabietat und Zinkoxalat sind bevorzugt.

[0273] Im Rahmen der vorliegenden Erfindung beträgt der Gehalt von Reinigungsmitteln an Zinksalz vorzugsweise zwischen 0,1 bis 5 Gew.%, bevorzugt zwischen 0,2 bis 4 Gew.-% und insbesondere zwischen 0,4 bis 3 Gew.-%, bzw. der Gehalt an Zink in oxidierter Form (berechnet als Zn²⁺) zwischen 0,01 bis 1 Gew.%, vorzugsweise zwischen 0,02 bis 0,5 Gew.% und insbesondere zwischen 0,04 bis 0,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des glaskorrosionsinhibitorhaltigen Mittels.

Korrosionsinhibitoren

30

35

45

50

[0274] Korrosionsinhibitoren dienen dem Schutze des Spülgutes oder der Maschine, wobei im Bereich des maschinellen Geschirrspülens besonders Silberschutzmittel eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder - komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Als Beispiele der erfindungsgemäß bevorzugt einzusetzenden 3-Amino-5-alkyl-1,2,4-triazole können genannt werden: Propyl-, -Butyl-, -Pentyl-, -Heptyl-, -Octyl-, -Nonyl-, -Decyl-, -Undecyl-, -Dodecyl-, -Isononyl-, -Versatic-10-säurealkyl-, -Phenyl-, -p-Tolyl-, -(4-tert. Butylphenyl)-, -(4-Methoxyphenyl)-, -(2-, -3-, -4-Pyridyl)-, -(2-Thienyl)-, -(5-Methyl-2-furyl)-, -(5-Oxo-2-pyrrolidinyl)-, -3-amino-1,2,4-triazol. In Geschirrspülmitteln werden die Alkyl-amino-1,2,4-triazole bzw. ihre physiologisch verträglichen Salze in einer Konzentration von 0,001 bis 10 Gew.%, vorzugsweise 0,0025 bis

2 Gew.%, besonders bevorzugt 0,01 bis 0,04 Gew.-% eingesetzt. Bevorzugte Säuren für die Salzbildung sind Salzsäure, Schwefelsäure, Phosphorsäure, Kohlensäure, schweflige Säure, organische Carbonsäuren wie Essig-, Glykol-, Citronen-, Bernsteinsäure. Ganz besonders wirksam sind 5-Pentyl-, 5-Heptyl-, 5-Nonyl-, 5-Undecyl-, 5-Isononyl-, 5-Versatic-10-säurealkyl-3-amino-1,2,4-triazole sowie Mischungen dieser Substanzen.

[0275] Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigem werden besonders Sauerstoff- und Stickstoff-haltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z.B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen eingesetzt. Auch satz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Manganund/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.

[0276] Anstelle von oder zusätzlich zu den vorstehend beschriebenen Silberschutzmitteln, beispielsweise den Benzotriazolen, können redoxaktive Substanzen eingesetzt werden. Diese Substanzen sind vorzugsweise anorganische redoxaktive Substanzen aus der Gruppe der Mangan-, Titian-, Zirkonium-, Hafnium-, Vanadium-, Cobalt- und Cer-Salze und/oder -Komplexe, wobei die Metalle vorzugsweise in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen.

[0277] Die verwendeten Metallsalze bzw. Metallkomplexe sollen zumindest teilweise in Wasser löslich sein. Die zur Salzbildung geeigneten Gegenionen umfassen alle üblichen ein-, zwei-, oder dreifach negativ geladenen anorganischen Anionen, z.B. Oxid, Sulfat, Nitrat, Fluorid, aber auch organische Anionen wie z.B. Stearat.

[0278] Metallkomplexe im Sinne der Erfindung sind Verbindungen, die aus einem Zentralatom und einem oder mehreren Liganden sowie gegebenenfalls zusätzlich einem oder mehreren der o.g. Anionen bestehen. Das Zentralatom ist eines der o.g. Metalle in einer der o.g. Oxidationsstufen. Die Liganden sind neutrale Moleküle oder Anionen, die einoder mehrzähnig sind; der Begriff "Liganden" im Sinne der Erfindung ist z.B. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart/New York, 9. Auflage, 1990, Seite 2507" näher erläutert. Ergänzen sich in einem Metallkomplex die Ladung des Zentralatoms und die Ladung des/der Liganden nicht auf Null, so sorgt, je nachdem, ob ein kationischer oder ein anionischer Ladungsüberschuß vorliegt, entweder eines oder mehrere der o.g. Anionen oder ein oder mehrere Kationen, z.B. Natrium-, Kalium-, Ammoniumionen, für den Ladungsausgleich. Geeignete Komplexbildner sind z.B. Citrat, Acetylacetonat oder 1-Hydroxyethan-1,1-diphosphonat.

[0279] Die in der Chemie geläufige Definition für "Oxidationsstufe" ist z.B. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart/New York, 9. Auflage, 1991, Seite 3168" wiedergegeben.

35

50

 $\begin{tabular}{l} \textbf{[0280]} & \textbf{Besonders bevorzugte Metallsalze und/oder Metallkomplexe sind ausgewählt aus der Gruppe MnSO_4, Mn(II)-citrat, Mn(II)-stearat, Mn(II)-acetylacetonat, Mn(II)-[1-Hydroxyethan-1,1-diphosphonat], V_2O_5, V_2O_4, VO_2, $TiOSO_4$, K_2TiF_6, K_2ZrF_6, $CoSO_4$, $Co(NO_3)_2$, $Ce(NO_3)_3$, sowie deren Gemische, so daß die Metallsalze und/oder Metallkomplexe ausgewählt aus der Gruppe MnSO_4$, $Mn(II)-citrat$, $Mn(II)-stearat$, $Mn(II)-acetylacetonat$, $Mn(II)-[1-Hydroxyethan-1,1-diphosphonat]$, V_2O_5, V_2O_4, VO_2, $TiOSO_4$, K_2TiF_6, K_2ZrF_6, $CoSO_4$. $Co(NO_3)_2$, $Ce(NO_3)_3$ mit besonderem Vorzug eingesetzt werden. } \end{tabular}$

[0281] Bei diesen Metallsalzen bzw. Metallkomplexen handelt es sich im allgemeinen um handelsübliche Substanzen, die zum Zwecke des Silberkorrosions-Schutzes ohne vorherige Reinigung in den Wasch- oder Reinigungsmitteln eingesetzt werden können. So ist z.B. das aus der SO_3 -Herstellung (Kontaktverfahren) bekannte Gemisch aus fünf- und vierwertigem Vanadium (V_2O_5 , VO_2 , V_2O_4) geeignet, ebenso wie das durch Verdünnen einer $Ti(SO_4)_2$ -Lösung entstehende Titanylsulfat, $TiOSO_4$.

[0282] Die anorganischen redoxaktiven Substanzen, insbesondere Metallsalze bzw. Metallkomplexe sind vorzugsweise gecoatet, d.h. vollständig mit einem wasserdichten, bei den Reinigungstemperaturen aber leichtlöslichen Material überzogen, um ihre vorzeitige Zersetzung oder Oxidation bei der Lagerung zu verhindern. Bevorzugte Coatingmaterialien, die nach bekannten Verfahren, etwa Schmelzcoatingverfahren nach Sandwik aus der Lebensmittelindustrie, aufgebracht werden, sind Paraffine, Mikrowachse, Wachse natürlichen Ursprungs wie Carnaubawachs, Candellilawachs, Bienenwachs, höherschmelzende Alkohole wie beispielsweise Hexadecanol, Seifen oder Fettsäuren. Dabei wird das bei Raumtemperatur feste Coatingmaterial in geschmolzenem Zustand auf das zu coatende Material aufgebracht, z.B. indem feinteiliges zu coatendes Material in kontinuierlichem Strom durch eine ebenfalls kontinuierlich erzeugte Sprühnebelzone des geschmolzenen Coatingmaterials geschleudert wird. Der Schmelzpunkt muss so gewählt sein, daß sich das Coatingmaterial während der Silberbehandlung leicht löst bzw. schnell aufschmilzt. Der Schmelzpunkt sollte idealerweise im Bereich zwischen 45°C und 65°C und bevorzugt im Bereich 50°C bis 60°C liegen.

[0283] Die genannten Metallsalze und/oder Metallkomplexe sind in Reinigungsmitteln, vorzugsweise in einer Menge von 0,05 bis 6 Gew.%, vorzugsweise 0,2 bis 2,5 Gew.-%, jeweils bezogen auf das gesamte korrosionsinhibitorhaltige Mittel enthalten.

Desintegrationshilfsmittel

30

35

50

[0284] Um den Zerfall vorgefertigter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese Mittel einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.

[0285] Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.

[0286] Bevorzugt werden Desintegrationshilfsmittel in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.%, jeweils bezogen auf das Gesamtgewicht des desintegrationshilfsmittelhaltigen Mittels, eingesetzt.

[0287] Als bevorzugte Desintegrationsmittel werden Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittel ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung ($C_6H_{10}O_5$)_n auf und stellt formal betrachtet ein β -1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulo-

[0288] Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.% zwischen 400 und 1200 μm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel[®] TF-30-HG von der Firma Rettenmaier erhältlich.

[0289] Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose eingesetzt werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind.

[0290] Bevorzugte Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, sind in den desintegrationsmittelhaltigen Mitteln in Mengen von 0,5 bis 10 Gew.%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.%, jeweils bezogen auf das Gesamtgewicht des desintegrationsmittelhaltigen Mittels, enthalten.

[0291] Erfindungsgemäß bevorzugt können darüber hinaus weiterhin gasentwickelnde Brausesysteme als Tablettendesintegrationshilfsmittel eingesetzt werden. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während

hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den Wasch- und Reinigungsmittel eingesetzte Sprudelsystem sowohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Acidifizierungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Kohlendioxid freizusetzen.

[0292] Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate bevorzugt sein.

[0293] Bevorzugt werden als Brausesystem 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.% eines Alkalimetallcarbonats oder -hydrogencarbonats sowie 1 bis 15, vorzugsweise 2 bis 12 Gew.-% und insbesondere 3 bis 10 Gew.% eines Acidifizierungsmittels, jeweils bezogen das Gesamtgewicht des Mittels, eingesetzt. [0294] Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalidhydrogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligound Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).

[0295] Bevorzugt sind Acidifizierungsmittel im Brausesystem aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische.

25 Duftstoffe

30

35

45

50

55

10

[0296] Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, clsomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.

[0297] Die allgemeine Beschreibung der einsetzbaren Parfüme (siehe oben) stellt dabei allgemein die unterschiedlichen Substanzklassen von Riechstoffen dar. Um wahrnehmbar zu sein, muss ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Auf Grund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in "Kopfnote" (top note), "Herz- bzw. Mittelnote" (middle note bzw. body) sowie "Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahmehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d.h. haftfesten Riechstoffen besteht. Bei der Komposition von Parfüms können leichter flüchtige Riechstoffe beispielsweise an bestimmte Fixative gebunden werden, wodurch ihr zu schnelles Verdampfen verhindert wird. Bei der nachfolgenden Einteilung der Riechstoffe in "leichter flüchtige" bzw. "haftfeste" Riechstoffe ist also über den Geruchseindruck und darüber, ob der entsprechende Riechstoff als Kopf- oder Herznote wahrgenommen wird, nichts ausgesagt.

[0298] Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung einsetzbar sind, sind beispielsweise die ätherischen Öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Bergamottöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fichtennadelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, Helichrysumöl, Ho-Öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl,

Kanagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopaïvabalsamöl, Korianderöl, Krauseminzeöl, Kümmelöl, Kuminöl, Lavendelöl, Lemongrasöl, Limetteöl, Mandarinenöl, Melissenöl, Moschuskömeröl, Myrrhenöl, Nelkenöl, Neroliöl, Niaouliöl, Olibanumöl, Orangenöl, Origanumöl, Palmarosaöl, Patschuliöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfefferminzöl, Pimentöl, Pine-Öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Spiköl, Sternanisöl, Terpentinöl, Thujaöl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang-Ylang-Öl, Ysop-Öl, Zimtöl, Zimtblätteröl, Zitronellöl, Zitronenöl sowie Zypressenöl. Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung als haftfeste Riechstoffe bzw. Riechstoffgemische, also Duftstoffe, eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus diesen: Ambrettolid, \(\alpha - Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranils\(\alpha - amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranils\(\alpha - amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranils\(\alpha - amylzimtaldehyd, Anisaldehyd, Anisalkohol, Anisol, Anthranils\(\alpha - amylzimtaldehyd, Anisaldehyd, Anisalkohol, Anisol, Anis ethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethylester, Benzophenon, Benzylalkohol, Benzylacetat, Benzylbenzoat, Benzylformiat, Benzylvalerianat, Borneol, Bornylacetat, α-Bromstyrol, n-Decylaldehyd, n-Dodecylaldehyd, Eugenol, Eugenolmethylether, Eukalyptol, Farnesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin, Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon-Dimethylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeugenolmethylether, Isosafrol, Jasmon, Kampfer, Karvakrol, Karvon, p-Kresolmethylether, Cumarin, p-Methoxyacetophenon, Methyl-n-amylketon, Methylanthranilsäuremethylester, p-Methylacetophenon, Methylchavikol, p-Methylchinolin, Methyl-β-naphthylketon, Methyl-n-nonylacetaldehyd, Methyl-n-nonylketon, Muskon, β-Naphtholethylether, β-Naphtholmethylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n-Octylaldehyd, p-Oxy-Acetophenon, Pentadekanolid, β-Phenylethylalkohol, Phenylacetaldehyd-Dimethyacetal, Phenylessigsäure, Pulegon, Safrol, Salicylsäureisoamylester, Salicylsäuremethylester, Salicylsäurehexylester, Salicylsäurecyclohexylester, Santalol, Skatol, Terpineol, Thymen, Thymol, γ-Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimatalkohol, Zimtsäure, Zimtsäureethylester, Zimtsäurebenzylester. Zu den leichter flüchtigen Riechstoffen zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Ursprung, die allein oder in Mischungen eingesetzt werden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Butandion, Limonen, Linalool, Linaylacetat und-Propionat, Menthol, Menthol, Methyl-n-heptenon, Phellandren, Phenylacetaldehyd, Terpinylacetat, Zitral, Zitronellal.

[0299] Die Duftstoffe können direkt verarbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die durch eine langsamere Duftfreisetzung für langanhaltenden Duft sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.

Farbstoffe

10

20

30

35

40

45

50

[0300] Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den farbstoffhaltigen Mitteln zu behandelnden Substraten wie beispielsweise Textilien, Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzufärben.

[0301] Bei der Wahl des Färbemittels muss beachtet werden, daß die Färbemittel im Falle von Textilwaschmitteln keine zu starke Affinität gegenüber textilen Oberflächen und hier insbesondere gegenüber Kunstfasern aufweisen, während im Falle von Reinigungsmitteln eine zu starke Affinität gegenüber Glas, Keramik oder Kunststoffgeschirr vermieden werden muss. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, daß Färbemittel unterschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im allgemeinen gilt, daß wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidationsempfindlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reinigungsmitteln. Bei gut wasserlöslichen Färbemitteln, z.B. dem oben genannten Basacid® Grün oder dem gleichfalls oben genannten Sandolan® Blau, werden typischerweise Färbemittel-Konzentrationen im Bereich von einigen 10-2 bis 10-3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen, z.B. den oben genannten Pigmosol®-Farbstoffen, liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10-3 bis 10-4 Gew.-%.

[0302] Es werden Färbemittel bevorzugt, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z.B. anionische Nitrosofarbstoffe. Ein mögliches Färbemittel ist beispielsweise Naphtholgrün (Colour Index (CI) Teil 1: Acid Green 1; Teil 2: 10020), das als Handelsprodukt beispielsweise als Basacid® Grün 970 von der Fa. BASF, Ludwigshafen, erhältlich ist, sowie Mischungen dieser mit geeigneten blauen Farbstoffen. Als weitere Färbemittel kommen Pigmosol® Blau 6900 (CI 74160), Pigmosol® Grün 8730 (CI 74260), Basonyl® Rot 545 FL (CI 45170), Sandolan® Rhodamin EB400 (CI 45100), Basacid® Gelb 094 (CI 47005), Sicovit® Patentblau 85 E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blau GLW (CAS 12219-32-8, CI Acidblue 221)), Nylosan® Gelb N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) und/oder Sandolan®

Blau (CI Acid Blue 182, CAS 12219-26-0) zum Einsatz.

10

30

35

50

55

[0303] Zusätzlich zu den bisher ausführlich beschriebenen Komponenten können die Wasch- und Reinigungsmittel weitere Inhaltsstoffe enthalten, welche die anwendungstechnischen und/oder ästhetischen Eigenschaften dieser Mittel weiter verbessern. Bevorzugte Mittel enthalten einen oder mehrere Stoffe aus der Gruppe der Elektrolyte, pH-Stellmittel, Fluoreszenzmittel, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optische Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobiellen Wirkstoffen, Germizide, Fungizide, Antioxidantien, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel sowie UV-Absorber.

[0304] Als Elektrolyte aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCl oder MgCl₂ in den Wasch- oder Reinigungsmitteln bevorzugt.

[0305] Um den pH-Wert von Wasch- oder Reinigungsmitteln in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 1 Gew.% der Gesamtformulierung nicht.

[0306] Als Schauminhibitoren, kommen u.a. Seifen, Öle, Fette, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Als Trägermaterialien eignen sich beispielsweise anorganische Salze wie Carbonate oder Sulfate, Cellulosederivate oder Silikate sowie Mischungen der vorgenannten Materialien. Im Rahmen der vorliegenden Anmeldung bevorzugte Mittel enthalten Paraffine, vorzugsweise unverzweigte Paraffine (n-Paraffine) und/oder Silikone, vorzugsweise linear-polymere Silikone, welche nach dem Schema (R₂SiO)x aufgebaut sind und auch als Silikonöle bezeichnet werden. Diese Silikonöle stellen gewöhnlich klare, farblose, neutrale, geruchsfreie, hydrophobe Flüssigkeiten dar mit einem Molekulargewicht zwischen 1000 und 150.000, und Viskositäten zwischen 10 und 1.000.000 mPa·s.

[0307] Geeignete Antiredepositionsmittel, die auch als soil repellents bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.

[0308] Optische Aufheller (sogenannte "Weißtöner") können den Wasch- oder Reinigungsmitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyryl-biphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate.

[0309] Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Als Vergrauungsinhibitoren einsetzbar sind weiterhin Celluloseether wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische.

[0310] Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können synthetische Knitterschutzmittel eingesetzt werden. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.

[0311] Phobier- und Imprägnierverfahren dienen der Ausrüstung von Textilien mit Substanzen, welche die Ablagerung von Schmutz verhindern oder dessen Auswaschbarkeit erleichtern. Bevorzugte Phobier- und Imprägniermittel sind perfluorierte Fettsäuren, auch in Form ihrer Aluminium- u. Zirconiumsalze, organische Silikate, Silikone, Polyacrylsäu-

reester mit perfluorierter AlkoholKomponente oder mit perfluoriertem Acyl- oder Sulfonyl-Rest gekoppelte, polymerisierbare Verbindungen. Auch Antistatika können enthalten sein. Die schmutzabweisende Ausrüstung mit Phobier- und Imprägniermitteln wird oft als eine Pflegeleicht-Ausrüstung eingestuft. Das Eindringen der Imprägniermittel in Form von Lösungen oder Emulsionen der betreffenden Wirkstoffe kann durch Zugabe von Netzmitteln erleichtert werden, die die Oberflächenspannung herabsetzen. Ein weiteres Einsatzgebiet von Phobier- und Imprägniermitteln ist die wasserabweisende Ausrüstung von Textilwaren, Zelten, Planen, Leder usw., bei der im Gegensatz zum Wasserdichtmachen die Gewebeporen nicht verschlossen werden, der Stoff also atmungsaktiv bleibt (Hydrophobieren). Die zum Hydrophobieren verwendeten Hydrophobiermittel überziehen Textilien, Leder, Papier, Holz usw. mit einer sehr dünnen Schicht hydrophober Gruppen, wie längere Alkyl-Ketten oder Siloxan-Gruppen. Geeignete Hydrophobiermittel sind z.B. Paraffine, Wachse, Metallseifen usw. mit Zusätzen an Aluminium- oder Zirconium-Salzen, quartäre AmmoniumVerbindungen mit langkettigen Alkyl-Resten, Harnstoff-Derivate, Fettsäure-modifizierte Melaminharze, Chrom-Komplexsalze, Silikone, Zinn-organische Verbindungen und Glutardialdehyd sowie perfluorierte Verbindungen. Die hydrophobierten Materialien fühlen sich nicht fettig an; dennoch perlen - ähnlich wie an gefetteten Stoffen - Wassertropfen an ihnen ab, ohne zu benetzen. So haben z.B. Silikon-imprägnierte Textilien einen weichen Griff und sind wasser- und schmutzabweisend; Flecke aus Tinte, Wein, Fruchtsäften und dergleichen sind leichter zu entfernen.

10

20

30

35

50

[0312] Zur Bekämpfung von Mikroorganismen können antimikrobielle Wirkstoffe eingesetzt werden. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw.. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei auch gänzlich auf diese Verbindungen verzichtet werden kann.

[0313] Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Wasch- und Reinigungsmitteln und/oder den behandelten Textilien zu verhindern, können die Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.

[0314] Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl- (bzw. Stearyl-) dimethytbenzylammoniumchloride eignen sich ebenfalls als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird

[0315] Zur Pflege der Textilien und zur Verbesserung der Textileigenschaften wie einem weicheren "Griff' (Avivage) und verringerter elektrostatischer Aufladung (erhöhter Tragekomfort) können Weichspüler eingesetzt werden. Die Wirkstoffe in Weichspülformulierungen sind "Esterquats", quartäre Ammoniumverbindungen mit zwei hydrophoben Resten, wie beispielsweise das Disteraryldimethylammoniumchlorid, welches jedoch wegen seiner ungenügenden biologischen Abbaubarkeit zunehmend durch quartäre Ammoniumverbindungen ersetzt wird, die in ihren hydrophoben Resten Estergruppen als Sollbruchstellen für den biologischen Abbau enthalten.

Derartige "Esterquats" mit verbesserter biologischer Abbaubarkeit sind beispielsweise dadurch erhältlich, daß man Mischungen von Methyldiethanolamin und/oder Triethanolamin mit Fettsäuren verestert und die Reaktionsprodukte anschließend in an sich bekannter Weise mit Alkylierungsmitteln quaterniert. Als Appretur weiterhin geeignet ist Dimethylolethylenharnstoff.

[0316] Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügelns der behandelten Textilien können Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten von Wasch- oder Reinigungsmitteln durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quatemiert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Weitere bevorzugte Silikone sind die Polyalkylenoxid-modifizierten Polysiloxane, also Polysiloxane, welche beispielsweise Polyethylenglykole aufweisen sowie die Polyalkylenoxid-modifizierten Dimetylpolysiloxane

[0317] Schließlich können erfindungsgemäß auch UV-Absorber eingesetzt werden, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.

[0318] Proteinhydrolysate sind auf Grund ihrer faserpflegenden Wirkung weitere im Rahmen der vorliegenden Erfin-

dung bevorzugte Aktivsubstanzen aus dem Gebiet der Wasch- und Reinigungsmittel. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen Ursprungs eingesetzt werden. Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z.B. Soja-, Mandel-, Reis-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische oder einzelne Aminosäuren wie beispielsweise Arginin, Lysin, Histidin oder Pyrroglutaminsäure eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte.

[0319] Zu den nichtwässrigen Lösungsmittel, welche erfindungsgemäß eingesetzt werden können, zählen insbesondere die organischen Lösungsmittel, von denen hier nur die wichtigsten aufgeführt sein können: Alkohole (Methanol, Ethanol, Propanole, Butanole, Octanole, Cyclohexanol), Glykole (Ethylenglykol, Diethylenglykol), Ether und Glykolether (Diethylether, Dibutylether, Anisol, Dioxan, Tetrahydrofuran, Mono-, Di-, Tri-, Polyethylenglykolether), Ketone (Aceton, Butanon, Cyclo-hexanon), Ester (Essigsäureester, Glykolester), Amide und andere Stickstoff-Verbindungen (Dimethylformamid, Pyridin, N-Methylpyrrolidon, Acetonitril), Schwefel-Verindungen (Schwefelkohlenstoff, Dimethylsulfoxid, Sulfolan), Nitro-Verbindungen (Nitrobenzol), Halogenkohlenwasserstoffe (Dichlormethan, Chloroform, Tetrachlormethan, Tri-, Tetrachlorethen, 1,2-Dichlorethan, Chlorfluorkohlenstoffe), Kohlenwasserstoffe (Benzine, Petrolether, Cyclohexan, Methylcyclohexan, Decalin, Terpen-Lösungsmittel, Benzol, Toluol, Xylole). Alternativ können statt der reinen Lösungsmittel auch deren Gemische, welche beispielsweise die Lösungseigenschaften verschiedener Lösungsmittel vorteilhaft vereinigen, eingesetzt werden. Ein derartiges und im Rahmen der vorliegenden Anmeldung besonders bevorzugtes Lösungsmittelgemisch ist beispielsweise Waschbenzin, ein zur chemischen Reinigung geeignetes Gemisch verschiedener Kohlenwasserstoffe, vorzugsweise mit einem Gehalt an C12 bis C14 Kohlenwasserstoffen oberhalb 60 Gew.%, besonders bevorzugt oberhalb 80 Gew.-% und insbesondere oberhalb 90 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Gemischs, vorzugsweise mit einem Siedebereich von 81 bis 110 °C.

Beispiele

10

15

20

30

35

45

50

55

[0320] Fig. 1 zeigt eine Ausführungsform der vorliegenden Erfindung, bei der ein quaderförmiger Behälter durch Tiefziehen aus PVA mit einer Wanddicke von 180 μm gebildet wurde, wobei der Boden, die Kanten im unteren Bereich des Behälters sowie die Ecken im unteren Bereich des Behälter und anteilsweise die Kanten im seitlichen Bereich des quaderförmigen Behälters mit waschaktiver Schmelze gefüllt sind. Nach Befüllen des Behälters mit Schmelze und Erstarren der Schmelze wurde ein pulverförmiges Waschmittel eingefüllt, danach schloss sich das Einbringen eines gelförmigen Bestandteils an. Der so befüllte Behälter wurde anschließend mit einem Verschlussteil in Form einer Folie aus dem gleichen Material wie dem Behälter und der gleichen Wanddicke durch Heißversiegeln verschlossen. Im oberen Bereich des Fotos 1 ist weiterhin eine Luftblase zu erkennen. Durch diese Ausführungsform kann ein stabilisierter, im wesentlichen quaderförmiger Behälter erhalten werden, der seine quaderförmige Form weitgehend behält und der insbesondere im unteren Bereich durch die erstarrte Schmelze stabilisiert ist.

[0321] Foto 2 zeigt eine verbesserte Ausführungsform der vorliegenden Erfindung mit den gleichen Füllgütern und Hüllmaterialien wie bei Foto 1, bei der sich gegenüber Foto 1 die Schmelze aber in sämtlichen Ecken- und Kantenbereichen des quaderförmigen Behälters, ausgenommen der die Öffnung umgebenden Kante, befindet. Weiterhin ist die auf dem Foto links befindliche Seitenwand des Quaders ebenfalls vollständig mit Schmelze ausgefüllt, sowie auch die gegenüberliegende Seite. Diese Ausführungsform hat gegenüber Ausführungsform 1 den Vorteil, daß eine weitere Stabilisierung erzielt wird. Die Quaderform ist zudem besser erhalten als bei Foto 1. Durch die vordere Seitenwand ist auf dem Foto 2 noch der Pulverbestandteil des verpackten Wasch- oder Reinigungsmittels sichtbar. Durch die oben befindliche Blase ist der pulverförmige Waschmittelbestandteil ebenfalls sichtbar.

[0322] Eine bezüglich der Stabilität und der Form sowie der Formbeständigkeit des quaderförmigen Behälters noch weiter verbesserte Ausführungsform ist in Foto 3 gezeigt. Wieder wurde das gleiche Füllgut und Hüllmaterial wie in Foto 1 verwendet. Hier sind aber neben den Kanten und Ecken des quaderförmigen Behälters auch sämtliche Seitenwände des Quaders mit erstarrter Schmelze versehen. Dadurch ist auch der Bereich der um die Öffnung verlaufenden Kante mit erstarrter Schmelze versehen. Im Innern des quaderförmigen Behälters wird eine Muldenform der erstarrten Schmelze ausgebildet, in der sich nachfolgend Pulver und Gel befinden. Das hierin befindliche pulverförmige Waschmittel ist nur durch die oben befindliche Luftblase sichtbar. Es erfolgt im wesentliche kein Kontakt des pulverförmigen Bestandteils mit der Hüllfolie. Dadurch kann eine Beschädigung der Hülle durch Reibung des pulverförmigen Waschmittels vermieden werden. Auch ein Eindringen von Pulver zwischen Folie und Schmelze ist im Gegensatz zu den Fotos 1 und 2 völlig ausgeschlossen.

Patentansprüche

- 1. Verfahren zur Herstellung portionierter Wasch- oder Reinigungsmittel, mit folgenden Schritten:
 - a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters mit mindestens einer Öffnung, einer diese Öffnung umgebenden Kante und mindestens einer weiteren Ecke und/oder Kante;
 - b) Einfüllen einer wasch- oder reinigungsaktiven Schmelze und Erstarren der Schmelze;
 - c) Befüllen des Behälters mit mindestens einem weiteren Wasch- oder Reinigungsmittel; und
 - d) Konfektionieren des befüllten Behälters,

10

15

30

35

40

45

50

55

5

dadurch gekennzeichnet, dass der in Schritt a) ausgebildete Behälter in Schritt b) derart mit der Schmelze befüllt wird, dass zumindest die weitere(n) Ecke(n) und/oder Kante(n) des Behälters wenigstens anteilsweise durch die erstarrte Schmelze ausgefüllt wird/werden, dass in Schritt a) ein quaderförmiger Behälter ausgebildet wird und in Schritt b) neben der/den weiteren Ecke(n) und/oder Kante(n) weiterhin mindestens eine Seitenwand des quaderförmigen Behälters vollständig durch die erstarrte Schmelze ausgefüllt wird sowie dass in Schritt c) ein pulverförmiger weiterer Wasch- und/oder Reinigungsmittelbestandteil eingefüllt wird.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Verformen in Schritt a) durch Tiefziehen erfolgt.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Schritt a) so ausgeführt wird, dass ein quaderförmiger Behälter gebildet wird, und in Schritt b) neben der/den weiteren Ecke(n) und/oder Kante(n) weiterhin zwei Seitenwände, weiterhin bevorzugt zwei gegenüberliegende Seitenwände, noch bevorzugter alle vier Seitenwände, des quaderförmigen Behälters vollständig, durch die erstarrte Schmelze ausgefüllt wird/werden.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass Schritt b) so ausgeführt wird, dass der Boden des Behälters mit der erstarrten Schmelze bedeckt ist.
 - 5. Verfahren nach einem der Ansprüche 1 bis 4, **dadurch gekennzeichnet**, **dass** Schritt b) so ausgeführt wird, dass mindestens 70 % der, bevorzugt mindestens 80%, noch bevorzugter mindestens 90 %, und noch bevorzugter 100% weiteren Ecke(n) und/oder Kante(n) mit der erstarrten Schmelze ausgefüllt werden.
 - **6.** Portioniertes Wasch- oder Reinigungsmittel mit folgenden Merkmalen:
 - a) einem Behälter aus wasserlöslichem Material mit mindestens einer von einer Kante umgebenen Öffnung und mindestens einer weiteren Ecke und/oder Kante;
 - b) einer in dem Behälter befindlichen wasch- oder reinigungsaktiven erstarrten Schmelze, wobei die erstarrte Schmelze zumindest die weitere(n) Ecke(n) und/oder Kante(n) des Behälters zumindest anteilsweise ausfüllt;
 - c) mindestens einem weiteren Wasch- oder Reinigungsmittel in dem verbleibenden Hohlraum des Behälters mit erstarrter Schmelze; und
 - d) mindestens einem Verschluß, welcher den Behälter an der/den von einer Kante umgebenen Öffnung(en) abschließt.

dadurch gekennzeichnet, dass als weiteres Wasch- und/oder Reinigungsmittel zumindest ein pulverförmiges Wasch- oder Reinigungsmittel, und wahlweise ein oder mehrere weitere Wasch- oder Reinigungsmittel enthalten sind und dass der Behälter ein quaderförmiger Behälter ist, wobei in dem quaderförmigen Behälter neben der/den weiteren Ecke(n) und/oder Kante(n) weiterhin mindestens eine Seitenwand vollständig durch die erstarrte Schmelze bedeckt sind.

- 7. Portioniertes Wasch- und/oder Reinigungsmittel nach Anspruch 6, dadurch gekennzeichnet, dass der Behälter quaderförmig ist, wobei in dem quaderförmigen Behälter neben der/den weiteren Ecke(n) und/oder Kante(n) zwei Seitenwände, weiterhin bevorzugt zwei gegenüberliegende Seitenwände, noch bevorzugter alle vier Seitenwände, vollständig, durch die erstarrte Schmelze bedeckt sind.
- Portioniertes Wasch- und/oder Reinigungsmittel nach Anspruch 6 oder 7, _dadurch gekennzeichnet, dass der Boden des Behälters mit der erstarrten Schmelze bedeckt ist.
 - 9. Portioniertes Wasch- und/oder Reinigungsmittel nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass mindestens 70 %, bevorzugt mindetens 80%, noch bevorzugter mindestens 90 %, und noch bevorzugter

100% der weiteren Ecke(n) und/oder Kante(n) mit der erstarrten Schmelze ausgefüllt sind.

10. Portioniertes Wasch- und/oder Reinigungsmittel nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass es als Mehrkammerkörper vorliegt.

Claims

- 1. A method for producing portioned washing or cleaning agents, comprising the following steps:
 - a) shaping a water-soluble material to form a container having at least one opening, an edge surrounding said opening and at least one further corner and/or edge;
 - b) introducing a washing- or cleaning-active melt and solidifying the melt;
 - c) filling the container with at least one further washing or cleaning agent; and
 - d) packaging the filled container,

characterized in that the container formed in step a) is filled with the melt in step b) in such a way that at least the further corner(s) and/or edge(s) of the container are at least partly filled by the solidified melt, in that in step a) a cuboidal container is formed and in step b), in addition to the further corner(s) and/or edge(s), at least one side wall of the cuboidal container is also filled by the solidified melt, and in that in step c) a powdered further washing and/or cleaning agent constituent is introduced.

- 2. The method according to claim 1, characterized in that the shaping in step a) is carried out by thermoforming.
- 3. The method according to claim 1 or 2, characterized in that step a) is carried out in such a way that a cuboidal container is formed, and in step b), in addition to the further corner(s) and/or edge(s), two side walls, more preferably two opposite side walls, even more preferably all four side walls, of the cuboid container are also completely filled by the solidified melt.
- 30 4. The method according to claim 3, characterized in that step b) is carried out in such a way that the bottom of the container is covered with the solidified melt.
 - 5. The method according to one of claims 1 to 4, characterized in that step b) is carried out in such a way that at least 70%, preferably at least 80%, more preferably at least 90%, and even more preferably 100% of the further corner(s) and/or edge(s) are filled with the solidified melt.
 - **6.** A portioned washing or cleaning agent having the following features:
 - a) a container made of water-soluble material and having at least one opening surrounded by an edge and having at least one further corner and/or edge;
 - b) a washing- or cleaning-active solidified melt in the container, the solidified melt at least partly filling at least the further corner(s) and/or edge(s) of the container;
 - c) at least one further washing or cleaning agent in the remaining cavity of the container with solidified melt; and
 - d) at least one closure which closes the container at the opening(s) surrounded by an edge,

characterized in that, as a further washing and/or cleaning agent, at least one powdered washing or cleaning agent is contained, and optionally one or more further washing or cleaning agents are contained, and in that the container is a cuboidal container, in which cuboidal container, in addition to the further corner(s) and/or edge(s), at least one side wall is also covered by the solidified melt.

- 7. The portioned washing and/or cleaning agent according to claim 6, characterized in that the container is cuboidal, in which cuboidal container, in addition to the further corner(s) and/or edge(s), two side walls, more preferably two opposite side walls, even more preferably all four side walls, are completely covered by the solidified melt.
- 55 8. The portioned washing and/or cleaning agent according to claim 6 or 7, characterized in that the bottom of the container is covered with the solidified melt.
 - 9. The portioned washing and/or cleaning agent according to one of claims 6 to 8, characterized in that at least 70%,

47

5

10

15

20

25

35

40

45

50

preferably at least 80%, more preferably at least 90%, and even more preferably 100% of the further corner(s) and/or edge(s) are filled with the solidified melt.

10. The portioned washing and/or cleaning agent according to one of claims 6 to 9, **characterized in that** the portioned washing and/or cleaning agent is in the form of a multi-chamber body.

Revendications

5

15

20

30

40

45

50

- 10 1. Procédé de fabrication d'agents de lavage ou de nettoyage en portions, comportant les étapes suivantes :
 - a) mise en forme d'un matériau soluble dans l'eau pour former un contenant comportant au moins une ouverture, une arête entourant cette ouverture et au moins un coin et/ou une arête supplémentaire ;
 - b) incorporation d'une fonte à action de lavage ou de nettoyage et solidification de la fonte ;
 - c) remplissage du contenant avec au moins un agent de lavage ou de nettoyage supplémentaire ; et
 - d) confection du contenant rempli,

caractérisé en ce que le contenant réalisé à l'étape a) est rempli à l'étape b) avec la fonte de telle sorte qu'au moins l'autre/les autres coin(s) et/ou arête(s) du contenant est/sont rempli(s) au moins partiellement moyennant la fonte solidifiée, en ce qu'à l'étape a), un contenant parallélépipédique est réalisé et à l'étape b), en plus de l'autre/des autres coin(s) et/ou arête(s), au moins une paroi latérale du contenant parallélépipédique est en outre complètement rempli moyennant la fonte solidifiée, et en ce qu'à l'étape c), une autre partie pulvérulente de l'agent de lavage et/ou de nettoyage est introduite.

- 25 **2.** Procédé selon la revendication 1, **caractérisé en ce que** la mise en forme s'effectue par thermoformage à l'étape a).
 - 3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'étape a) est effectuée de telle sorte qu'un contenant parallélépipédique est formé, et à l'étape b), en plus de l'autre/des autres coin(s) et/ou arête(s), deux autres parois latérales, de préférence deux autres parois latérales opposées, plus préférablement toutes les quatre parois latérales, du contenant parallélépipédique est/sont complètement rempli(s) moyennant la fonte solidifiée.
 - **4.** Procédé selon la revendication 3, **caractérisé en ce que** l'étape b) est effectuée de telle sorte que le fond du contenant est recouvert avec la fonte solidifiée.
- 5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'étape b) est effectuée de telle sorte qu'au moins 70 %, de préférence au moins 80 %, plus préférablement au moins 90 %, et plus préférentiellement encore 100 % de l'autre/des autres coin(s) et/ou arête(s) sont remplis avec la fonte solidifiée.
 - 6. Agent de lavage ou de nettoyage en portions, ayant les caractéristiques suivantes :
 - a) un contenant en matériau soluble dans l'eau comportant au moins une ouverture entourée par une arête et au moins un autre coin et/ou une autre arête ;
 - b) une fonte solidifiée à action de lavage ou de nettoyage se trouvant dans le contenant, dans lequel la masse solidifiée remplit au moins partiellement l'autre/les autres coin(s) et/ou arête(s) du contenant ;
 - c) au moins un agent de lavage ou de nettoyage dans l'espace vide restant du contenant dans lequel se trouve la fonte solidifiée ; et
 - d) au moins un obturateur qui ferme le contenant au niveau de(s) ouvertures entourée(s) par l'arête,

caractérisé en ce qu'au moins un agent de lavage ou de nettoyage pulvérulent, et sélectivement un ou plusieurs autres agents de lavage ou de nettoyage sont présents comme autre agent de lavage et/ou de nettoyage, et en ce que le contenant est un contenant parallélépipédique, dans lequel, dans le contenant parallélépipédique, en plus de l'autre/des autres coin(s) et/ou arête(s), au moins une autre paroi latérale est recouverte au moyen de la fonte solidifiée.

7. Agent de lavage et/ou de nettoyage en portions selon la revendication 6, **caractérisé en ce que** le contenant est parallélépipédique, dans lequel, dans le contenant parallélépipédique, en plus de l'autre/des autres coin(s) et/ou arête(s), deux parois latérales, de préférence deux autres parois latérales opposées, plus préférablement toutes les quatre parois latérales, sont complètement recouvertes au moyen de la fonte solidifiée.

8	В.	Agent de lavage et/ou de nettoyage en portions selon la revendication 6 ou 7, caractérisé en ce que le fond du contenant est recouvert au moyen de la fonte solidifiée.
Ş	9.	Agent de lavage et/ou de nettoyage en portions selon l'une des revendications 6 à 8, caractérisé en ce qu' au moins 70 %, de préférence au moins 80 %, plus préférablement au moins 90 %, et plus préférentiellement encore 100 % de l'autre/des autres coin(s) et/ou arête(s) sont remplis moyennant la fonte solidifiée.
1	10.	Agent de lavage et/ou de nettoyage en portions selon l'une des revendications 6 à 9, caractérisé en ce qu' il se présente sous forme de corps avec chambre de mesure.

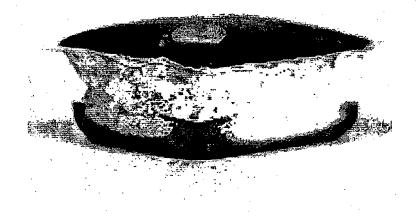


Foto Nr 1

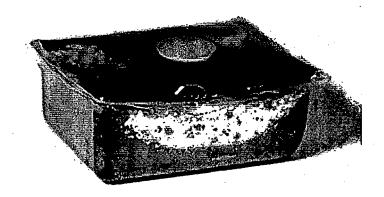


Foto Nr 2

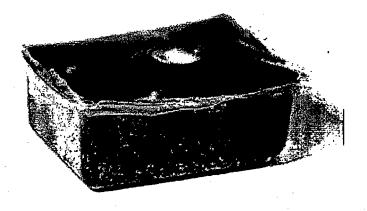


Foto Nr 3

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

WO 03031266 A [0056]

In der Beschreibung aufgeführte Nicht-Patentliteratur

- Römpp Chemie Lexikon. Georg Thieme Verlag, 1990, 2507 [0278]
- Römpp Chemie Lexikon. Georg Thieme Verlag, 1991, 3168 [0279]
- Römpp. vol. 6, 4440 **[0284]**

- VOIGT. Lehrbuch der pharmazeutischen Technologie. 1987, 182-184 [0284]
- CHEMICAL ABSTRACTS, 12217-22-0 [0302]
- CHEMICAL ABSTRACTS, 12219-32-8 [0302]
- CHEMICAL ABSTRACTS, 61814-57-1 [0302]
- CHEMICAL ABSTRACTS, 12219-26-0 [0302]