(11) EP 1 783 809 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: **09.05.2007 Patentblatt 2007/19**

(51) Int Cl.: H01J 35/08 (2006.01)

(21) Anmeldenummer: 06022475.5

(22) Anmeldetag: 27.10.2006

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

(30) Priorität: 07.11.2005 DE 102005053386

- (71) Anmelder: COMET GmbH 30827 Garbsen (DE)
- (72) Erfinder: Reinhold, Alfred 31515 Wunstorf (DE)
- (74) Vertreter: Wagner, Carsten Leine & Wagner Patentanwälte Burckhardtstrasse 1 30163 Hannover (DE)

(54) Nanofocus-Röntgenröhre

(57)Eine erfindungsgemäße Nanofocus-Röntgenröhre (20) weist ein Target (4) und Mittel zum Richten eines Elektronenstrahles (28) auf das Target (4) auf. Erfindungsgemäß weist das Target (4) wenigstens ein aus einem Targetmaterial bestehendes Targetelement (22,24,26) zur Emission von Röntgenstrahlung auf, das durch eine mittels eines Mikrostrukturierungsverfahrens auf einem aus einem Trägermaterial bestehenden Trägerelement (4) gebildete Nanostruktur mit einem Durchmesser ≤ etwa 1.000 nm gebildet ist, wobei das Targetelement (6,22,24,26) das Trägerelement (4) nur teilweise bedeckt und wobei bei Betrieb der Röntgenröhre (20) der Querschnitt des Elektronenstrahles derart größer als der Querschnitt des Targetelementes (6 bzw. 22 bzw. 24 bzw. 26) gewählt ist, daß der Elektronenstrahl (28) das Targetelement (6 bzw. 22 bzw. 24 bzw. 26) stets vollflächig bestrahlt. Erfindungsgemäß ist oder enthält das Trägermaterial Diamant, der zur Erhöhung der elektrischen Leitfähigkeit dotiert ist.

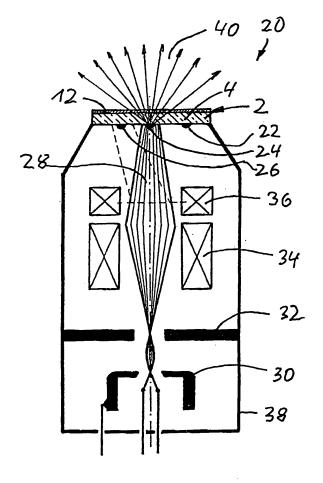


Fig. 8

EP 1 783 809 A2

Beschreibung

[0001] Die Erfindung betrifft eine Nanofocus-Röntgenröhre der im Oberbegriff des Anspruchs 1 genannten Art. [0002] Nanofocus-Röntgenröhren der betreffenden Art sind allgemein bekannt. Sie weisen ein Target und Mittel zum Richten eines Elektronenstrahles auf das Target auf. Sie dienen beispielsweise in bildgebenden Verfahren zur hochauflösenden Untersuchung von Bauteilen, beispielsweise von Leiterplatten in der Elektronikindustrie. Um in derartigen bildgebenden Verfahren eine hohe räumliche Auflösung zu erzielen, wird bei den bekannten Nanofocus-Röntgenröhren der Elektronenstrahl so geformt, daß sich beim Auftreffen auf das Target ein Brennfleck mit einem Durchmesser s 1.000 nm bildet. [0003] Zur Erzielung eines entsprechend geringen Querschnittes des Elektronenstrahles sind Nanofocus-Röntgenröhren bekannt, die nach dem Prinzip der Röntgenbeugung arbeiten und in denen Fresnel-Linsen eingesetzt sind. Mit derartigen Nanofocus-Röntgenröhren lassen sich Brennfleckdurchmesser bis minimal etwa 40-30 nm erzielen, wobei bei der Beschleunigung der Elektronen in Richtung auf das Target prinzipbedingt mit einer relativ niedrigen Energie von etwa 20 KeV gearbeitet wird.

[0004] Es sind ferner Nanofocus-Röntgenröhren bekannt, in denen Brechungslinsen verwendet werden. Mit derartigen Nanofocus-Röntgenröhren lassen sich Brennfleckdurchmesser bis minimal etwa 1.000 nm erzeugen, wobei bei der Beschleunigung der Elektroden ebenfalls nur relativ niedrige Energien von etwa 20-30 KeV verwendet werden können.

[0005] Darüber hinaus sind Nanofocus-Röntgenröhren bekannt, in denen der gewünschte geringe Durchmesser und damit Querschnitt des Elektronenstrahles dadurch erzielt werden, daß im Strahlungsweg des Elektronenstrahles eine Vielzahl von hintereinander angeordneten elektromagnetischen Linsen verwendet wird. Mit derartigen Nanofocus-Röntgenröhren lassen sich Brennfleckdurchmesser von minimal etwa 100 - 200 nm erzielen, wobei beispielsweise bei einem Brennfleckdurchmesser von 1.000 nm die Elektronen mit einer Energie von 100 KeV beschleunigt werden können.

[0006] Ein Nachteil der bekannten Nanofocus-Röntgenröhren besteht darin, daß sie zur Erzielung eines gewünschten geringen Querschnitts des Elektronenstrahles am Auftreffort auf das Target einen hohen apparativen Aufwand, beispielsweise in Form einer Vielzahl von elektromagnetischen Linsen erfordern. Sie sind damit aufwendig und teuer in der Herstellung.

[0007] Der Erfindung liegt die Aufgabe zugrunde, eine Nanofocus-Röntgenröhre der im Oberbegriff des Anspruchs 1 genannten Art anzugeben, die mit einem vereinfachten und damit kostengünstiger gestalteten Aufbau die Erzielung von für eine hochauflösende Untersuchung von Bauteilen in bildgebenden Verfahren erforderlichen geringen Durchmesser des Brennflecks von s 1.000 nm ermöglicht.

[0008] Diese Aufgabe wird durch die im Anspruch 1 angegebene Lehre gelöst.

[0009] Die Erfindung löst sich zunächst von dem Gedanken, den gewünschten geringen Durchmesser des Brennflecks dadurch zu erzielen, daß der auf das Target auftreffende Elektronenstrahl entsprechend geformt wird. Ihr liegt vielmehr der Gedanke zugrunde, die Nanofocus-Röntgenröhre so auszugestalten, daß der Durchmesser des Brennflecks nicht mehr von dem Querschnitt des Elektronenstrahles abhängig ist, sondern ausschließlich von dem Querschnitt eines Targetelementes. Hierzu sieht die erfindungsgemäße Lehre vor, daß das Target wenigstens ein aus einem Targetmaterial bestehendes Targetelement zur Emission von Röntgenstrahlung aufweist, das durch eine mittels eines Mikrostrukturierungsverfahrens auf einem aus einem Trägermaterial bestehenden Trägerelementes gebildete Nanostruktur mit einem Durchmesser ≤ etwa 1.000 nm gebildet ist, wobei das Targetelement das Trägerelement nur teilweise bedeckt. Erfindungsgemäß ist bei Betrieb der Röntgenröhre der Querschnitt des Elektronenstrahles am Auftreffort auf das Target derart größer als der Querschnitt des Targetelementes gewählt, daß der Elektronenstrahl das Targetelement stets vollflächig bestrahlt. Aufgrunddessen ist sichergestellt, daß auch bei Veränderungen des Querschnitts des Elektronenstrahles am Auftreffort auf das Target, die beispielsweise in einer Querschnittsverringerung, einer Querschnittsvergrößerung, einer zur Strahlrichtung des Elektronenstrahles seitlichen Verschiebung oder einer Verzerrung des Querschnitts des Elektronenstrahles bestehen können, das Targetelement, das Form und Größe des Brennflecks definiert, stets von dem Elektronenstrahl bestrahlt

[0010] Erfindungsgemäß sind das Trägermaterial und das Targetmaterial unterschiedliche Materialien. Hierbei ist das Targetmaterial im Hinblick auf eine Emission von Röntgenstrahlung einer gewünschten Wellenlänge oder in einem gewünschten Wellenlängenbereich ausgewählt, während das Trägermaterial, nämlich Diamant vornehmlich im Hinblick auf seinen Wärmeleitkoeffizienten ausgewählt ist. Insoweit liegt der Erfindung die Erkenntnis zugrunde, daß beispielsweise bei Benutzung von Diamant als Trägermaterial zwar eine ausreichende Ableitung der entstehenden Wärme gewährleistet ist, sich gleichzeitig jedoch aufgrund der elektrischen Isolationseigenschaften von Diamant das Target elektrisch auflädt. Weiterhin liegt der Erfindung insoweit die Erkenntnis zugrunde, daß die elektrische Aufladung des Targets die Bildqualität im bildgebenden Verfahren insofern verschlechtert, als beispielsweise ein unkontrolliertes Ablösen von Ladungen und Wiederauftreffen auf das Target zu einer unkontrollierten zusätzlichen Emission von Röntgenstrahlung führen kann. Erfindungsgemäß wird als Trägermaterial Diamant verwendet, der ein elektrischer Isolator ist, jedoch durch Dotierung mit einem geeigneten Dotierungsmaterial, beispielsweise einem Metall, elektrisch leitfähig gemacht ist. Infolgedessen

50

40

können elektrische Ladungen, beispielsweise Elektronen, von dem Target abgeleitet werden, so daß eine die Bildqualität beeinträchtigende elektrische Aufladung des Targets zuverlässig vermieden ist. Es hat sich überraschend gezeigt, daß sich auf diese Weise die Bildqualität einer erfindungsgemäßen Nanofocus-Röntgenröhre noch wesentlich verbessern läßt.

[0011] Die mittels Dotierung des Trägermaterials erzielte elektrische Leitfähigkeit kann entsprechend den jeweiligen Anforderungen innerhalb weiter Grenzen varieren. Darüber hinaus kann das Dotierungsmaterial innerhalb weiter Grenzen gewählt werden.

[0012] Erfindungsgemäß ist der Querschnitt des Trägerelementes senkrecht zur Strahlungsrichtung definiert größer als der Querschnitt des Targetelementes in dieser Richtung, so daß das Targetelement nur einen Teil der Oberfläche des Trägerelementes bedeckt. Weiterhin hat das Trägermaterial eine geringere Dichte, eine hohe Wärmeleitfähigkeit und aufgrund der erfindungsgemäß vorgesehenen Dotierung auch die Fähigkeit, elektrische Ladungen abzuleiten, während das Targetmaterial ein Material hoher Dichte, beispielsweise Wolfram, ist. Auftreffende Elektronen werden in dem Targetmaterial auf sehr kurzem Wege abgebremst, wobei bevorzugt kurzwellige Röntgenstrahlung entsteht. In dem Trägermaterial geringer Dichte werden eindringende Elektronen hingegen auf sehr langen Wegen abgebremst, so daß mehr langwellige Strahlung entsteht, die beispielsweise mittels eines geeigneten Filters ausgefiltert werden kann. Daraus ergibt sich, daß erfindungsgemäß Form, Größe und Ort des Brennflecks durch Form, Größe und Ort des Targetelementes festgelegt sind.

[0013] Da erfindungsgemäß Röntgenstrahlung der gewünschten Wellenlänge oder in einem gewünschten Wellenlängenbereich ausschließlich in dem Targetelement erzeugt wird und das Targetelement somit den Brennfleck der Röntgenröhre definiert, sind Form und Größe des Brennflecks nicht mehr von dem Querschnitt des Elektronenstrahles abhängig, sondern ausschließlich von dem Querschnitt des Targetelementes, sofern der Elektronenstrahl bei Betrieb der Röntgenröhre das Target stets vollflächig bestrahlt. Zwar wird auch in dem Trägerelement Röntgenstrahlung erzeugt. Diese hat jedoch eine andere Wellenlänge bzw. liegt in einem anderen Wellenlängenbereich als die in dem Targetelement erzeugte Nutzstrahlung, so daß sie ohne weiteres herausgefiltert werden kann. Aufgrunddessen kann erfindungsgemäß der Brennfleck eines Targets einer Nanofocus-Röntgenröhre nahezu beliebig klein gestaltet werden, wobei Grenzen lediglich durch zur Verfügung stehende Mikrostrukturierungsverfahren zum Bilden von Nanostrukturen gesetzt sind.

[0014] Da Form, Größe und Ort des Brennflecks ausschließlich durch Form, Größe und Ort des Targetelementes festgelegt sind, entfallen bei einer erfindungsgemäßen Nanofocus-Röntgenröhre konstruktiv aufwendige Maßnahmen, die bei herkömmlichen Nanofocus-Röntgenröhren erforderlich sind, um Form, Größe und

Ort des Elektronenstrahles zu stabilisieren, der bei den bekannten Röntgenröhren Form, Größe und Ort des Brennflecks der Röntgenröhre definiert. Damit ermöglicht das erfindungsgemäße Target mit äußerst geringem Aufwand den Aufbau einer Nanofocus-Röntgenröhre, bei der Form, Größe und Ort des Brennflecks hochstabil sind und die damit bei Verwendung im bildgebenden Verfahren eine besonders hohe Bildqualität ermöglicht.

[0015] Als Targetmaterial kann entsprechend den jeweiligen Anforderungen ein Material verwendet werden, das bei Beschuß mit Elektronen Röntgenstrahlung einer gewünschten Wellenlänge oder in einem gewünschten Wellenlängenbereich emittiert.

[0016] Unter einer Nanofocus-Röntgenröhre wird erfindungsgemäß eine Röntgenröhre verstanden, bei der der Durchmesser des Brennflecks \leq 1.000 nm ist.

[0017] Bei einem nichtkreisförmigen Brennfleck wird erfindungsgemäß unter dem Durchmesser die größte Ausdehnung des Brennflecks in der Brennebene bzw. Focusebene verstanden.

[0018] Zahlenwerte von Wärmeleitkoeffizienten beziehen sich auf Zimmertemperatur.

[0019] Da erfindungsgemäß Form und Größe und damit der Querschnitt des Brennflecks der Nanofocus-Röntgenröhre ausschließlich von Form und Größe und damit dem Querschnitt des Targetelementes abhängig sind, und nicht mehr von dem Querschnitt des Elektronenstrahles, ist erfindungsgemäß eine hochpräzise Formung des Elektronenstrahles am Auftreffort auf das Target nicht mehr erforderlich. Demzufolge sind erfindungsgemäß Mittel zur hochpräzisen Formung des Querschnitts des Elektronenstrahles, wie sie bei bekannten Nanofocus-Röntgenröhren erforderlich sind, nicht mehr erforderlich. Erfindungsgemäß ist grundsätzlich ausschließlich eine einzige Fokussiereinrichtung, beispielsweise in Form eine elektromagnetischen Linse erforderlich. Damit ist der apparative Aufwand der erfindungsgemäßen Nanofocus-Röntgenröhre gegenüber herkömmlichen Nanofocus-Röntgenröhren wesentlich verringert, so daß die erfindungsgemäße Nanofocus-Röntgenröhre wesentlich einfacher und damit kostengünstiger herstell-

[0020] Ein besonderer Vorteil der erfindungsgemäßen Nanofocus-Röntgenröhre besteht darin, daß sie gegenüber Störeinflüssen in Bezug auf die Formung des Elektronenstrahles wesentlich unempfindlicher ist als herkömmliche Nanofocus-Röntgenröhren.

[0021] Da erfindungsgemäß Form und Größe des Brennflecks ausschließlich von Form und Größe des Targetelementes abhängig sind, ist die Größe des Brennflecks einer erfindungsgemäßen Nanofocus-Röntgenröhre ausschließlich von der erzielbaren räumlichen Auflösung des verwendeten Mikrostrukturierungsverfahrens abhängig. Als Mikrostrukturierungsverfahren können Depositionsverfahren, beispielsweise dreidimensionale additive Nanolithographie oder lonenstrahlsputtern, aber auch abtragende Verfahren, beispielsweise Elektronenlithographie oder Ätzverfahren, verwendet wer-

den. Insbesondere mit Depositionsverfahren lassen sich Nanostrukturen mit einem Durchmesser von 2 nm oder sogar darunter bilden. Die erfindungsgemäße Lehre ermöglicht somit Nanofocus-Röntgenröhren, deren räumliche Auflösung bei Verwendung in bildgebenden Verfahren wesentlich höher ist als die Auflösung herkömmlicher Nanofocus-Röntgenröhren.

[0022] Eine außerordentlich vorteilhafte Weiterbildung der erfindungsgemäßen Lehre sieht vor, daß das Trägerelement wenigstens teilweise aus einem Trägermaterial besteht, dessen Wärmeleitkoeffizient ≥ 10 W/(cm x K), vorzugsweise ≥ 20 W/(cm x K), ist. Auf diese Weise ist die Wärmeleitfähigkeit des Trägermaterials besonders hoch, so daß beim Beschuß des Targetelementes mit Elektronen entstehende Wärme besonders gut abgeleitet wird. Dies erhöht die Lebensdauer des erfindungsgemäßen Targets.

[0023] Erfindungsgemäß ist es ausreichend, wenn auf dem Trägerelement lediglich ein einziges Targetelement angeordnet ist. Es ist erfindungsgemäß jedoch auch möglich, auf dem Trägerelement eine Mehrzahl von zueinander beabstandeten Targetelementen anzuordnen. Ist bei einer solchen Ausführungsform ein Targetelement abgenutzt, so kann der Elektronenstrahl auf ein anderes Targetelement gelenkt werden, so daß die Röntgenröhre ohne Austauch des Targetelementes weiterverwendet werden kann.

[0024] Grundsätzlich kann das Targetelement eine beliebige geeignete Geometrie haben. Um bei Verwendung einer erfindungsgemäßen Nanofocus-Röntgenröhre in einem bildgebenden Verfahren eine hohe Bildqualität zu erzielen, sieht eine vorteilhafte Weiterbildung der erfindungsgemäßen Lehre vor, daß wenigstens ein Targetelement im wesentlichen kreisförmig begrenzt ist.

[0025] Eine andere vorteilhafte Weiterbildung der erfindungsgemäßen Lehre sieht vor, daß das Targetelement ein Filter aufweist, das für in dem Targetelement erzeugte Röntgenstrahlung durchlässig ist und in dem Trägerelement erzeugte Röntgenstrahlung sperrt. Auf diese Weise ist sichergestellt, daß eine erfindungsgemäße Nanofocus-Röntgenröhre ausschließlich Röntgenstrahlung einer gewünschten Wellenlänge oder in einem gewünschten Wellenlängenbereich abstrahlt.

[0026] Grundsätzlich kann das Target der erfindungsgemäßen Nanofocus-Röntgenröhre ein Massivtarget (Direktstrahltarget) sein, das einen Metallblock mit hoher Wärmeleitfähigkeit, beispielsweise aus Kupfer oder Aluminium aufweist, auf den das erfindungsgemäße Trägerelement, beispielsweise als Trägerschicht, aufgebracht ist, und das seinerseits das Targetelement trägt. Eine vorteilhafte Weiterbildung der erfindungsgemäßen Lehre sieht jedoch vor, daß das Target als Transmissionstarget ausgebildet ist.

[0027] Die Erfindung wird nachfolgend anhand der beigefügten, stark schematisierten Zeichnung näher erläutert, in der Ausführungsbeispiele eines erfindungsgemäßen Targets dargestellt sind. Dabei bilden alle beanspruchten, beschriebenen oder in der Zeichnung darge-

stellten Merkmale für sich genommen oder in beliebiger Kombination miteinander den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in der Zeichnung.

[0028] Es zeigt:

- Fig. 1 eine Schnittansicht eines Ausführungsbeispieles eines erfindungsgemäßen Targets zur Erläuterung des erfindungsgemäßen Grundprinzips.
- Fig. 2 eine zu Fig. 1 ähnliche Ansicht,
- Fig. 3 eine Draufsicht auf das Target gemäß Fig. 1,
- Fig. 4 eine Schnittansicht eines zweiten Ausführungsbeispieles eines erfindungsgemäßen Targets,
- Fig. 5 eine Draufsicht auf das Target gemäß Fig. 4,
- Fig. 6 eine zu Fig. 5 ähnliche Draufsicht,
- Fig. 7 eine weitere zu Fig. 5 ähnliche Draufsicht und
- Fig. 8 eine Prinzipskizze eines Ausführungsbeispieles einer erfindungsgemäßen Nanofocus-Röntgenröhre.

[0029] In den Figuren der Zeichnung sind gleiche bzw. sich entsprechende Bauteile mit den gleichen Bezugszeichen versehen.

[0030] Die Figuren der Zeichnung stellen reine Prinzipskizzen dar, die nicht maßstäblich sind.

- [0031] In Fig. 1 ist ein erstes Ausführungsbeispiel eines erfindungsgemäßen Targets 2 für eine Nanofocus-Röntgenröhre dargestellt, das ein Trägerelement 4 und bei diesem Ausführungsbeispiel ein an dem Trägerelement 4 angeordnetes, aus einem Targetmaterial bestehendes Targetelement 6 zur Emission von Röntgenstrahlung aufweist. Das Trägerelement 4 besteht prinzipiell aus einem Trägermaterial geringer Dichte und hoher Wärmeleitfähigkeit, nämlich Diamant, dessen Wärmeleitkoeffizient ≥ 20 W/(cm x K) ist.
- 40 [0032] Erfindungsgemäß ist der als Trägermaterial verwendete Diamant zur Erhöhung der elektrischen Leitfähigkeit dotiert, bei dem vorliegenden Ausführungsbeispiel mit Metallionen. Dadurch, daß das Trägermaterial mittels der Dotierung elektrisch leitfähig gemacht ist, können elektrische Ladungen von dem Trägerelement 4 abfließen, so daß eine elektrische Aufladung des Trägerelementes 4 und damit des Targets 2 vermieden ist.
 - [0033] Das Targetelement 6 besteht aus einem Material hoher Dichte, bei dem vorliegenden Ausführungsbeispiel Wolfram, das bei Beschuß mit elektrisch geladenen Teilchen, insbesondere Elektronen, Röntgenstrahlung emittiert.

[0034] Aus Fig. 1 ist nicht ersichtlich, daß das Targetelement 6 in der Draufsicht im wesentlichen kreisförmig begrenzt ist und bei diesem Ausführungsbeispiel einen Durchmesser von s etwa 1.000 nm aufweist.

[0035] Das Targetelement 6 ist bei diesem Ausführungsbeispiel eine mittels eines Mikrostrukturierungsver-

40

50

fahrens auf dem Trägerelement 4 gebildete Nanostruktur

[0036] Bei Bestrahlung des Targets 2 mit Elektronen werden diese in dem Targetelement 6 auf sehr kurzem Wege abgebremst, wobei kurzwellige Röntgenstrahlung entsteht. In dem Trägermaterial geringerer Dichte des Trägerelementes 4 werden eindringende Elektronen dagegen auf sehr langen Wegen abgebremst, wobei mehr langwellige Strahlung entsteht. In Fig. 1 ist ein Fall dargestellt, in dem ein Elektronenstrahl mit einem Durchmesser d_{E1} auf das Targetelement 6 auftrifft, wobei der Durchmesser d_{F1} in diesem Fall kleiner als der Durchmesser des Targetelementes 6 ist. Die Abbremsung der Elektronen in dem Targetelement 6 führt zu einer kurzwelligen Röntgenstrahlung mit einem Quellendurchmesser d_{X1}, der kleiner oder gleich dem Durchmesser des Targetelementes 6 ist. Die durch das Targetelement 6 hindurch in das weniger dichte Trägermaterial des Trägerelementes 4 eintretenden Elektronen werden auf sehr langen Wegen innerhalb des Bremsvolumens des Trägerelementes 4 abgebremst und führen zu überwiegend langwelliger Strahlung, die mit geeigneten Filtern zurückgehalten werden kann, so daß nur der kürzerwellige Strahlungsanteil wirksam wird, der aus dem Targetelement 6 stammt, das erfindungsgemäß nur einen Teil des Trägerelementes 4 bedeckt.

[0037] In Fig. 2 ist ein Fall dargestellt, in dem der Durchmesser des Querschnitts des Elektronenstrahles d_{E2} deutlich größer ist als der Durchmesser des Targetelementes 6. Auch in diesem Fall entsteht die überwiegend kurzwellige Strahlung in dem definiert begrenzten Targetelement 6 mit dem Durchmesser d_{X2}, während die in das weniger dichte Trägermaterial des Trägerelementes 4 eindringenden Elektronen innerhalb des Bremsvolumens 8 zu mehr langwelliger Strahlung führen, die herausgefiltert werden kann, damit nur die aus dem Targetelement 6 stammende kürzerwellige Strahlung mit einer definierten Wellenlänge oder einem definierten Wellenlängenbereich wirksam wird.

[0038] Aus einem Vergleich der Fig. 1 und 2 ist ersichtlich, daß Form, Größe und Ort des Brennflecks der Röntgenröhre ausschließlich von Form, Größe und Ort des Targetelementes 6 abhängig sind, und nicht von Form, Größe und Ort des Querschnitts des Elektronenstrahles. [0039] Fig. 3 zeigt eine Draufsicht auf das Target gemäß Fig. 2, wobei ersichtlich ist, daß der Durchmesser de und damit der Querschnitt 10 des Elektronenstrahles größer ist als der Durchmesser d_M und damit der Querschnitt des Targetelementes 6. Wie anhand der Fig. 1 und 2 erläutert, ist für den Querschnitt des Brennflecks der Röntgenröhre jedoch ausschließlich der Querschnitt des Trägerelementes 6 maßgeblich.

[0040] In Fig. 4 ist ein zweites Ausführungsbeispiel eines als Transmissionstarget ausgebildeten erfindungsgemäßen Targets 2 dargestellt, das sich von dem Ausführungsbeispiel gemäß Fig. 1 dadurch unterscheidet, daß das Trägerelement 4 auf seiner dem Targetelement 6 abgewandten Seite ein Strahlenfilter 12 aufweist, das

für in dem Targetelement 6 erzeugte Röntgenstrahlung 14 weitgehend durchlässig ist, in dem Trägerelement 4 erzeugte Röntgenstrahlung 16 jedoch weitgehend absorbiert. Das Filter 12 kann beispielsweise durch eine Aluminiumfolie gebildet sein.

[0041] In Fig. 5 ist mit dem Bezugszeichen 10 ein voreingestellter Querschnitt des Elektronenstrahles bezeichnet, während mit dem Bezugszeichen 18A ein aufgrund von Störeinflüssen verkleinerter Querschnitt und mit dem Bezugszeichen 18B ein aufgrund von Störeinflüssen vergrößerter Querschnitt des Elektronenstrahles bezeichnet ist. Da der Querschnitt des Brennflecks der Röntgenröhre ausschließlich von dem Querschnitt des Targetelementes 6 abhängig und dieser konstant ist, haben Schwankungen des Querschnitts des Elektronenstrahles keine Auswirkungen auf den Querschnitt des Brennflecks, solange das Targetelement 6 von dem Elektronenstrahl vollflächig bestrahlt wird.

[0042] Wie aus Fig. 6 ersichtlich ist, gilt entsprechendes auch bei einer seitlichen Verschiebung des Elektronenstrahles in eine Position 18C, da auch in dieser Position des Elektronenstrahles das Targetelement 6 noch vollflächig von dem Elektronenstrahl erfaßt ist.

[0043] Wie aus Fig. 7 ersichtlich ist, sind auch Veränderungen des Querschnitts des Elektronenstrahles ohne Auswirkung auf den Querschnitt des Brennflecks, solange auch nach einer Querschnittsveränderung des Elektronenstrahles das Targetelement 6 noch vollflächig bestrahlt wird. Lediglich beispielhalber sind in Fig. 7 zwei verzerrte Querschnitte des Elektronenstrahles mit den Bezugszeichen 18D und 18E bezeichnet. Da der Querschnitt des Brennfleckes ausschließlich von dem Querschnitt des Targetelementes 6 abhängig und dieser konstant und ortsstabil ist, führen Querschnittsveränderungen des Elektronenstrahles nicht zu einer Verschlechterung der Röntgenbildqualität bei Verwendung eines erfindungsgemäßen Targets 2 in einer Röntgenröhre in einem bildgebenden Verfahren.

[0044] Wie aus einer Zusammenschau der Fig. 5 bis 7 ersichtlich ist, bleiben Querschnittsveränderungen und Verschiebungen des Elektronenstrahles ohne Auswirkung auf den Querschnitt und Ort des Brennflecks. Dementsprechend kann in einer erfindungsgemäßen Röntgenröhre auf konstruktiv aufwendige Maßnahmen verzichtet werden, mit denen in herkömmlichen Röntgenröhren Form, Größe und Auftreffpunkt des Elektronenstrahles auf das Target 2 stabilisiert werden müssen, um in bildgebenden Verfahren eine ausreichende Bildqualität zu erzielen. Dementsprechend ist eine erfindungsgemäße Röntgenröhre sehr viel einfacher und kostengünstiger herstellbar.

[0045] Fig. 8 stellt eine Prinzipskizze eines Ausführungsbeispieles einer erfindungsgemäßen Nanofocus-Röntgenröhre 20 dar, die nachfolgend kurz als Röntgenröhre bezeichnet wird. Die Röntgenröhre 20 weist ein erfindungsgemäßes Target 2 auf, das bei diesem Ausführungsbeispiel drei entlang der Targetoberfläche zueinander beabstandete Targetelemente 22, 24, 26 auf-

weist.

[0046] Die erfindungsgemäße Röntgenröhre 20 weist ferner Mittel zum Richten eines Elektronenstrahles 28 auf das Target 2 auf. Diese Mittel weisen bei diesem Ausführungsbeispiel eine Kathode 30 und eine Lochanode 32 auf, mittels derer beispielsweise aus einem Filament austretende Elektronen in Richtung auf das Target 2 hochenergetisch beschleunigt werden.

[0047] Die Röntgenröhre 20 weist ferner eine in Strahlrichtung hinter der Lochanode 32 angeordnete Fokussiereinrichtung 34 zur Fokussierung des Elektronenstrahles 28 auf das Target 2 auf. Die Fokussiereinrichtung 34 kann in allgemein bekannter Weise beispielsweise durch eine Spulenanordnung gebildet werden.

[0048] Bei diesem Ausführungsbeispiel weist die Röntgenröhre 20 ferner Ablenkmittel 36 auf, mittels derer der Elektronenstrahl 20 so ablenkbar ist, daß er wahlweise auf eines der Targetelemente 22, 24 oder 26 auftrifft. Mittels der Ablenkmittel 36 kann der Elektronenstrahl 28 beispielsweise dann auf ein anderes Targetelement abgelenkt werden, wenn ein zuvor benutztes Targetelement abgenutzt ist. Der Zweck der Ablenkmittel 36 besteht erfindungsgemäß in einer Ablenkung des Elektronenstrahles 28, und nicht in seiner Formung oder Fokussierung. Bei Ausführungsformen, bei denen das Target 2 lediglich ein einziges Targetelement trägt, sind die Ablenkmittel 36 somit nicht erforderlich.

[0049] Um in dem Trägerelement 4 des erfindungsgemäßen Targets 2 erzeugte Röntgenstrahlung auszufiltern, weist das Target 2 auf seiner den Targetelementen 22, 24, 26 abgewandten Seite ein Filter 12 auf, das weiter oben anhand von Fig. 4 näher erläutert ist.

[0050] Die Bestandteile der erfindungsgemäßen Röntgenröhre 2 sind in allgemein bekannter Weise in einem bei Betrieb der Röntgenröhre 20 evakuierbaren Gehäuse 38 aufgenommen.

[0051] Die Ansteuerung der Steuermittel 36 zur Ablenkung des Elektronenstrahles 28 auf eines der Targetelemente 22, 24, 26 erfolgt durch in der Zeichnung nicht dargestellte Steuermittel. Im übrigen sind die Art und Weise der Spannungsversorgung und Ansteuerung der Röntgenröhre 20 allgemein bekannt und werden daher hier nicht näher erläutert.

[0052] Bei Betrieb der erfindungsgemäßen Röntgenröhre 20 wird der Elektronenstrahl 28 über die Lochanode 32 in Richtung auf das Target 2 beschleunigt, durch die Fokussiereinrichtung 34 fokussiert und durch die Ablenkmittel 36 auf eines der Targetelemente 22, 24, 26 abgelenkt. Beim Auftreffen und nachfolgenden Abbremsen der Elektronen auf bzw. in einem der Targetelemente 22, 24, 26 entsteht Röntgenstrahlung einer gewünschten Wellenlänge oder in einem gewünschten Wellenlängenbereich. Durch Abbremsen der Elektronen in dem Trägerelement 4 enstehende Röntgenstrahlung wird mittels des Filters 12 ausgefiltert, so daß die Röntgenröhre 20 Röntgenstrahlung 40 ausschließlich der gewünschten Wellenlänge oder in dem gewünschten Wellenlängenbereich emittiert.

[0053] Da erfindungsemäß Form, Größe und Ort des Brennflecks der Röntgenröhre 20 ausschließlich durch das jeweilige Targetelement 22, 24, 26 definiert sind, haben Störeinflüsse in Bezug auf Form, Größe und Auftreffort des Elektronenstrahles 28 auf das Target 2 keine Auswirkungen auf Form, Größe und Ort des Brennflecks der Röntgenröhre 20, wie weiter oben anhand der Figuren 5 bis 7 bereits erläutert.

[0054] Die erfindungsgemäße Röntgenröhre 20 ermöglicht somit mit geringem apparativem Aufwand und grundsätzlich unter Verwendung lediglich einer einzigen Fokussiereinrichtung 34 eine hohe Orts- und Dimensionsstabilität des Brennflecks und damit bei Verwendung im bildgebenden Verfahren eine besonders hohe Auflösung und Bildqualität.

Patentansprüche

- Nanofocus-Röntgenröhre, mit einem Target (2) und mit Mitteln zum Richten eines Elektronenstrahles auf das Target (2),
- wobei das Target (2) wenigstens ein aus einem Targetmaterial bestehendes Targetelement (6) zur Emission von Röntgenstrahlung aufweist, das durch eine mittels eines Mikrostrukturierungsverfahrens auf einem aus einem Trägermaterial bestehenden Trägerelement (4) gebildete Nanostruktur mit einem Durchmesser s etwa 1.000 nm gebildet ist, wobei das Targetelement (6) das Trägerelement (4) nur teilweise bedeckt,
 - wobei bei Betrieb der Röntgenröhre (20) der Querschnitt des Elektronenstrahles derart größer als der Querschnitt des Targetelementes (6) gewählt ist, daß der Elektronenstrahl das Tragetelement (6) stets vollflächig bestrahlt,

dadurch gekennzeichnet,

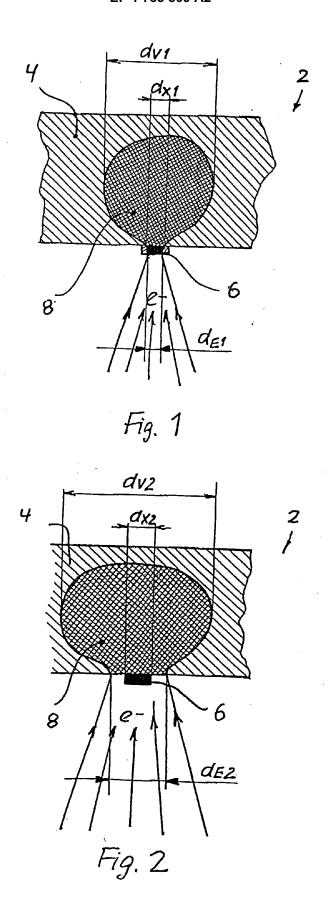
daß das Trägermaterial Diamant ist oder Diamant enthält, der zur Erhöhung der elektrischen Leitfähigkeit dotiert ist.

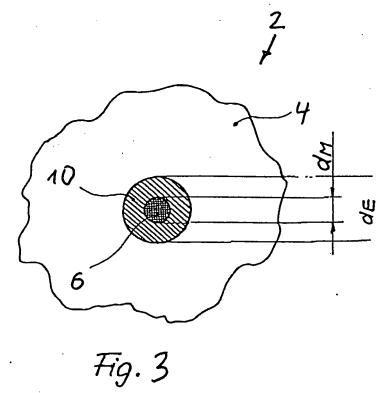
- Nanofocus-Röntgenröhre nach Anspruch 1, dadurch gekennzeichnet, daß das Trägerelement (4) wenigstens teilweise aus einem Trägermaterial besteht, dessen Wärmeleitkoeffizient ≥ 10 W/(cm x K), vorzugsweise ≥ 20 W/(cm x K) ist.
- Nanofocus-Röntgenröhre nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Trägerelement (4) eine Mehrzahl zueinander beabstandeter Targetelemente (22, 24, 26) trägt.
- 4. Nanofocus-Röntgenröhre nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß wenigstens ein Targetelement (6, 22, 24, 26) im wesentlichen kreisförmig begrenzt ist.

35

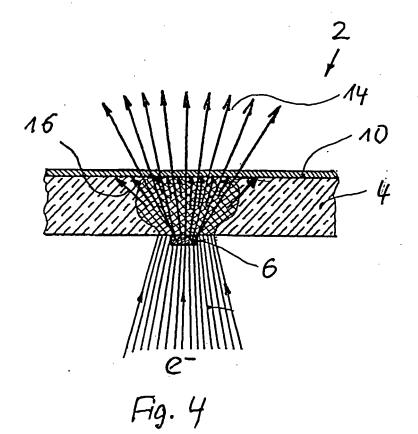
40

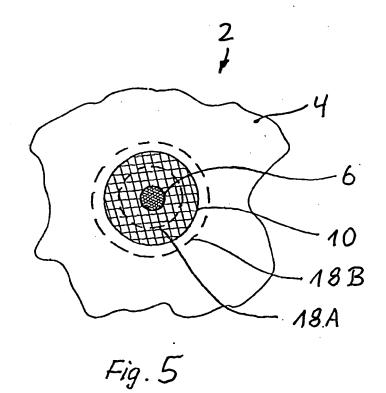
45

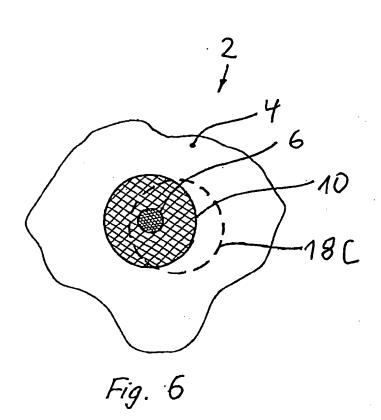

50

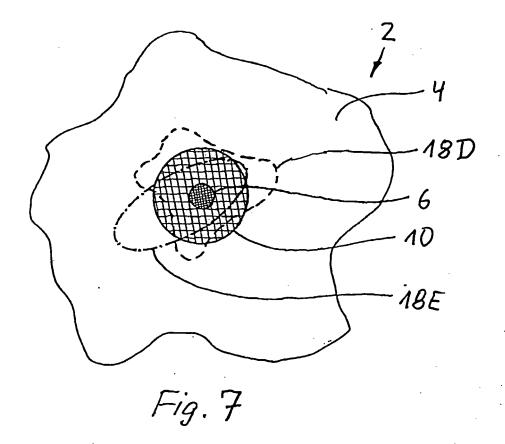

55

5. Target nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Target (2) ein Filter (12) aufweist, das für in dem Targetelement (6) oder den Targetelementen (22, 24, 26) erzeugte Röntgenstrahlung durchlässig ist und in dem Trägerelement (4) erzeugte Röntgenstrahlung sperrt.


te e- ⁵


6. Nanofocus-Röntgenröhre nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Target (2) als Transmissionstarget ausgebildet ist.





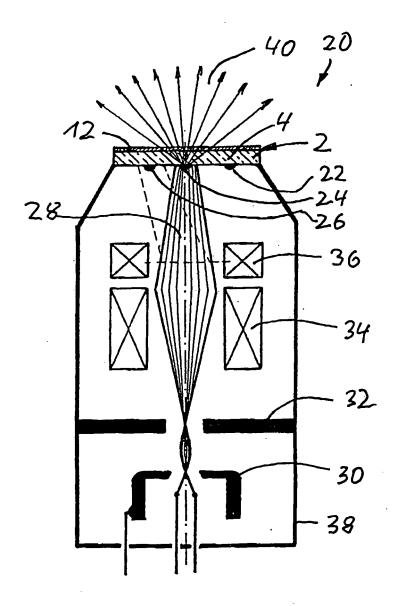


Fig. 8