(11) EP 1 795 308 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

13.06.2007 Patentblatt 2007/24

(51) Int Cl.: **B25D 17/24** (2006.01)

(21) Anmeldenummer: 06124921.5

(22) Anmeldetag: 28.11.2006

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

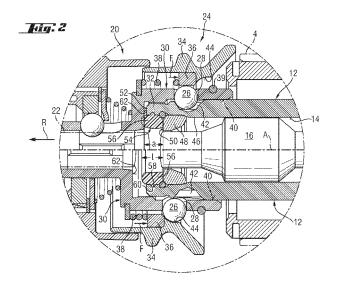
(30) Priorität: 07.12.2005 DE 102005000179

(71) Anmelder: HILTI Aktiengesellschaft 9494 Schaan (LI) Benannte Vertragsstaaten:

CH DE ES FR GB IT LI

(72) Erfinder:

 Koschel, Christian 86199, Augsburg (DE)


 Hartmann, Markus 87665, Mauerstetten (DE)

(74) Vertreter: Wildi, Roland Hilti Aktiengesellschaft, Corporate Intellectual Property, Feldkircherstrasse 100, Postfach 333 9494 Schaan (LI)

(54) Hammerschlaggerät

(57) Ein Hammerschlaggerät (2) weist einen in einem Gehäuse (4) angeordneten Motor (6), der ein Abtriebselement (12) und einen Schlagmechanismus (10) antreibt, und eine Werkzeugaufnahme (20) auf, an der ein durch den Schlagmechanismus (10) entlang einer Achse (A) beaufschlagbares Werkzeug (22) festlegbar ist, die über einen Verriegelungsmechanismus (24) an dem Abtriebselement (12) festlegbar ist, wobei der Verriegelungsmechanismus (24) mindestens einen Verriegelungsposition ein Formschluss zwischen einem Verbindungsteil (30) der Werkzeugaufnahme (20) und dem Abtriebselement (12) herstellbar ist und der in radialer Rich-

tung in eine Entriegelungsposition verbringbar ist, in der der Formschluss aufgehoben ist und die Werkzeugaufnahme (20) somit von dem Abtriebselement (12) abnehmbar ist, und wobei eine Stellhülse (34) vorgesehen ist, die in einer Blockierstellung den mindestens einen Verriegelungskörper (26) in der Verriegelungsposition gegen eine radiale Verlagerung abstützt und die gegen eine Federkraft (F) in eine Freigabestellung verstellbar ist, in der der Verriegelungskörper (26) in die Entriegelungsposition verbringbar ist. Es ist vorgesehen, dass zwischen dem Abtriebselement (12) und dem Verbindungsteil (30) ein in axialer Richtung wirkendes Dämpfungselement (56) vorgesehen ist.

20

40

1

Beschreibung

[0001] Die Erfindung betrifft ein Hammerschlaggerät, insbesondere ein elektro-pneumatisches Bohr- und/oder Meisselhammergerät, mit einem in einem Gehäuse angeordneten Motor, der ein Abtriebselement und einen Schlagmechanismus antreibt. Ferner weist das Hammerschlaggerät eine Werkzeugaufnahme auf, an der ein durch den Schlagmechanismus entlang einer Achse beaufschlagbares Werkzeug festlegbar ist und die über einen lösbaren Verriegelungsmechanismus an dem Abtriebselement festlegbar ist. Der Verriegelungsmechanismus weist hierzu wenigstens einen Verriegelungskörper auf, über den in einer Verriegelungsposition ein Formschluss zwischen einem Verbindungsteil der Werkzeugaufnahme und dem Abtriebselement herstellbar ist. Der Verriegelungskörper ist ferner in radialer Richtung zur Achse in eine Entriegelungsposition verbringbar, in der der Formschluss aufgehoben ist, so dass die Werkzeugaufnahme von dem Abtriebselement abgenommen werden kann. Dabei ist eine Stellhülse vorgesehen, die in einer Blockierstellung den mindestens einen Verriegelungskörper in der Verriegelungsposition gegen eine radiale Verlagerung abstützt. Die Stellhülse ist in einer Arbeitsrichtung des Hammerschlaggerätes gegen eine Federkraft in eine Freigabestellung verstellbar, in der der Verriegelungskörper in die Entriegelungsposition verbringbar ist.

[0002] Bei derartigen Hammerschlaggeräten kann die Werkzeugaufnahme in besonders komfortabler und werkzeugfreier Weise von dem Abtriebselement entfernt werden, beispielsweise um sie gegen eine neue oder andersartige Werkzeugaufnahme auszutauschen.

[0003] Aus der DE 34 43 186 A1 ist eine Handwerkzeugmaschine bekannt, die ein hülsenförmiges Abtriebselement aufweist, in dem ein Döpper geführt ist und an dem ein Futter festlegbar ist. Dabei sind radial verlegbare Halteelemente vorgesehen, über die ein axialer Formschluss zwischen einem Verbindungsteil des Futters und dem Abtriebselement herstellbar ist. Die Halteelemente sind hierbei durch eine Stellhülse in der Verriegelungsposition abgestützt, die entgegen einer Arbeitsrichtung durch eine Feder an einen Sprengring gedrückt wird. Um das Futter von dem Abtriebselement zu lösen, wird die Stellhülse in Arbeitsrichtung entgegen einer Kraft der Feder verschoben, so dass die Halteelemente radial nach aussen verlagert werden und dabei den Formschluss zwischen dem Verbindungsteil und dem Abtriebselement aufheben.

[0004] Nachteilig an der bekannten Vorrichtung ist, dass im Betrieb, insbesondere bei Leerschlägen, der Döpper gegen einen axialen Anschlag des hülsenförmigen Abtriebselementes schlägt und ein sehr grosser Teil der Schlagenergie dabei über den Verbindungsteil und den daran gehaltenen Sprengring an die Stellhülse abgegeben wird. Oftmals reicht hierbei die auf die Stellhülse einwirkende Schlagenergie aus, um diese soweit in Arbeitsrichtung zu verschieben, dass die Halteelemente in

ihre Entriegelungsposition verlagert werden können. Hieraus resultiert in vielen Fällen ein ungewolltes Abfallen des Futters vom Hammerschlaggerät.

[0005] Der vorliegenden Erfindung liegt die Aufgabe zugrunde, bei einem Hammerschlaggerät die genannten Nachteile zu vermeiden und ein ungewolltes Lösen der Werkzeugaufnahme zu verhindern.

[0006] Erfindungsgemäss wird die Aufgabe dadurch gelöst, dass im angebrachten Zustand der Werkzeugaufnahme zwischen dem Abtriebselement und dem Verbindungsteil ein in axialer Richtung wirkendes Dämpfungselement vorgesehen ist. Hierdurch kann der Anteil der auf die Stellhülse übertragenen axial wirkenden Schlagenergie soweit reduziert werden, dass auch bei Leerschlag des Döppers auf den Verbindungsteil der Werkzeugaufnahme, dieser keinen ausreichenden Impuls an die Stellhülse abgeben kann, um diese in die Freigabestellung zu verschieben. Somit wird verhindert, dass die Stellhülse ungewollt aus der Blockierstellung entfernt wird, wodurch wiederum die Verriegelungskörper permanent in der Verriegelungsposition abgestützt werden. Somit wird die Werkzeugaufnahme auch im Falle von Leerschlägen sicher an dem Abtriebselement gehalten.

[0007] Vorteilhafterweise ist an dem Abtriebselement eine Dämpfungselementaufnahme zur Festlegung des Dämpfungselementes ausgebildet. Hierdurch ist eine exakte Positionierung des Dämpfungselementes sichergestellt, die einen ausreichenden Abbau der Schlagenergie zwischen dem Abtriebselement und der Werkzeugaufnahme sicherstellt.

[0008] Bevorzugterweise ist die Dämpfungselementaufnahme dabei an einer vom Schlagmechanismus abgewandten Seite eines axialen Döpperanschlages angeordnet. Auf diese Weise kann das Dämpfungselement entgegen der Arbeitsrichtung sicher abgestützt werden, ohne dass hierzu zusätzliche Aufnahmeelemente vorgesehen werden müssten. Vielmehr wird mit dem Döpperanschlag hierbei ein bereits vorhandenes Teil als axiale Begrenzung der Dämpfungselementaufnahme benutzt. [0009] Hierbei ist es günstig, wenn das Dämpfungselement ein radial abstehendes Klemmelement aufweist, das in einer Klemmaufnahme des Abtriebselementes festgeklemmt ist. Hierdurch kann das Dämpfungselement in besonders einfacher Weise vollständig am Abtriebselement festgelegt werden.

[0010] Vorteilhafterweise weist das Dämpfungselement im unbelasteten Zustand in axialer Richtung eine grössere Erstreckung auf als ein axialer Abstand zwischen einem Anlegebereich des Verbindungsteiles und einem diesem zugewandten Abstützbereich der Dämpfungselementaufnahme im verriegelten Zustand der Werkzeugaufnahme. Hierdurch ist das Dämpfungselement im verriegelten Zustand axial vorgespannt und drückt die Werkzeugaufnahme von dem Abtriebselement weg. Hierdurch kann einerseits eine gute Dämpfung und andererseits eine besonders gute Festlegung der Werkzeugaufnahme gegenüber dem Abtriebsele-

15

ment erzielt werden. Insbesondere wird hierbei ein für die radiale Beweglichkeit der Verriegelungskörper erforderliches Spiel aufgehoben. Hierdurch können unnötige Geräuschbildungen und ein erhöhter Verschleiss der Verriegelungskörper beziehungsweise der Elemente die diese aufnehmen infolge des Spiels verhindert werden. [0011] Ferner ist es günstig, wenn das Dämpfungselement ringförmig ist. Hierdurch wird der Einbau des Dämpfungselementes wesentlich erleichtert. Zudem können in vielen Fällen handelsübliche Dämpfungselemente Verwendung finden, was die Herstellungskosten vermindert. [0012] Vorteilhafterweise ist das Dämpfungselement aus einem Elastomer gebildet, wodurch ein ausreichender Abbau der Schlagenergie zwischen dem Abtriebselement und der Werkzeugaufnahme und damit eine ausreichende Verminderung der Beschleunigung der Stellhülse in Arbeitsrichtung erzielt werden kann.

[0013] Die Erfindung wird nachstehend anhand eines Ausführungsbeispieles näher erläutert. Es zeigen:

- Fig. 1 einen Längsschnitt durch den vorderen Teil eines erfindungsgemässen Hammerschlaggerätes und
- Fig. 2 einen Verriegelungsmechanismus des Hammerschlaggerätes gemäss Ausschnitt II aus Fig. 1.

[0014] Fig. 1 zeigt den vorderen Teil eines Hammerschlaggerätes 2 in Form eines Bohrhammergerätes, das in einem Gehäuse 4 einen Motor 6 aufweist. Der Motor 6 dient wie schematisch dargestellt zum Antrieb eines Erregers 8 eines Schlagmechanismus 10 sowie zum rotatorischen Antrieb eines Abtriebselementes 12. Dabei ist das Abtriebselement 12 rohrförmig ausgebildet und führt in einer Längsbohrung 14 einen Döpper 16 des Schlagmechanismus 10, der wiederum von einem durch den Erreger 8 angetriebenen Schläger 18 beaufschlagt wird.

[0015] An dem Abtriebselement 12 ist eine Werkzeugaufnahme 20, die zur Aufnahme eines Werkzeuges 22 in Form eines Bohr- oder Meisselbits dient, über einen lösbaren Verriegelungsmechanismus 24 festlegbar. Im Betrieb rotiert hierdurch die Werkzeugaufnahme 20 zusammen mit dem Abtriebselement 12 um eine gemeinsame Achse A. Gleichzeitig beaufschlagt der Schlagmechanismus 10 das an der Werkzeugaufnahme 20 gehaltene Werkzeug 22 in einer zur Achse A parallelen Arbeitsrichtung R.

[0016] Der jeweils obere Teil bezogen auf die Achse A in Fig. 1 und 2 zeigt den Verriegelungsmechanismus 24 in einer Verriegelungsposition, in der die Werkzeugaufnahme 20 an dem Abtriebselement 12 verriegelt ist. Der jeweilige untere Teil in den Fig. 1 und 2 zeigt dagegen eine Entriegelungsposition, in der die Werkzeugaufnahme 20 in Arbeitsrichtung R von dem Hammerschlaggerät 2, wie angedeutet, abgenommen werden kann.

[0017] Wie insbesondere aus Fig. 2 zu entnehmen ist,

weist der Verriegelungsmechanismus 24 kugelförmige Verriegelungskörper 26 auf, die in Radialbohrungen 28 eines becherförmigen Verbindungsteils 30 der Werkzeugaufnahme 20 bezüglich der Achse A radial verlagerbar gehalten sind. In diesem Verbindungsteil 30 ist ein freies Ende 32 des Abtriebselementes 12 angeordnet. Die Verlagerbarkeit der Verriegelungskörper 26 ist nach Aussen hin durch eine Stellhülse 34 mit einem eingelassenen Lagerring 36 begrenzt.

[0018] In der im oberen Teil von Fig. 2 dargestellten Verriegelungsposition ist die Stellhülse 34 durch eine Federkraft F einer Feder 38 in eine Blockierstellung vorgespannt, in der sie an einem Sprengring 39 anliegt, der an dem Verbindungsteil 30 gehalten ist. In dieser Blokkierstellung sind die Verriegelungskörper 26 durch den Lagerring 36 abgestützt und ragen aus einer Innenwand 40 des Verbindungsteils 30 heraus. Hierbei ragen die Verriegelungskörper 26 in Verriegelungsaufnahmen 42, die in das Abtriebselement 12 eingelassen sind. Auf diese Weise entsteht über die Verriegelungskörper 26 ein Formschluss zwischen dem Abtriebselement 12 und dem Verbindungsteil 30, wodurch die Werkzeugaufnahme 20 an dem Abtriebselement 12 festgelegt ist.

[0019] Die Stellhülse 34 kann durch einen nicht dargestellten Bediener entgegen der Federkraft F in Arbeitsrichtung R in eine Freigabestellung verschoben werden, die im unteren Teil der Fig. 1 und 2 dargestellt ist. Wie insbesondere aus Fig. 2 zu entnehmen ist, ist nun eine Ausnehmung 44 der Stellhülse 34 auf axialer Höhe der Radialbohrungen 28 angeordnet. Diese erlaubt den Verriegelungskörpern 26 eine radiale Bewegung nach Aussen, bis die Verriegelungskörper 26 vollständig aus den Verriegelungsaufnahmen 42 heraus bewegt sind. Hierdurch wird der Formschluss des Verbindungsteils 30 mit dem Abtriebselement 12 über die Verriegelungskörper 26 aufgehoben und die Werkzeugaufnahme 20 kann, wie dargestellt, in Arbeitsrichtung R von dem Abtriebselement 12 und damit vom Hammerschlaggerät 2 entfernt werden.

[0020] Wie aus Fig. 2 ferner zu entnehmen ist, ist an einer Innenfläche 46 der Längsbohrung 14 des Abtriebselementes 12 ein umlaufender Döpperanschlag 48 fest mit dem Abtriebselement 12 verbunden, der die axiale Bewegung des Döppers 16 in Arbeitsrichtung R begrenzt. Auf einer von dem Döpper 16 abgewandten Seite bildet der Döpperanschlag 48 einen Abstützbereich 50, der axial versetzt zu einer Stirnfläche 52 des Abtriebselementes 12 angeordnet ist. Hierdurch bilden der Döpperanschlag 48 und das Abtriebselement 12 eine ringförmige Dämpfungselementaufnahme 54, in der ein ebenfalls ringförmiges Dämpfungselement 56 aus Elastomer gehalten ist. Dabei ist an dem Dämpfungselement 56 ein radial nach aussen gerichtetes rippenförmiges Klemmelement 58 ausgebildet, das in eine nutförmige Klemmaufnahme 60 eingepresst ist, die in die Innenfläche 46 des Abtriebselementes 12 eingelassen ist.

[0021] Dieses Dämpfungselement 56 liegt in der Verriegelungsposition, wie aus der oberen Hälfte der Fig. 2

20

25

30

35

40

45

50

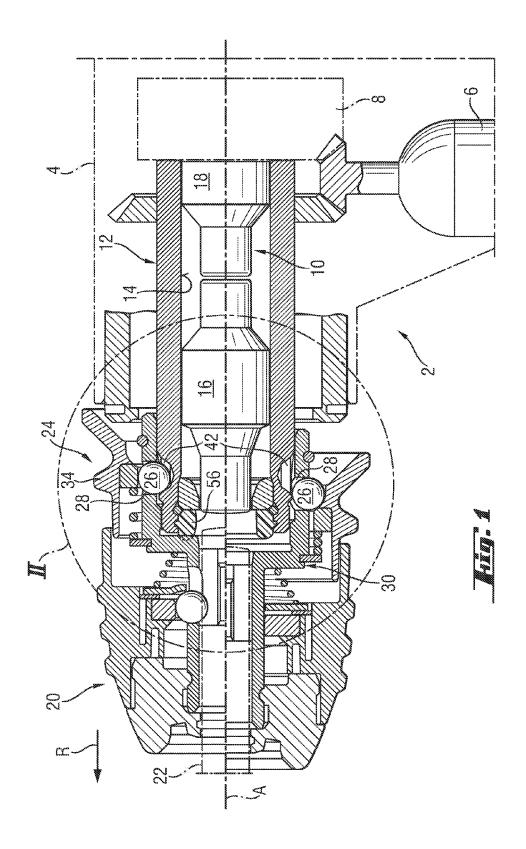
zu entnehmen ist, an einem dem Abtriebselement 12 zugewandten Anlegebereich 62 des Verbindungsteils 30 an. Dabei weist das Dämpfungselement 56, wie insbesondere aus der unteren Hälfte der Fig. 2 zu entnehmen ist eine axiale Erstreckung I auf, die größer ist als ein axialer Abstand a zwischen dem Anlegebereich 62 und dem Abstützbereich 50 im verriegelten Zustand der Werkzeugaufnahme 20, gemäss dem oberen Teil von Fig. 2.

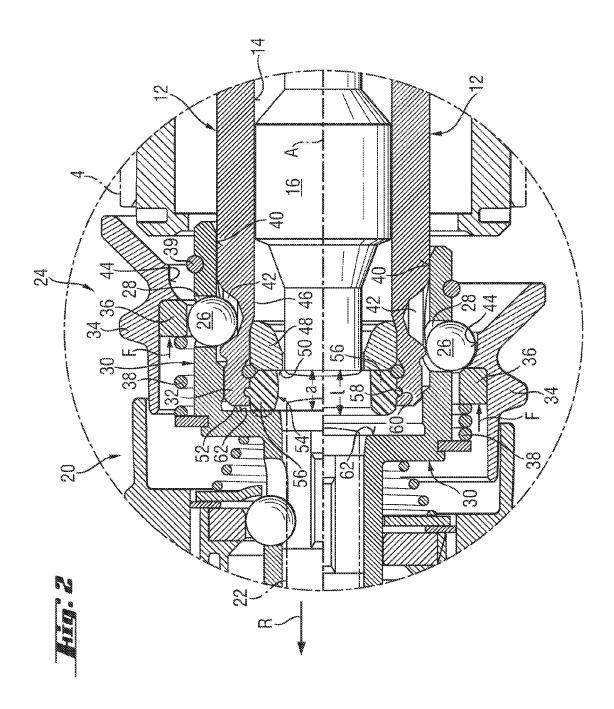
[0022] Hierdurch wird das Dämpfungselement 56 bei Herstellung der Verriegelungsposition gemäss dem oberen Teil von Fig. 2 vorgespannt und drückt den Verbindungsteil 30 weg von dem Abtriebselement 12. Durch diese Vorspannung wird ein Klappern und ein unnötiger Verschleiss an den Verriegelungskörpern 26 und der Radialbohrung 28 verhindert, die ohne Vorspannung infolge eines gewissen Spiels entstehen würden, das vorgehalten werden muss, um die radiale Verlagerbarkeit der Verriegelungskörper 26 gewährleisten zu können.

[0023] Im Betrieb, insbesondere bei Leerschlag, entstehende harte Schläge des Döppers 16 auf den Döpperanschlag 48 werden zudem über das Dämpfungselement 56 auf den Anlegebereich 62 übertragen. Hierbei wird die Schlagenergie, die das Verbindungsteil 30 beaufschlagt, deutlich reduziert. Folglich wird auch von dem Sprengring 39 lediglich ein stark verminderter axialer Impuls an die Stellhülse 34 in Arbeitsrichtung Rabgegeben. Dieser verminderte Impuls ist dabei, bei der vorgesehenen Auslegung des Hammerschlaggerätes 2, nicht in der Lage, die Stellhülse gegen die Federkraft F aus der Blokkierstellung heraus in die Freigabestellung zu beschleunigen, weshalb sich die Verriegelungskörper 26 auch nicht aus der Verriegelungsposition heraus in die Entriegelungsposition bewegen können. Hierdurch werden ein ungewolltes Lösen des Verriegelungsmechanismus 24 und ein Abfallen der Werkzeugaufnahme 20 von dem Hammerschlaggerät 2 verhindert.

Patentansprüche

Hammerschlaggerät (2)
mit einem in einem Gehäuse (4) angeordneten Motor
(6),
der ein Abtriebselement (12) und einen Schlagmechanismus (10) antreibt, und
mit einer Werkzeugaufnahme (20), an der ein durch
den Schlagmechanismus (10) entlang einer Achse
(A) beaufschlagbares Werkzeug (22) festlegbar ist
und die über einen Verriegelungsmechanismus (24)
an dem Abtriebselement (12) festlegbar ist,
wobei der Verriegelungsmechanismus (24) mindestens einen Verriegelungskörper (26) aufweist, über
den in einer Verriegelungsposition ein Formschluss
zwischen einem Verbindungsteil (30) der Werkzeugaufnahme (20) und dem Abtriebselement (12) herstellbar ist und der in radialer Richtung in eine Ent-


riegelungsposition verbringbar ist, in der der Form-


schluss aufgehoben ist und die Werkzeugaufnahme (20) somit von dem Abtriebselement (12) abnehmbar ist,

und eine Stellhülse (34) vorgesehen ist, die in einer Blokkierstellung den mindestens einen Verriegelungskörper (26) in der Verriegelungsposition gegen eine radiale Verlagerung abstützt und die gegen eine Federkraft (F) in eine Freigabestellung verstellbar ist, in der der Verriegelungskörper (26) in die Entriegelungsposition verbringbar ist,

dadurch gekennzeichnet, dass zwischen dem Abtriebselement (12) und dem Verbindungsteil (30) ein in axialer Richtung wirkendes Dämpfungselement (56) vorgesehen ist.

- 2. Hammerschlaggerät nach Anspruch 1, dadurch gekennzeichnet, dass an dem Abtriebselement (12) eine Dämpfungselementaufnahme (54) zur Festlegung des Dämpfungselementes (56) ausgebildet ist.
- Hammerschlaggerät nach Anspruch 2, dadurch gekennzeichnet, dass die Dämpfungselementaufnahme (54) an einer vom Schlagmechanismus (10) abgewandten Seite eines Döpperanschlages (48) angeordnet ist.
- 4. Hammerschlaggerät nach Anspruch 3, dadurch gekennzeichnet, dass das Dämpfungselement (56) ein radial abstehendes Klemmelement (58) aufweist, das in einer Klemmaufnahme (60) des Abtriebselementes (12) festgeklemmt ist.
- 5. Hammerschlaggerät nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Dämpfungselement (56) im unbelasteten Zustand in axialer Richtung eine grössere Erstreckung (I) aufweist als ein axialer Abstand (a) zwischen einem Anlegebereich (62) des Verbindungsteiles (30) und einem diesem zugewandten Abstützbereich (50) der Dämpfungselementaufnahme (54) im angebrachten Zustand der Werkzeugaufnahme (20).
- **6.** Hammerschlaggerät nach einem der Ansprüche 1 bis 5, **dadurch gekennzeichnet**, **dass** das Dämpfungselement (56) ringförmig ist.
- Hammerschlaggerät nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Dämpfungselement (56) aus einem Elastomer gebildet ist.

EP 1 795 308 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 3443186 A1 [0003]