[0001] The present invention relates to optimizing a fibrous web processing apparatus for
different uses, the processing apparatus comprising a metal belt forming a loop and
rotating around at least one guide means. In this application, the term 'web processing'
refers to the various measures relating to the processing of a fibrous web in a paper/board
machine, such as pressing, drying, calendering, coating, sizing and smoothing. The
processing apparatus may also be a fibrous web finishing machine, such as a separate
coating machine, printing apparatus or calender. A processing apparatus provided with
a metal belt allows the use of an extremely broad pressure range and effective period
(heat transfer time and/or processing time) in the processing zone, thus making it
possible to use the same apparatus for processing numerous different coated and uncoated
printing papers, boards and other paper grades, and it may be used, for example, as
a precalender before coating and an final calender after the paper machine or coating,
a breaker stack, a wet stack calender or drying apparatus, a coating apparatus, a
sizing apparatus, a printing apparatus and/or a press. A processing apparatus with
a metal belt can conceivably be used to replace, for example, a soft calender, a multi-nip
calender, a machine calender, a shoe calender, the Yankee cylinder part of a dryer
group, or a press.
[0002] There are numerous different paper and board grades and they can be divided into
two categories by grammage: papers, which have one layer and a grammage of 25-300
g/m
2 and boards made by multi-layer technique and having a grammage of 150-600 g/m
2. As can be seen from this, the borderline between paper and board is a sliding one
since boards having the lightest grammage are lighter than the heaviest of papers.
Paper is generally used for printing and board for packaging.
[0004] Mechanical pulp based, i.e. wood-containing printing papers include newsprint, uncoated
magazine paper and coated magazine paper.
[0005] Newsprint is composed either completely of mechanical pulp or it may contain some
bleached softwood pulp (0-15%) and/or recycled fibre to replace some of the mechanical
pulp. As general values for newsprint may be regarded the following: grammage 40-48.8
g/m
2, ash content (SCAN-P 5:63) 0-20%, PPS-s10 roughness (SCAN-P 76-95) 3.0-4.5 µm, Bendtsen
roughness (SCAN-P21:67) 100-200 ml/min, density 600-750 kg/m
3, brightness (ISO 2470:1999) 57-63%, and opacity (ISO 2470:1998) 90-96%.
[0006] Uncoated magazine paper (SC = supercalendered) usually contains 50-70% mechanical
pulp, 10-25% bleached softwood pulp, and 15-30% fillers. Typical values for calendered
SC paper (including e.g. SC-C, SC-B, and SC-A/A+) are: grammage 40-60 g/m
2, ash content (SCAN-P 5:63) 0-35%, Hunter gloss (ISO/DIS 8254/1) < 20-50%, PPS s10
roughness (SCAN-P 76:95) 1.0-2.5 µm, density 700-1250 kg/m
3, brightness (ISO 2470:1999) 62-70%, and opacity (ISO 2470:1998) 90-95%.
[0007] Coated magazine paper (LWC = light weight coated) contains 40-60% mechanical pulp,
25-40% bleached softwood pulp, and 20-35% fillers and coaters. As general values for
LWC paper may be regarded the following: grammage 40-70 g/m
2, Hunter gloss 50-65%, PPS S10 roughness 0.8-1.5 µm (offset) and 0.6-1.0 µm (roto),
density 1100-1250 kg/m
3, brightness 70-75%, and opacity 89-94%.
[0008] As general values for MFC paper (machine finished coated) may be regarded the following:
grammage 50-70 g/m
2, Hunter gloss 25-70%, PPS S10 roughness 2.2-2.8 µm, density 900-950 kg/m
3, brightness 70-75%, and opacity 91-95%.
[0009] As general values for FCO paper (film coated offset) may be regarded the following:
grammage 40-70 g/m
2, Hunter gloss 45-55%, PPS S10 roughness 1.5-2.0 µm, density 1000-1050 kg/m
3, brightness 70-75%, and opacity 91-95%.
[0010] As general values for MWC paper (medium weight coated) may be regarded the following:
grammage 70-90 g/m
2, Hunter gloss 65-75%, PPS S10 roughness 0.6-1.0 µm, density 1150-1250 kg/m
3, brightness 70-75%, and opacity 89-94%.
[0011] HWC (heavy weight coated) has a grammage of 100-135 g/m
2 and it can be coated even more than twice.
[0012] Woodfree printing papers made of chemical pulp, or fine papers, include uncoated
and coated chemical-pulp based printing papers, in which the proportion of mechanical
pulp is less than 10%.
[0013] Uncoated chemical-pulp based printing papers (WFU) contain 55-80% bleached birchwood
pulp, 0-30% bleached softwood pulp, and 10-30% fillers. With WFU, the values vary
considerably: grammage 50-90 g/m
2 (up to 240 g/m
2), Bendtsen roughness 250-400 ml/min, brightness 86-92%, and opacity 83-98%.
[0014] In coated chemical-pulp based printing papers (WFC), the amounts of coating vary
greatly in accordance with the requirements and intended use.
[0015] The following are typical values for once and twice coated chemical-pulp based printing
paper: once coated, grammage 90 g/m
2, Hunter gloss 65-80%, PPS s10 roughness 0.75-2.2 µm, brightness 80-88%, and opacity
91-94%, and for twice coated grammage 130 g/m
2, Hunter gloss 70-80%, PPS S10 roughness 0.65-0.95 µm, brightness 83-90%, and opacity
95-97%.
[0016] Release papers have a basis weight ranging from 25 to 150 g/m
2.
[0017] Other papers include packing papers (Sackkraft), tissues, and wallpaper bases.
[0018] Boards constitute a fairly heterogeneous group which includes grades having a high
grammage of up to 500 g/m
2 and grades having a low grammage of about 120 g/m
2, the grades ranging from ones based on virgin fibre to 100% recycled fibre based
grades, and from uncoated to multiply coated. In the following, board grades are divided
into coated and uncoated grades because coating has the greatest effect on the calendering
method. In coated grades, both precalendering before the coating machine and the final
calender after the coating machine are used. Uncoated grades are only subjected to
final calendering. These two groups include several board grades as follows:
Coated board:
- virgin fibre based folding boxboard (FBB), bleached pulp board (SBS = solid bleached
board), liquid packaging board (LPB), coated white top liner, carrier board
- recycled fibre based white-lined chipboard (WLC), coated recycled board.
Uncoated board:
- virgin fibre based (kraft liner, white top liner, liquid packaging board)
- recycled fibre based (test liner)
[0019] In the following, calendering concepts for different coated board grades such as
folding boxboard are described, white-lined chipboard, solid bleached board and liquid
packaging board. Coated board grades vary from one-layer to five-layer board. The
most important qualities are large bulk, rigidity and smoothness. The board is often
one-sided, but may also be two-sided (SBB boards).
[0020] Precalendering is applied before the coating machine to reduce roughness and porosity
to a target level characteristic of the coating machine. The precalendering method
is dependant on many variables, the most important being the following:
- the structure of the board machine (Yankee cylinder)
- raw materials (virgin fibre versus recycled fibre; European fibre versus fibre from
the southern part of the USA).
[0021] Precalendering mainly serves the purpose of CD-direction calibre control when there
is a Yankee cylinder in the board machine (typically a folding boxboard machine).
The Yankee cylinder produces an extremely smooth surface with large bulk. Precalendering
is usually done with one hard-nip calender, based on either thermal or hydraulic calibre
control. Line loads are typically fairly low, 10-30 kN/m, and thermo roll temperatures
70-100°C.
[0022] Typical board grades made without a Yankee cylinder are solid bleached board, white
top liner, coated recycled board and liquid packaging board.
[0023] Traditionally, precalendering was carried out by using a multi-roll hard-nip calender
and the calendering effect was enhanced by adding water by means of water boxes (wet
stack calenders). The number of rolls varies from 4 to 11 depending on the board grade;
the more readily calendered European fibres do not require as many nips as fibres
originating from the southern parts of the USA. Recycled fibres are likewise more
readily calendered than virgin fibres.
[0024] The ability to raise the temperature of the thermo roll has shifted precalendering
towards hot calendering. Today, the aim is to use hot hard nip calendering or soft
calendering. Increased thermo roll temperatures (even exceeding 200°C) result in bulk
savings due to the temperature gradient. The runnability of a hot hard nip calender
or soft calender is better than that of a multi-roll hard nip calender. Likewise the
application of water on wet stack calenders is not easy to control.
[0025] Uncoated board grades often have only one or two layers. Multi-layered, uncoated
boards, such as liquid packaging boards, can also be produced. As with coated boards,
the calendering of uncoated boards should also save on bulk and rigidity.
[0026] With some grades, such as fluting and certain untreated test liner grades, calendering
is not required. Traditionally, calendering was almost always carried out on hard
nip calenders. The display and advertising function of fluted packages has recently
become increasingly important. This has increased demands for a higher-quality, bleached
surface layer.
[0027] Soft calenders are, therefore, used also for uncoated board grades when good printability
is required. Steam-jet sprayers may be used before the calender to improve the outcome
of calendering if the board is cooled.
[0028] The future trend, as with coated grades, is toward long nip calendering. This technology
makes it possible to calender board to higher formation scale roughness and bulk with
lower micro roughness (PPS) and better printability.
[0030] WO 01/71091 A1 shows an arrangement for calendering a fibrous web by means of a calender in a paper/board
machine according to the preamble of claim 16.
[0031] EP 1 357 225 A1 shows an arrangement for calendering a fibrous web by means of a calender in a paper/board
machine according to the preamble of claim 17. A general aim of the present invention
is to enhance the operation and the usability of the processing apparatus at different
points on production line and/or finishing stages of a fibrous web in said machine.
[0032] On the basis of trial runs, it has been found that the ratio between a length of
a metal belt and a width of a metal belt is a significant factor from the functioning
viewpoint in processing apparatuses comprising metal belts forming loops and having
a belt width within the range from about 1.5 m to about 12 m. Therefore, the invention
provides a fibrous web processing apparatus for different uses in a paper/board machine
and/or finishing machine, the processing apparatus comprising a metal belt forming
a loop and rotating around at least one guide means, the apparatus comprising one
or more processing zones, whereby the contact time of a fibrous web with the metal
belt is within the range 10 to 1000 ms and the temperature of the metal belt is within
the range 20 to 400°C, and wherein the ratio of the length of the metal belt to its
width is greater than 0.8. Outside the metal belt loop is preferably arranged at least
one counter-element forming a contact surface with the belt, in such a way that between
the belt and the counter-element is formed a web processing zone through which the
web to be processed is led.
[0033] According to the invention, it is preferred to locate at least at two different points
on the paper/board production line at least two processing apparatuses having at least
40% of identical, interchangeable parts. This solution results in a fall in maintenance
costs, a reduction in the need for spare parts and in lower production costs due to
the possibility of serial production. For example a calender provided with the metal
belt loop and a coating machine may have about 70% of interchangeable parts and a
calender and press equally about 70%, whereas a press and a coating machine may have
some 40% of common parts.
[0034] In connection with the metal belt loop, it is preferably to arrange cleaning means
for cleaning the processing surface of the metal belt, said cleaning means being selected
from a group including a felt cleaner, a brush cleaner, cleaning by spraying washing
solution, steam or compressed air under pressure from a washing device, and cleaning
based on ultrasonic vibration or other oscillation.
[0035] In conventional calendering, insufficiency of heat transfer in a short nip constitutes
a bottleneck. Especially off-line soft and multi-nip calendering benefit a great deal
if the web is preheated immediately before calendering.
WO 2004/079091 A1 discloses one solution for modernisation. Thus, another aim of the invention is to
provide a multi-nip calender for calendering a fibrous web in a paper/board machine,
a lengthened contact zone being incorporated in the calender for enhancing heat transfer
of the web. According to one embodiment of the invention, a metal belt loop is incorporated
outside a roll in the calender, in such a way that a lengthened preheating zone is
formed immediately before the nips of the calender, whereby a high preheating effect
is achieved, the ratio between the length of the belt in the metal belt loop and its
width being greater than 0.8.
[0036] According to yet another embodiment of the invention, the metal belt loop is incorporated
outside a roll of the calender in such a way that a lengthened final cooling zone
is formed after the calender nips, the ratio between the length of the belt in the
metal belt loop and its width being greater than 0.8. The web is cooled. Cooling preferably
takes place against the final roll, most preferably against a polymer roll. Cooling
makes it possible to use higher calendering temperatures without endangering rolling
or the fibrous web drying excessively.
[0037] By means of calendering enhanced according to the invention are produced glossy,
coated or uncoated printing papers and boards in such a way that the enhancement of
heat transfer will promote the smoothing process. Examples include wood-containing
uncoated printing paper (SC: Hunter 40-60%), wood-containing coated printing paper
(LWC Hunter 50-70%, MWC Hunter 65-75%, HWC) and coated fine paper (e.g. WFC: Hunter
70-90%) and coated folding boxboard (more detailed values are available in the publication
FAPET: Papermaking, Part a: Finishing).
[0038] By means of calendering enhanced according to the invention are produced low-gloss,
coated or uncoated printing paper and board products such as newsprint (Hunter 20-30%)
and uncoated fine paper (copying paper, WFU: Hunter < 30%).
[0039] By means of calendering enhanced according to the invention can be produced so-called
matt grades. This means especially WFC matt grades (Hunter < 35%). In a matt run,
it is most preferable to run only through one or two of the "first" nips, thus passing
the gloss-producing nips. The surface of the support surface (= a metal belt or a
thermo roll placed against it) of the first or second "nip contact" is patterned or
rough (Ra > 0.3 µm) or it is coated with a coating producing a matt surface (e.g.
ceramic surface, porous metal surface). If necessary, the roll used in the matt run
can be loaded separately so that the entire set of rolls will not have to be used
in a partial nip run.
[0040] By means of calendering enhanced according to the invention may also be calendered
low- or high-gloss boards. In this case, the metal belt loop is preferably used in
conjunction with a soft or shoe calender.
[0041] By means of calendering enhanced according to the invention may also be calendered
release paper. It is particularly advantageous to use the belt loop in a multi-nip
calender.
[0042] The processing apparatus according to the invention may form a long preheating or
final cooling zone to enhance calendering and may thus be arranged either in a multi-nip
calender (super or OptiLoad or TwinLine) or in a soft/shoe calender. The calendering
described may be either precalendering or final calendering.
[0043] The invention is described in greater detail in the following, with reference to
the accompanying drawings, in which:
- Figure 1
- shows diagrammatically some alternatives for positioning the processing apparatus
on an LWC paper production line,
- Figure 2
- shows a diagrammatic side view of an embodiment of the processing apparatus,
- Figure 3
- shows diagrammatically a felt cleaner,
- Figure 4
- shows a cross-section of the structure of a felt of the felt cleaner,
- Figure 5
- shows positioning of the felt cleaner with respect to a metal belt to be cleaned,
- Figure 6
- shows a washing arrangement of the felt of the felt cleaner,
- Figure 7
- shows a steel brush cleaner,
- Figure 8
- shows a cleaning beam solution, where a mechanical cleaning means is movable with
respect to the beam towards the surface to be cleaned and away from it,
- Figures 8A and 8B
- show a cleaning beam solution, where a mechanical cleaning means and suction are used,
- Figure 8C
- shows a modification of Figures 8A and 8B,
- Figure 9
- shows a metal belt cleaner arrangement,
- Figure 10 and 11
- show figures in principle of incorporating a metal belt loop in a multi-nip calender,
- Figure 12
- shows diagrammatically a Yankee cylinder, and
- Figures 13 and 14
- show different embodiments of the invention as an apparatus replacing the Yankee cylinder.
[0044] Figure 1 shows an embodiment of a LWC paper production line illustrating parts of
a line from a press section I onwards. The press section is followed by a dryer section
II, the end part of which is marked with reference marking III. The dryer section
is followed by a precalendering stage IV and then a coating stage V, which is divided
into a coating head Va and a dryer section Vb. The coating head is followed by a final
calendering stage VI and last by final processing stages VII including rolling and
slitting. The processing apparatus comprising a metal belt could conceivably be located,
for example, at the points marked with references a, b, c and/or d on an on-line production
line for LWC paper. In addition to, or instead of, these positioning locations, the
processing apparatus according to the invention could conceivably be located, for
example, in place of the press of the press section I, the end part III of the dryer
section and/or the precalender IV and/or the final calender VI.
[0045] Figure 2 shows diagrammatically a processing apparatus comprising a calendering belt
2 made of metal which rotates around guide rolls 3 and forming a metal belt loop,
of which guide rolls 3 at least a part are movable for adjusting the belt tension
and/or overlap angle as desired. The calendering belt 2 travels around a roll 5 arranged
outside the belt loop, thus forming a calendering zone between the belt 2 and the
roll 5. A material web W being calendered travels through the calendering zone, whereby
it is subjected to desired pressure impulse and thermal effect as a function of time.
Figure 2 shows in dotted line 9 the shape of the pressure impulse when inside the
calendering belt 2 is arranged a nip roll 4 acting as a pressing means, the nip roll
4 pressing the belt against the roll 5, thus forming a higher pressure within the
calendering zone of the processing zone. By broken line 8 is, on the other hand, illustrated
the shape of the pressure impulse when the contact pressure prevailing in the calendering
zone is created by belt tension alone, the roll 4 being out of pressing contact with
the belt 2 (or when no roll at all is fitted inside the belt 2). The roll 4 may in
addition be arranged to be movable for changing the length of the processing zone
and/or belt tension. There may also be more than one press roll 4 inside the metal
belt loop. The metal belt 2 may also be coated. In the embodiment shown in Figure
2, the nip roll 4 is a shoe roll. Reference numeral 6 denotes heating means, such
as an induction heater, an infrared radiator, a gas burner or a capacitive heater.
[0046] In said processing apparatus, it is advantageous to use the guide rolls 3 as internal
guide means of the belt loop 2, said rolls being heatable and having a large diameter,
e.g. within the range from 1000 to 2000 mm. The large diameter eliminates metal belt
fatigue because the radial bending radius does not allow a fatiguing load with the
metal belt thicknesses used. On the other hand, a large guide roll diameter provides
the guide roll with high axial rigidity and thus significantly reduces the deflection
of the guide roll due to metal belt tension. It is often desirable to heat the metal
belt to achieve two-sided calendering during one process stage. The drying cylinders
of paper and board machines meet the foregoing demands well. Furthermore, some of
the drying cylinders remain unused when machines are modernized and thus re-use of
cylinders as belt calender guide rolls is possible. The durability of the cylinder
surface can be improved by coating. Therefore, according to the present invention,
a drying cylinder of a paper/board machine may act as the at least one guide means
internally of the metal belt loop, the diameter of the cylinder being about 1000 mm
to about 2000 mm.
[0047] In conjunction with the metal belt loop, it is preferably to arrange cleaning means
for cleaning the processing surface of the metal belt, the cleaning means being selected
from a group comprising a felt cleaner, a brush cleaner, cleaning by spraying a washing
solution, steam or compressed air under pressure from a washing device, and cleaning
based on ultrasonic vibration or other oscillation of the belt. The cleaning means
can be made essentially shorter than the width of the belt and arranged to move in
an oscillating manner along a beam or other support structure extending transversely
to the belt.
[0048] Cleaning methods used may be divided into three groups: contacting, non-contacting
and semi-contacting methods.
Contacting methods
[0049] A felt cleaner 30 shown in Figure 3 is based on a felt 31 travelling around rolls
33, 34 which felt rubs the belt 2 being cleaned when the felt rotates against the
surface of the metal belt. If necessary, an additional load shoe 35 may be used to
increase compression and contact between the belt and the cleaning felt. The apparatus
may be continuously operating or it may be started up when necessary (intermittent).
The felt 31 of the felt cleaner may be composed of one layer of felt material 31a
or be multi-layered incorporating, for example, a plastic wire or support structure
31b of other material (Figure 4) to support the felt material 31a. The felt material
may be soft felt (e.g. material corresponding to the bottom felt) or abrasive material.
An advantage of abrasive material is that it also evens out the belt loop's roughness.
[0050] In principle, the belt cleaning system may be freely located in the belt loop of
the calender, but a primary location would be after the nip outlet, as marked with
reference numeral 10 in Figure 2, to ensure that the dirt removed will not enter the
nip pressing zone. Locating the cleaner in an open draw will also dampen the vibration/oscillation
of the belt. With respect to the metal belt 2, the cleaner 30 may be located either
horizontally against the belt loop or at a certain angle so that the outer edge of
the cleaner will extend beyond the edges of the belt, as shown diagrammatically in
Figure 5.
[0051] The felt may be humidified by means of nozzles referred to by reference numeral 32
in Figure 3 either outside or inside the felt loop. To the humidifier unit of the
felt loop may also be incorporated a washing function, for example, a combined compressed
air/water wash, steaming (steam wash/heating of the felt) or solvent wash. The liquid
used as detergent may be either volatile or non-volatile, a solvent or other liquid.
Alternatively, the washing/humidifying of the felt may be carried out as pool washing,
for example, as shown in Figure 6. A washing device or its part is wetted either by
directly inclining or turning into a washing trough 37 filled with washing liquid
(volatile/non-volatile solvent). The felt may also be washed by means of vibrating
methods (e.g. ultrasound). When the felt washing device is in operation, dirt adheres
to the washing felt and/or the removed liquid/solid matter is collected into a collection
trough 36 (see Fig.3) under the washing device.
[0052] A steel brush cleaner 40 shown in Figure 7 rotates either continuously or intermittently
while cleaning the metal belt. The cleaner may rotate either independently or with
the metal belt loop. Its cleaning effect is based on the abrasive impact of steel
bristles (steel brush) as they rotate. When rotating, the steel brush also grinds
possible impurities and/or damage (e.g. grooves) on the metal belt. The steel brush
may be located, as the felt washing device, freely on the belt loop of the calender,
but the principal location would, however, be after the nip, in accordance with point
10 in Figure 2. Similarly, the steel brush cleaner may be located horizontally or
obliquely with respect to the metal belt loop (Figure 5). In conjunction with the
steel brush cleaner 40 (e.g. combined with a collection trough 41) may also be placed
a magnet, which collects metal dust removed from the belt.
[0053] Figure 8 shows yet another contacting cleaning device 80 comprising a support beam
81, to which are joined two profiles 83, 84 within each other and moving with respect
to each other, with an expanding means 85, for example a pneumatic hose, between them.
The inner profile 83 moves with respect to the outer profile 84 towards a surface
86 to be cleaned. A cleaning means 82 is attached to the inner profile 83. The cleaning
means may be, for example, a rubber moulding, a cord packing, etc. The profiles 83,
84 are preferably of extruded aluminium due to which the need for machining is minimal
and manufacturing costs are low compared with, for example, welded structures or structures
bent from sheet metal. Aluminium profile can be coated in different ways, thus making
possible the use of a cleaning device also in hot, dirty and humid conditions. The
surface treatment may be, for example, anodic coating, pulverisation, different types
of painting, etc. The small number of parts and simple structure of the device make
possible a functional and reliable implementation.
[0054] The cleaning device can be made relatively small and light by using aluminium profiles.
The cleaning pressure can be distributed evenly on account of the pneumatic or hydraulic
hose, regardless of defects in the form, such as deflection, of the support beam or
surface to be cleaned. The cleaning means can be replaced, for example, by pulling
out the profile inside and pushing a new one back after the removal of the locking
means at the end, such as a locking pin. Due to the light and compact structure, the
device can be made an oscillating one by installing, for example, a linear guide between
the cleaning device and the support beam.
[0055] Figures 8A and 8B describe a cleaning device comprising a beam 120 implemented as
a suction box, to which is connected a tube-loaded doctor blade part 121. The beam
is turned by means of hydraulic cylinders 124 between a cleaning position, in which
the doctor blade settles against the metal belt 2, and a free position in which the
doctor blade is at a distance from the surface of the metal belt. The interior of
the beam is connected to an external suction source (not shown) through a suction
inlet 123 for collecting fine dust. On the upper part of the beam are arranged bristles
125 which prevent the belt from contacting the beam and also improve the suction effect.
On the inside of the beam is preferably arranged a magnet 126 for collecting metal
particles. The bottom part of the beam has been made to open by means of a hatch 122,
through which larger impurities that are not removed by the suction air can be removed.
Figure 8C shows a variation of Figures 8A and 8B, where a rotating brush 127, which
may be oscillating, has been incorporated inside the beam. This type of brush enhances
the cleaning of dents in the belt.
Non-contacting methods
[0056] In non-contacting washing devices, the belt loop of the metal belt calender is cleaned
by spraying washing solution, steam or compressed air 54 under pressure from a washing
device 50 (Figure 9). The solution may be a solvent (volatile or non-volatile), for
example water or other washing solution, or for example, dry ice, the cleaning effect
of which is based on the thermal shock phenomenon. From the washing device may also
be sprayed steam which will heat the metal belt and at the same time detach dirt particles.
Compressed air may be used in the same manner. In conjunction with the non-contacting
washing device may also be incorporated a collection trough 53 which will collect
excess humidity and/or a hood 52, the purpose of which is to prevent liquid/drops/steam
from spreading into other parts of the apparatus. To the hood may also be connected
a suction device for collecting drops/steam. In non-contacting methods may also be
included a doctor blade 51 which will dry the surface of the belt (e.g. a plastic
blade). The position and manner of location are the same as in the contacting methods.
Non-contacting washing methods may be used either intermittently or continuously.
In a non-contacting method the substance being sprayed/injected may also be a solid
substance, for example, washing granules that clean the belt.
Semi-contacting methods
[0057] In semi-contacting methods, the cleaning of the belt is based on, for example, ultrasonic
vibration or other strong oscillation of the belt. During oscillation, the impurities
on the belt are detached and can be collected into a collection trough.
[0058] Figure 10 shows a figure in principle of incorporating metal belt loops H1 and H2
to the start and end of a multi-nip calender. The belt loop H1 forms a lengthened
preheating zone and the belt loop H2 forms a lengthened final cooling zone. W1 and
W2 illustrate alternative web draws to the calender, and W' illustrates a route suitable
for a matt run.
[0059] Figure 11 shows an example of a Twin-Line calender with added preheating and cooling
metal belt loops H.
[0060] Figure 12 shows diagrammatically a Yankee cylinder 100, around which the fibrous
web W travels. An impression cylinder 101 causes the web to remain in contact with
the surface of the cylinder 100.
[0061] Figure 13 shows the use of the processing apparatus with a metal belt loop as an
apparatus replacing the Yankee cylinder, preferably as a smoothing apparatus. Here,
a metal belt 102 rotates around guide rolls 105, 106. Rolls 103 and 104 form a press
nip for bringing the fibrous web W into contact with the metal belt 102. 103a is a
press roll which forms a second press nip with the guide roll 106. The apparatus may
include a wire loop (not shown) which presses the web W against the metal belt 102.
[0062] In Figure 14, a metal belt loop formed by a metal belt is arranged to travel around
the last drying cylinder 110 in a dryer section and a guide roll 112. Press rolls
that press the fibrous web against the metal belt loop are marked with reference numeral
111. The apparatus may include a wire loop (not shown) which presses the web W against
the metal belt. Reference numeral 113 denotes a pulper.
[0063] The processing apparatus comprising a metal belt can replace current precalendering
and/or final calendering solutions for all board grades.
The board may have the following properties:
- it may be coated or uncoated
- coated grades may have one or more coating layers
- grammage may be 100...1000 g/m2, typically 120...500 g/m2
- it may be a single-layer or multi-layer product
- fibre raw material may be recycled or virgin fibre.
[0064] In the case of a coated board grade, the coating method may be any one of, for example,
the following: blade coating, sizer, curtain coating, spray, or any combination of
these in multi-layer coated grades.
[0065] Various combinations of a metal belt calender and modern technology are possible:
- metal belt precalendering can be combined with metal belt final calendering
- metal belt precalendering can be combined with a currently used final calendering
method
- a current precalendering method can be combined with metal belt final calendering
- metal belt calendering and lighter than current final calendering by a modern method
or without final calendering.
[0066] Metal belt precalendering is preferably carried out in such a way that the board
web is led between a thermo roll and the metal belt. To control unequal sidedness,
the metal belt may also be against a soft roll. Calendering preferably takes place
in one stage. Both the metal belt and the thermo roll may be heatable. The metal belt
calender can be used as a final calender after the dryer section and/or on the dryer
section.
[0067] Typical process conditions on a metal belt calender are as follows:
- contact time with the metal belt is 10-1000 ms, preferably 20-40 ms
- load on an optional, at least one additional load roll arranged inside the metal belt
(loop) is 0-400 kN/m, preferably 15-100 kN/m
- additional load is provided by a hard or soft roll
- metal belt temperature is 20-400°C, preferably 150-200°C
- thermo roll temperature is 20-400°C, preferably 150-200°C
- board moisture is 1-50%, preferably 8-15%
- possibility of also using an on-line humidifier before the metal belt calender
[0068] The metal belt final calendering is preferably carried out so that the board web
is led between a soft-surface roll and a metal belt. It is also possible to finally
calender the board between a thermo roll and a coated metal belt. To obtain even gloss
and printing ink absorption, a soft surface must be used on the nip, which adapts
to variation in the formation scale. Calendering preferably takes place in two stages.
However, if necessary, the metal belt final calendering may also be carried out on
a metal-surface thermo roll and a metal-surface belt.
[0069] Typical process conditions on a metal belt calender include:
- one or more processing zones, preferably two
- contact time with metal belt is 10-1000 ms, preferably 60-200 ms
- load on an optional, at least one additional load roll arranged inside the metal belt
(loop) is 0-400 kN/m, preferably 15-100 kN/m
- metal belt temperature is 20-400°C, preferably 150-200°C
- thermo roll temperature is 20-400°C, preferably 150-200°C
- board moisture is 1-50%, preferably 8-15%
- matt grades can be made with appropriately patterned belt or thermo roll.
[0070] By means of the metal belt calender there is provided an efficient nip, where it
is possible to process both sides of the web in one nip. Furthermore, effective control
of unequal sidedness by using heat or humidification is possible. By means of a metal
belt calender it is in addition possible to replace a part of the dryer section or
to increase the speed of the board machine. Strength properties are improved in metal
belt calendering compared with conventional calendering methods and good large-scale
smoothness is obtained compared with a machine calender or soft calender (low Bendtsen
roughness).
1. A fibrous web processing apparatus (1) for different uses in a paper/board machine,
the processing apparatus (1) comprising a metal belt (2) forming a loop (2) and rotating
around at least one guide means (3), the apparatus (1) comprising one or more processing
zones, whereby the contact time of a fibrous web (W) with the metal belt (2) is within the range from 10 to 1000 ms, and the temperature
of the metal belt (2) is within the range from 20 to 400°C, characterised in that the ratio of the length of the metal belt (2) to its width is greater than 0.8.
2. A processing apparatus (1) as claimed in claim 1, characterised in that the said ratio is more than 1.
3. A processing apparatus (1) as claimed in claim 1 or 2, characterised in that the at least one guide means (3) inside the metal belt loop is a heatable roll, preferably
a drying cylinder, the diameter of which is within the range from about 1000 to about
2000 mm.
4. A processing apparatus (1) as claimed in any of the above claims, characterised in that in conjunction with the metal belt loop there are arranged cleaning means (30; 40;
80; 120, 121; 50, 51) for cleaning the processing surface of the metal belt.
5. A processing apparatus as claimed in claim 4, characterised in that the cleaning means (30; 40; 80; 120, 121; 50, 51) are selected from a group including
a felt cleaner (30), a brush cleaner (40), a mechanical cleaning device (80; 120,
121) provided with a rubber moulding or other cleaning means placed against the surface
to be cleaned, cleaning by spraying washing solution, steam or compressed air under
pressure from a washing device (50), and cleaning based on ultrasonic vibration or
other oscillation of the belt (2).
6. A paper/board production line comprising at least two processing apparatuses (1) as
claimed in any of the above claims, the at least two processing apparatuses (1) being
located at least at two different points on the paper/board production line, the at
least two processing apparatuses (1) having at least 40% of identical, interchangeable
parts.
7. A paper/board production line as claimed in claim 6, characterised in that there are at least 70% of interchangeable parts.
8. Use of a processing apparatus (1) as claimed in any of the above as replacement for
a Yankee cylinder (100) in a paper/board machine.
9. Use of a processing apparatus (1) as claimed in any of claims 1 to 7 in a calender
selected from a group comprising a multi-nip calender, a soft calender and a shoe
calender.
10. Use of a processing apparatus (1) as claimed in any of claims 1 to 7 for precalendering,
in which apparatus (1), outside the metal belt (2), there is arranged a thermo roll
(5) forming a contact surface with the belt (2) in such a way that between the belt
(2) and the thermo roll (5) is formed a web processing zone through which the web
(W) to be processed is led, wherein the process conditions are as follows:
- contact time with the metal belt (2) is 10-1000 ms,
- load on an optional, at least one additional load roll (4) arranged inside the metal
belt loop (2) for pressing the belt (2) against the thermo roll (5) is 0-400 kN/m,
the additional load roll (4) being a hard or a soft roll,
- metal belt temperature is 20-400°C,
- thermo roll temperature is 20-400°C,
- web moisture is 1-50%.
11. Use as claimed in claim 10, characterised in that the contact time is 20-40 ms, that the load provided by the optional, at least one
roll is 15-100 kN/m, that the metal belt temperature is 150-200°C, that the thermo
roll temperature is 150-200°C, and that web moisture is 8-15%.
12. Use of a processing apparatus (1) as claimed in any of claims 1 to 7 for final calendering,
in which apparatus (1), outside the metal belt (2), there is arranged a thermo roll
(5) forming a contact surface with the belt (2) in such a way that between the belt
(2) and the thermo roll (5) is formed a web processing zone through which the web
(W) to be processed is led, wherein the process conditions are as follows:
- contact time with the metal belt (2) is 10-1000 ms,
- load on an optional, at least one additional load roll (4) arranged inside the metal
belt loop (2) for pressing the belt (2) against the thermo roll (5) is 0-400 kN/m,
- metal belt temperature is 20-400°C,
- thermo roll temperature is 20-400°C,
- web moisture is 1-50%.
13. Use as claimed in claim 12, characterised in that the contact time is 60-200 ms, that the load provided by the optional, at least one
roll is 15-100 kN/m, that the metal belt temperature is 150-200°C, that the thermo
roll temperature is 150-200°C, and that web moisture is 8-15%.
14. Use as claimed in any of the claims 10 to 13, characterised in that the processing apparatus (1) comprises at least two processing zones.
15. Use as claimed in any of the claims 10 to 14, characterised in that the web (W) being processed is coated folding boxboard (FBB).
16. Multi-nip calender for calendering a fibrous web (W) in a paper/board machine, wherein
a lengthened contact zone is incorporated in the calender for enhancing the heat transfer
of the web (W) by adding a belt loop (H1) at an outside of a roll of the calender
in such a way that a lengthened preheating zone is formed immediately before the nips
of the calender, whereby a preheating effect is achieved, characterised in that the belt loop (H1) is a metal belt loop and that the ratio between the length of
the belt in the said metal belt loop (H1) and its width is greater than 0.8.
17. Multi-nip calender for calendering a fibrous web in a paper/board machine, wherein
a lengthened contact zone is incorporated in the calender for enhancing the heat transfer
of the web (W) by adding a metal belt loop (H2) at an outside of a roll of the calender
in such a way that a lengthened final cooling zone is formed after the nips of the
calender, characterised in that the ratio between the length of the belt in the said metal belt loop (H2) and its
width is greater than 0.8.
1. Faserstoffbahnbearbeitungsgerät (1) für verschiedene Verwendungen in einer Papier-/Kartonmaschine,
wobei das Bearbeitungsgerät (1) ein Metallband (2) aufweist, das eine Schleife ausbildet
und sich um zumindest eine Führungseinrichtung (3) dreht, wobei das Gerät (1) eine
oder mehrere Bearbeitungszonen aufweist, wonach die Kontaktzeit einer Faserstoffbahn
(W) mit dem Metallband (2) innerhalb des Bereichs von 10 bis 1000 ms liegt, und die
Temperatur des Metallbands (2) innerhalb des Bereichs von 20 bis 400 °C liegt, dadurch gekennzeichnet, dass das Verhältnis der Länge des Metallbands (2) zu dessen Breite größer als 0,8 ist.
2. Bearbeitungsgerät (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Verhältnis größer als 1 ist.
3. Bearbeitungsgerät (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zumindest eine Führungseinrichtung (3) innerhalb der Metallbandschleife eine
heizbare Walze, bevorzugt ein Trockenzylinder, ist, deren/dessen Durchmesser innerhalb
des Bereichs von ungefähr 1000 bis ungefähr 2000 mm liegt.
4. Bearbeitungsgerät (1) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass in Verbindung mit der Metallbandschleife eine Reinigungseinrichtung (30; 40; 80;
120, 121; 50, 51) zum Reinigen der Bearbeitungsfläche des Metallbands angeordnet ist.
5. Bearbeitungsgerät nach Anspruch 4, dadurch gekennzeichnet, dass die Reinigungseinrichtung (30; 40; 80; 120, 121; 50, 51) aus einer Gruppe ausgewählt
wird, die einen Filzreiniger (30), einen Bürstenreiniger (40), eine mechanische Reinigungsvorrichtung
(80; 120; 121), die mit einer Gummiform oder einer anderen Reinigungseinrichtung vorgesehen
ist, die an der zu reinigenden Fläche angeordnet ist, eine Reinigung durch Sprühen
von einer Waschlösung, Dampf oder verdichteter Luft unter Druck aus einer Waschvorrichtung
(50), und eine Reinigung auf Grundlage einer Ultraschallschwingung oder einer anderen
Oszillation des Bands (2) umfasst.
6. Papier-/Kartonherstellungslinie, die zumindest zwei Bearbeitungsgeräte (1) nach einem
der vorangegangenen Ansprüche aufweist, wobei die zumindest zwei Bearbeitungsgeräte
(1) an zumindest zwei verschiedenen Stellen in der Papier-/Kartonherstellungslinie
angeordnet sind, wobei die zumindest zwei Bearbeitungsgeräte (1) zumindest 40 % identische,
auswechselbare Teile haben.
7. Papier-/Kartonherstellungslinie nach Anspruch 6, dadurch gekennzeichnet, dass es zumindest 70 % auswechselbare Teile gibt.
8. Verwendung eines Bearbeitungsgeräts (1) nach einem der vorangegangenen Ansprüche als
Ersatz für einen Yankee-Zylinder (100) in einer Papier-/Kartonmaschine.
9. Verwendung eines Bearbeitungsgeräts (1) nach einem der Ansprüche 1 bis 7 in einem
Kalander, der aus einer Gruppe ausgewählt wird, die einen Mehrspaltkalander, einen
Softkalander und einen Schuhkalander umfasst.
10. Verwendung eines Bearbeitungsgeräts (1) nach einem der Ansprüche 1 bis 7 zum Vorkalandrieren,
wobei in dem Gerät (1) außerhalb des Metallbands (2) eine Thermowalze (5) angeordnet
ist, die eine Kontaktfläche mit dem Band (2) derart ausbildet, dass zwischen dem Band
(2) und der Thermowalze (5) eine Bahnbearbeitungszone ausgebildet ist, durch die die
zu bearbeitende Bahn (W) geführt wird, wobei die Prozessbedingungen wie folgt sind:
- Kontaktzeit mit dem Metallband (2) beträgt 10 - 1000 ms,
- Last auf eine optionale, zumindest eine zusätzliche Lastwalze (4), die innerhalb
der Metallbandschleife (2) angeordnet ist, zum Pressen des Bands (2) gegen die Thermowalze
(5) beträgt 0 - 400 kN/m, wobei die zusätzliche Lastwalze (4) eine harte oder eine
weiche Walze ist,
- Metallbandtemperatur beträgt 20 - 400 °C,
- Thermowalzentemperatur beträgt 20 - 400 °C,
- Bahnfeuchtegehalt beträgt 1 - 50 %.
11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, dass die Kontaktzeit 20 - 40 ms beträgt, dass die Last, die durch die optionale, zumindest
eine Walze vorgesehen wird, 15 - 100 kN/m beträgt, dass die Metallbandtemperatur 150
- 200 °C beträgt, dass die Thermowalzentemperatur 150 - 200 °C beträgt, und dass der
Bahnfeuchtegehalt 8 - 15 % beträgt.
12. Verwendung eines Bearbeitungsgeräts (1) nach einem der Ansprüche 1 bis 7 zum Endkalandrieren,
wobei in dem Gerät (1) außerhalb des Metallbands eine Thermowalze (5) angeordnet ist,
die eine Kontaktfläche mit dem Band (2) derart ausbildet, dass zwischen dem Band (2)
und der Thermowalze (5) eine Bahnbearbeitungszone ausgebildet ist, durch die die zu
bearbeitende Bahn (W) geführt wird, wobei die Prozessbedingungen wie folgt sind:
- Kontaktzeit mit dem Metallband (2) beträgt 10 - 1000 ms,
- Last auf eine optionale, zumindest eine zusätzliche Lastwalze (4), die innerhalb
der Metallbandschleife (2) angeordnet ist, zum Pressen des Bands (2) gegen die Thermowalze
(5) beträgt 0 - 400 kN/m,
- Metallbandtemperatur beträgt 20 - 400 °C,
- Thermowalzentemperatur beträgt 20 - 400 °C,
- Bahnfeuchtegehalt beträgt 1 - 50 %.
13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, dass die Kontaktzeit 60 - 200 ms beträgt, dass die Last, die durch die optionale, zumindest
eine Walze vorgesehen wird, 15 - 100 kN/m beträgt, dass die Metallbandtemperatur 150
- 200 °C beträgt, dass die Thermowalzentemperatur 150 - 200 °C beträgt, und dass der
Bahnfeuchtegehalt 8 - 15 % beträgt.
14. Verwendung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass das Bearbeitungsgerät (1) zumindest zwei Bearbeitungszonen aufweist.
15. Verwendung nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass die zu bearbeitende Bahn ein beschichteter Faltschachtelkarton (FBB) ist.
16. Mehrspaltkalander zum Kalandrieren einer Faserstoffbahn (W) in einer Papier-/Kartonmaschine,
wobei eine verlängerte Kontaktzone in dem Kalander zum Verbessern der Wärmeübertragung
der Bahn (W) durch Hinzufügen einer Bandschleife (H1) an einer Außenseite einer Walze
des Kalanders derart aufgenommen wird, dass eine verlängerte Vorheizzone unmittelbar
vor den Spalten des Kalanders ausgebildet wird, wodurch ein Vorheizeffekt erreicht
wird, dadurch gekennzeichnet, dass die Bandschleife (H1) eine Metallbandschleife ist, und dass das Verhältnis zwischen
der Länge des Bands (2) in der Metallbandschleife (H1) und dessen Breite größer als
0,8 ist.
17. Mehrspaltkalander zum Kalandrieren einer Faserstoffbahn (W) in einer Papier-/Kartonmaschine,
wobei eine verlängerte Kontaktzone in dem Kalander zum Verbessern der Wärmeübertragung
der Bahn (W) durch Hinzufügen einer Metallbandschleife (H2) an einer Außenseite einer
Walze des Kalanders derart aufgenommen wird, dass eine verlängerte Endkühlzone nach
den Spalten des Kalanders ausgebildet wird, dadurch gekennzeichnet, dass das Verhältnis zwischen der Länge des Bands (2) in der Metallbandschleife (H2) und
dessen Breite größer als 0,8 ist.
1. Appareil de transformation de nappe fibreuse (1) pour différentes utilisations dans
une machine à papier/carton, l'appareil de transformation (1) comprenant une courroie
métallique (2) formant une bouche (2), et tournant autour d'au moins un moyen de guidage
(3),
l'appareil (1) comprenant une ou plusieurs zones de transformation, moyennant quoi
le temps de contact d'une nappe fibreuse (W) avec la courroie métallique (2) est dans
la plage de 10 à 1 000 ms, et la température de la courroie métallique (2) est dans
la plage de 20 à 400 °C, caractérisé en ce que le rapport de la longueur de la courroie métallique (2) sur sa largeur est supérieur
à 0,8.
2. Appareil de transformation (1) selon la revendication 1, caractérisé en ce que ledit rapport est supérieur à 1.
3. Appareil de transformation (1) selon la revendication 1 ou 2, caractérisé en ce que le au moins un moyen de guidage (3) à l'intérieur de la boucle de courroie métallique
est un rouleau pouvant être chauffé, de préférence un cylindre de séchage, dont le
diamètre est dans la plage d'environ 1 000 à environ 2 000 mm.
4. Appareil de transformation (1) selon l'une quelconque des revendications précédentes,
caractérisé en ce que conjointement avec la boucle de courroie métallique, on agence des moyens de nettoyage
(30 ; 40 ; 80 ; 120, 121 ; 50, 51) pour nettoyer la surface de transformation de la
courroie métallique.
5. Appareil de transformation (1) selon la revendication 4, caractérisé en ce que les moyens de nettoyage (30 ; 40 ; 80 ; 120, 121 ; 50, 51) sont sélectionnés dans
un groupe comprenant un nettoyeur à feutre (30), un nettoyeur à brosse (40), un dispositif
de nettoyage mécanique (80 ; 120, 121) prévu avec un moulage en caoutchouc ou d'autres
moyens de nettoyage placés contre la surface à nettoyer, nettoyant grâce à une solution
de lavage par pulvérisation, de la vapeur ou de l'air comprimé sous pression provenant
d'un dispositif de lavage (50) et nettoyant en fonction de la vibration ultrasonore
ou d'une autre oscillation de la courroie (2).
6. Ligne de production de papier/carton comprenant au moins deux appareils de transformation
(1) selon l'une quelconque des revendications précédentes, les au moins deux appareils
de transformation (1) étant positionnés au moins à deux points différents sur la ligne
de production de papier/carton, les au moins deux appareil de transformation (1) ayant
au moins 40 % de pièces interchangeables identiques.
7. Ligne de production de papier/carton selon la revendication 6, caractérisée en ce qu'il y a au moins 70 % de pièces interchangeables.
8. Utilisation d'un appareil de transformation (1) selon l'une quelconque des revendications
précédentes, en tant que replacement pour un cylindre Yankee (100) dans une machine
à papier/carton.
9. Utilisation d'un appareil de transformation (1) selon l'une quelconque des revendications
1 à 7, dans une calandre sélectionnée dans un groupe comprenant une calandre à plusieurs
pinces, une calandre souple et une calandre à sabot.
10. Utilisation d'un appareil de transformation (1) selon l'une quelconque des revendications
1 à 7 pour le précalandrage, dans lequel l'appareil (1), à l'extérieur de la courroie
métallique (2), on agence un rouleau thermique (5) formant une surface de contact
avec la courroie (2) de sorte qu'entre la courroie (2) et le rouleau thermique (5),
est formée une zone de transformation de nappe à travers laquelle la nappe (W) à transformer
est amenée, dans lequel les conditions de transformation sont les suivantes :
le temps de contact avec la courroie métallique (2) est de 10 - 1 000 ms,
la charge sur au moins un rouleau de charge (4) supplémentaire, facultatif agencé
dans la boucle (2) de courroie métallique pour comprimer la courroie (2) contre le
rouleau thermique (5) est de 0 - 400 kN/m, le rouleau de charge (4) supplémentaire
étant un rouleau dur ou souple,
la température de la courroie métallique est de 20 - 400 °C,
la température du rouleau thermique est de 20 - 400 °C,
l'humidité de nappe est de 1 - 50%.
11. Utilisation selon la revendication 10, caractérisée en ce que le temps de contact est de 20 - 40 ms, en ce que la charge prévue par le au moins un rouleau facultatif est de 15 - 100 kN/m, en ce que la température de courroie métallique est de 150 - 200 °C, en ce que la température du rouleau thermique est de 150 - 200 °C, et en ce que l'humidité de nappe est de 8 - 15 %.
12. Utilisation d'un appareil de transformation (1) selon l'une quelconque des revendications
1 à 7, pour le calandrage final, dans lequel appareil (1), à l'extérieur de la courroie
métallique (2), on agence un rouleau thermique (5) formant une surface de contact
avec la courroie (2) de sorte qu'entre la courroie (2) et le rouleau thermique (5),
est formée une zone de transformation de nappe à travers laquelle la nappe (W) à transformer
est amenée, dans laquelle les conditions de transformation sont les suivantes :
le temps de contact avec la courroie métallique (2) est de 10 - 1 000 ms,
la charge sur au moins un rouleau de charge (4) supplémentaire, facultatif agencé
à l'intérieur de la boucle (2) de courroie métallique pour comprimer la courroie (2)
contre le rouleau thermique est de 0 - 400 kN/m,
la température de courroie métallique est de 20 - 400 °C,
la température de rouleau thermique est de 20 - 400 °C,
l'humidité de nappe est de 1 - 50 %.
13. Utilisation selon la revendication 12, caractérisée en ce que le temps de contact est de 60 - 200 ms, en ce que la charge fournie par le au moins un rouleau facultatif est de 15 - 100 kN/m, en ce que la température de courroie métallique est de 150 - 200 °C, en ce que la température de rouleau thermique est de 150 - 200 °C et en ce que l'humidité de nappe est de 8 - 15 %.
14. Utilisation selon l'une quelconque des revendications 10 à 13, caractérisée en ce que l'appareil de transformation (1) comprend au moins deux zones de transformation.
15. Utilisation selon l'une quelconque des revendications 10 à 14, caractérisée en ce que la nappe (W) qui est transformée, est un carton pour boîte pliante (FBB) recouvert.
16. Calandre à plusieurs pinces pou calandrer une nappe fibreuse (W) dans une machine
à papier/carton, dans laquelle une zone de contact rallongée est incorporée dans la
calandre pour améliorer le transfert de chaleur de la nappe (W) en ajoutant une boucle
(H1) de courroie à l'extérieur d'un rouleau de la calandre de sorte qu'une zone de
préchauffage rallongée est formée immédiatement avant les pinces de la calandre, moyennant
quoi on obtient un effet de préchauffage, caractérisée en ce que le boucle (H1) de courroie est une boucle de courroie métallique et en ce que le rapport entre la longueur de la courroie dans ladite boucle (H1) de courroie métallique
et sa largeur est supérieur à 0,8.
17. Calandre à plusieurs pinces pour calandrer une nappe fibreuse dans une machine à papier/carton,
dans laquelle une zone de contact rallongée est incorporée dans la calandre pour améliorer
le transfert de chaleur de la nappe (W) en ajoutant une boucle (H2) de courroie métallique
à l'extérieur d'un rouleau de la calandre de sorte qu'une zone de refroidissement
final rallongée est formée après les pinces de la calandre, caractérisée en ce que le rapport entre la longueur de la courroie dans ladite boucle (H2) de courroie métallique
et sa largeur est supérieur à 0,8.