(11) **EP 1 788 248 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

23.05.2007 Patentblatt 2007/21

(51) Int Cl.:

F04B 43/12 (2006.01)

(21) Anmeldenummer: 06023499.4

(22) Anmeldetag: 11.11.2006

(84) Benannte Vertragsstaaten:

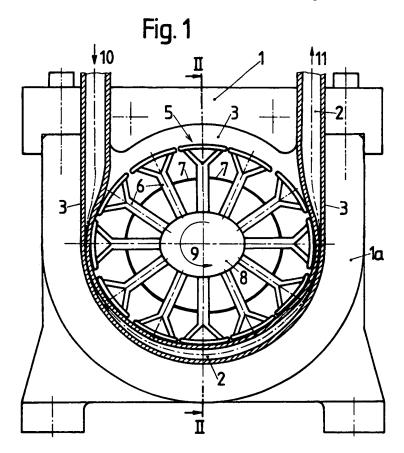
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

(30) Priorität: 18.11.2005 DE 102005055013

(71) Anmelder: Klämpfl, Franz Xaver 91096 Möhrendorf (DE)


(72) Erfinder: Klämpfl, Franz Xaver 91096 Möhrendorf (DE)

(54) Schlauchpumpe

(57) Es soll eine robuste Schlauchpumpe aus wenigen Einzelteilen aufgebaut werden, die wenig störanfällig ist.

Es ist ein Pumpenkörper (1) und ein Aufnahmeteil (1a) für den Schlauch (2) in einer Aussparung (3) vorhanden. Ein Rad (5) mit mehreren Stempeln (6), die etwa

radial verlaufen, umschließt einen unrunden Rotor (8), der die Stempel (6) fortschreitend gegen den Schlauch (2) drückt und die zur Freigabe des Schlauches (2) nacheinander wieder zurück bewegt werden. Hierzu sind die Stempel (6) durch federnde Stege (7) miteinander verbunden und sind mit diesen Stegen (7) als einteiliges Kunststoffteil ausgebildet.

EP 1 788 248 A2

20

40

Beschreibung

[0001] Schlauchpumpen werden z.B. in der Dialyse zum Bluttransport verwendet. Üblich sind Rollenpumpen, bei denen ein rotierender Rollenträger vorgesehen ist, wobei die Rollen ein Stück des Schlauches über seine Länge fortschreitend zusammendrücken und so die Flüssigkeit vorwärts befördern. Durch das Abrollen der Rollen auf dem Schlauch entsteht Reibung (Rollwiderstand) und Verschleiß. Die Drehzahl kann deswegen nur relativ niedrig sein.

[0002] Durch die deutsche Offenlegungsschrift DE 1911874 A1 ist eine Schlauchpumpe bekannt, bei der der Schlauch durch die eine Seite schwenkbarer, aufeinanderfolgend betätigter Druckfinger gegen eine Auflagefläche für den Schlauch gepresst wird. Hierzu ist ein rotierender Exzenter vorgesehen, der auf die andere Seite der Druckfinger einwirkt. Die Schlauchpumpe besteht aus vielen Einzelteilen, weist ein großes Volumen auf und ist störanfällig und teuer.

[0003] Dies gilt auch für die Schlauchpumpe gemäß der deutschen Offenlegungsschrift DE 2152352 A1, bei der der Schlauch an einer zylindrischen Innenfläche anliegt und durch einen umlaufenden Exzenterkörper fortschreitend zusammengedrückt wird, wobei zwischen Schlauch und Exzenterkörper in einem Ring radial beweglich geführte Druckkörper angeordnet sind.

[0004] Aus FR 1 430 288 ist eine Schlauchpumpe mit einem Aufnahmeteil für einen flexiblen Schlauch in einer Aussparung und einem Ring mit mehreren radial verlaufenden Stempeln, die mit ihren äußeren Enden gegen den in der Aussparung liegenden Schlauch drückbar sind, bekannt. Ferner wirkt auf das innere Ende der Stempel ein motorisch angetriebener, unrunder Rotor derart, dass die Stempel bei der Rotation des Rotors fortschreitend gegen den Schlauch gedrückt und danach in entgegengesetzter Richtung zur Freigabe des Schlauchs nacheinander wieder zurückbewegt werden. Darüber hinaus sind die Stempel an ihren äußeren Enden von einem elastischen Band umschlungen, das die Stempel mit ihren inneren Enden gegen den Rotor drückt. Die Stempel sind in Bohrungen eines Ringes längsverschiebbar geführt. Die Schlauchpumpe ist aus relativ vielen Einzelteilen aufwendig aufgebaut.

[0005] Der Erfindung liegt die Aufgabe zugrunde, eine Schlauchpumpe aus wenigen Einzelteilen aufzubauen und den Rollwiderstand zu verhindern, so dass auch höhere Drehzahlen möglich sind und der Verschleiß des Schlauches gering ist.

[0006] Die Erfindung ist nachfolgend anhand der Zeichnung näher erläutert. Es zeigen:

Fig. 1 eine Ansicht einer Schlauchpumpe nach der Erfindung mit geöffnetem Deckel,

Fig. 2 einen Schnitt nach der Linie II-II in Fig. 1,

Fig. 3 und 4 Varianten der Schlauchlagerung bei der Schlauchpumpe gemäß den Fig. 1 und 2,

Fig. 5 eine Variante der Schlauchpumpe gemäß den

Fig. 1 und 2 für zwei Schläuche und Fig. 6 eine Variante des inneren Teils der Schlauchpumpe gem. den Fig. 1 und 2, bei der gleitende Reibung vermieden ist.

[0007] In den Fig. 1 und 2 ist mit 1 ein Pumpenkörper und mit 1a ein Aufnahmeteil, z. B. aus Kunststoff, für einen Schlauch 2 bezeichnet. Der Schlauch 2 besteht aus flexiblem Material und liegt in einer Aussparung 3, die sich aus Pumpenkörper 1 und Aufnahmeteil 1a ergibt. Die Aussparung 3 ist durch einen Kunststoffdeckel 4, der in Fig. 1 weggelassen ist, verschlossen.

[0008] In der Aussparung 3 ist ein Rad 5 mit mehreren etwa radial liegenden Stempeln 6 angeordnet, welche durch federnde Stege 7 miteinander verbunden sind. Die Stempel 6 werden mit ihren äußeren Enden durch einen unrunden, z. B. elliptischen Rotor 8 fortschreitend gegen den Schlauch 2 gedrückt und liegen mit ihren inneren Enden am Rotor 8 an. Bei der Rotation des Rotors 8, z. B. in Richtung des Pfeils 9, wird der Schlauch 2 durch die Stempel 6 peristaltisch fortschreitend zusammengedrückt und die Stempel 6 werden danach zur Freigabe des Schlauches 2 nacheinander wieder zurückbewegt. Dadurch wird Flüssigkeit vom Eingang 10 zum Ausgang 11 befördert. Ein Elektromotor 12 treibt den Rotor 8 an. [0009] In der Fig. 3 ist eine Variante im Bereich III der Fig. 2 gezeigt. Dabei ist auf dem den Stempeln 6 gegenüber liegenden Schlauchbett 13 der Aussparung 3 ein nachgiebiges Material 14 aufgebracht, das ein zu starkes Quetschen des Schlauches 2 verhindert. Alternativ können auch die Stempel 6 in ihrer Längsrichtung federnd ausgebildet sein.

[0010] Zwischen diesem Material 14 und dem Schlauch 2 liegt gem. Fig. 4 ein U-förmiges Aufnahmeteil 15, in dem der Schlauch 2 zwischen den als Anschläge 16 dienenden Seiten liegt, das auf dem elastischen Material 14 aufliegt und in Richtung zum Schlauchbett 13 der Aussparung 3 bewegbar ist. Dadurch wird der Pressweg des Schlauches 2 begrenzt. Letzterer wird nicht vollständig zusammengepresst und damit z. B. die Hämolyse-Rate von Blutpumpen gesenkt.

[0011] Die Fig. 5 zeigt, dass der Schlauch 2 zwischen dem Rad 5 (Stempel 6) und dem Schlauchbett 13 vorgespannt werden kann, so dass die Walkarbeit verringert ist. In der Aussparung 3 ist ein weiterer, nicht vorgespannter Schlauch 2a angeordnet. Die Schlauchpumpe kann also gleichzeitig mit mehreren Schläuchen arbeiten.

[0012] Bei der Variante gemäß Fig. 6 liegt an den inneren Enden der Stempel 6 ein flexibler Ring 17 an und zwischen diesem Ring 17 und dem Rotor 8 befinden sich Wälzkörper 18, die durch einen flexiblen Käfig 19 geführt werden. Gleitende Reibung zwischen den Stempeln 6 und dem Rotor 8 ist dadurch verhindert.

[0013] Die wesentlichen Vorteile der beschriebenen Schlauchpumpe sind:

1. Keine Rollreibung am Schlauch 2, 2a (kein Dar-

5

10

15

20

25

30

35

40

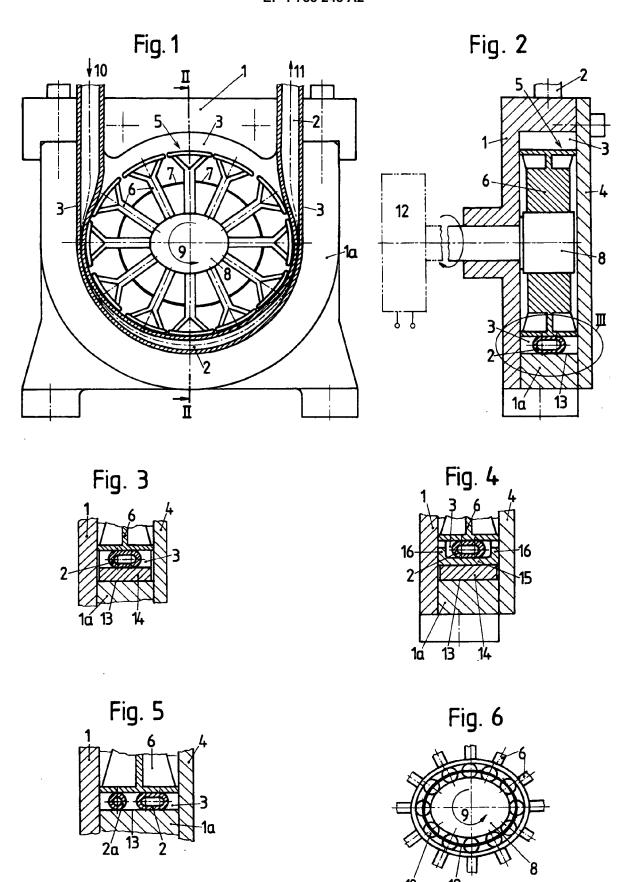
überrollen über den Schlauch 2, 2a). Hohe Drehzahlen sind möglich, daher ist kein vollständiges Zusammendrücken des Schlauches 2, 2a erforderlich; der Schlauchpressweg kann begrenzt werden.

- 2. Schlauch 2, 2a kann über seine Presslänge vorgespannt werden, daher sind geringe Schlauchpresswege erforderlich, d. h. es sind große Schlauchdurchmesser bei geringen Presswegen möglich.
- 3. Die Stempel 6 sind durch die Stege 7 miteinander zu einem Rad 5 verbunden, daher müssen die Stempel 6 nicht durch den Schlauch 2, 2a zurückgedrückt werden oder bei weichen Schläuchen durch Federn. Die Rückstellung der Stempel 6 erfolgt durch die Form und Bewegung des Rotors 8.

Bezugszeichenliste

[0014]

- 1 Pumpenkörper
- 1a Aufnahmeteil
- 2,2a Schlauch
- 3 Aussparung
- 4 Deckel
- 5 Rad
- 6 Stempel
- 7 Stege
- 8 Rotor
- 9 Pfeil
- 10 Eingang
- 11 Ausgang
- 12 Elektromotor
- 13 Schlauchbett
- 14 elastisches Material
- 15 Aufnahmeteil
- 16 Anschläge
- 17 Ring
- 18 Wälzkörper
- 19 Käfig


Patentansprüche

Schlauchpumpe mit einem Aufnahmeteil (1 a) für einen flexiblen Schlauch (2, 2a) in einer Aussparung (3) und einem Rad (5) mit mehreren etwa radial verlaufenden Stempeln (6), die mit ihren äußeren Enden gegen den in der Aussparung (3) liegenden Schlauch (2, 2a) drückbar sind, wobei die Stempel (6) durch federnde Stege (7) einteilig miteinander verbunden sind und als Kunststoffteil ausgebildet sind, wobei an den inneren Enden der Stempel ein motorisch angetriebener, unrunder Rotor (8) einwirkt, derart, dass die Stempel (6) bei der Rotation des Rotors (8) fortschreitend gegen den Schlauch (2, 2a) gedrückt und in entgegengesetzter Richtung zur Freigabe des Schlauches (2, 2a) nacheinander

wieder zurück bewegt werden.

- 2. Schlauchpumpe nach Anspruch 1, dadurch gekennzeichnet, dass der Rotor (8) einen elliptischen Querschnitt hat.
- Schlauchpumpe nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass auf dem den Stempeln (6) gegenüberliegenden Schlauchbett (13) der Aussparung (3) ein nachgiebiges Material (14) aufgebracht ist.
- Schlauchpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Stempel (6) in Längsrichtung federnd ausgebildet sind.
- Schlauchpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in der Aussparung
 (3) den Schlauch (2, 2a) seitlich umschließende Anschläge (16) für die Stempel (6) vorgesehen sind.
- 6. Schlauchpumpe nach Anspruch 5, dadurch gekennzeichnet, dass die Anschläge (16) die Seiten eines U-förmigen Aufnahmeteils (15) für den Schlauch (2, 2a) bilden und dieses Aufnahmeteil (15) auf dem nachgiebigen Material (14) aufliegt.
- 7. Schlauchpumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass an den inneren Enden der Stempel (6) ein flexibler Ring (17) anliegt und sich zwischen diesem Ring (17) und dem Rotor (8) Wälzkörper (18) befinden, die durch einen flexiblen Käfig (19) geführt werden.

3

EP 1 788 248 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- DE 1911874 A1 [0002]
- DE 2152352 A1 [0003]

• FR 1430288 [0004]