

(19)

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 1 797 998 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
20.06.2007 Bulletin 2007/25

(51) Int Cl.:
B25B 21/00 (2006.01) **B25B 21/02 (2006.01)**

(21) Application number: 05027396.0

(22) Date of filing: 14.12.2005

(84) Designated Contracting States:
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI
SK TR**
Designated Extension States:
AL BA HR MK YU

(71) Applicant: **Mighty Seven International Co., Ltd.**
Taichung Hsien (TW)

(72) Inventor: **Chang, Jui-Sheng**
Taichung Hsien (TW)

(74) Representative: **Viering, Jentschura & Partner**
Postfach 22 14 43
80504 München (DE)

Remarks:

Amended claims in accordance with Rule 86 (2) EPC.

(54) **Pneumatic tool with direction switch operable with single hand**

(57) A pneumatic tool is operable with a single hand. The pneumatic tool includes a shell (10) defining a first chamber (11) and a second chamber (15). The second chamber (15) includes intake and outlet apertures in communication with the first chamber (11). A cylinder (12) is in the first chamber (11). A controller (30) is movable in the second chamber (15) between a first position and a second position. The controller (30) includes a first groove (31) and a second groove (32). In the first position, the first groove (31) communicates with the intake aperture for directing pressurized air to drive the cylinder (12) in a first direction. In the second position, the second groove (32) communicates with the intake aperture for directing pressurized air to drive the cylinder (12) in a second direction. A cover (20) seals the first chamber (10) and the second chamber (15). The cover (20) defines an opening (21) through which the controller (30) extends from the second chamber (15) so that the controller (30) can be moved.

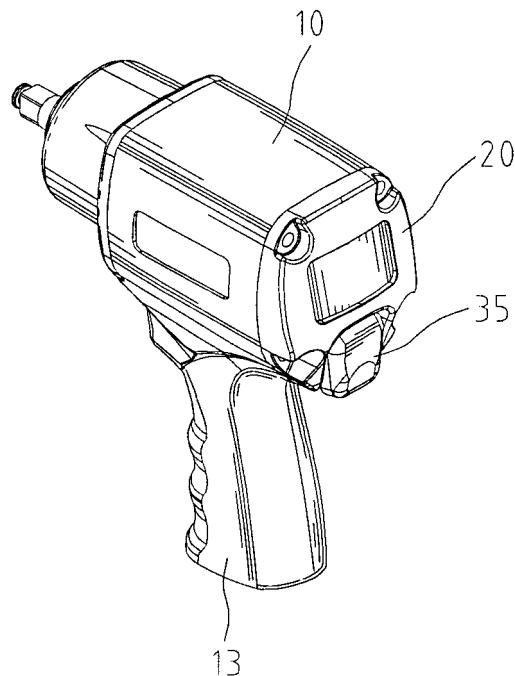


Fig.1

Description

Background of Invention

1. Field of Invention

[0001] The present invention relates to a pneumatic tool and, more particularly, to a pneumatic tool equipped with a direction switch operable with a single hand.

2. Related Prior Art

[0002] Disclosed in Taiwanese Patent Publication No. 387316 is a pneumatic tool 1 equipped with a direction switch operable with a single hand. The pneumatic tool 1 includes a handle 11 on which an upper control member 2 and a lower control member 3 are installed. The upper control member 2 is operable to cause the pneumatic tool to rotate or stop. The lower control member 3 is operable to cause the pneumatic tool to rotate in a direction or an opposite direction. A user operates the pneumatic tool with a single hand. The user holds the handle 11 and the lower control member 2 with the thumb, the middle finger, the ring finger and the little finger. The user presses the lower control member 2 with the middle finger, the ring finger and the little finger in order to cause the pneumatic tool to rotate. The user operates the upper control member 3 with the index finger.

[0003] However, there are problems with this conventional pneumatic tool. Firstly, the user soon have fatigue in the hand, pressing the lower control member 2 with the middle finger, the ring finger and the little finger while keeping the index finger off the upper control member 3. The user might get hurt in the hand if using this pneumatic tool for long. Moreover, the user cannot hold the pneumatic tool steady with the middle finger, the ring finger and the little finger. Furthermore, the user may unintentionally press the upper control member 3 with the index finger and change the direction of the rotation of the pneumatic tool, and this could be dangerous.

[0004] Disclosed in Taiwan Patent Publication M275925 is a direction switch of a pneumatic tool. A space 16 is defined in a front side of a handle 15 of a piston-shaped body 10 of the pneumatic tool. The direction switch includes a block 20 for controlling air currents. The block 20 defines upper and lower intakes 21, upper and lower outlets 22 and two apertures 23. All of the intakes 21, the outlets 22 and the apertures 23 are horizontal. The block 20 defines four channels 24 are vertical for communicating the apertures 23 with the intakes 21 and the outlets 22. Long rods 25 are positioned in the intakes 21. Short rods 25' are positioned in the outlets 22. A user operates the pneumatic tool with a single hand. The user holds the handle 15 with the thumb, the ring finger and the little finger. The user presses an upper portion of a trigger 30 with the index finger in order to cause the pneumatic tool to rotate in a first direction, and alternatively presses a lower portion of the trigger 30 with

the middle finger in order to cause the pneumatic tool to rotate in a second direction opposite to the first direction.

[0005] However, there are problems with this conventional direction switch. To cause the pneumatic tool to rotate in the first direction, the user keeps on pressing the upper portion of the trigger 30 with the index finger while keeping the middle finger off the lower portion of the trigger 30. To cause the pneumatic tool to rotate in the second direction, the user keeps on pressing the lower portion of the trigger 30 with the middle finger while keeping the index finger off the upper portion of the trigger 30. The user soon has fatigue in the hand. The user might get hurt in the hand if using this pneumatic tool for long. Moreover, the user cannot hold the pneumatic tool steady with the middle finger, the ring finger and the little finger. In addition, the user may unintentionally change the direction of the rotation of the pneumatic tool, and this could be dangerous. Furthermore, the elements are numerous, and the direction switch is complicated. The assembly, the maintenance and the repair of the direction switch are difficult. Moreover, in operation, only one pair of the intake 21 and the outlet 22 is used while the other pair of the intake 21 and the outlet 22 is idle, and this is a waste.

[0006] The present invention is therefore intended to obviate or at least alleviate the problems encountered in prior art.

Summary of Invention

[0007] According to the present invention, a pneumatic tool is operable with a single hand. The pneumatic tool includes a shell defining a first chamber and a second chamber. The second chamber includes intake and outlet apertures in communication with the first chamber. A cylinder is in the first chamber. A controller is movable in the second chamber between a first position and a second position. The controller includes a first groove and a second groove. In the first position, the first groove communicates with the intake aperture for directing pressurized air to drive the cylinder in a first direction. In the second position, the second groove communicates with the intake aperture for directing pressurized air to drive the cylinder in a second direction. A cover seals the first chamber and the second chamber. The cover defines an opening through which the controller extends from the second chamber so that the controller can be moved.

[0008] The primary advantage of the pneumatic tool according to the present invention is the simple structure for the use of the simple controller including only the first and second grooves.

[0009] Other advantages and features of the present invention will become apparent from the following description referring to the attached drawings.

Brief Description of Drawings

[0010] The present invention will be described through

detailed description of the preferred embodiment referring to the drawings.

Fig. 1 is a perspective view of a pneumatic tool according to the preferred embodiment of the present invention.

Fig. 2 is an exploded view of the pneumatic tool shown in Fig. 1.

Fig. 3 is a cross-sectional view of the pneumatic tool shown in Fig. 1.

Fig. 4 is a cross-sectional view of the pneumatic tool along a line 4-4 in Fig. 3.

Fig. 5 is a cross-sectional view of the pneumatic tool in another position than shown in Fig. 1.

Fig. 6 is a cross-sectional view of the pneumatic tool along a line 6-6 in Fig. 5.

Fig. 7 is a perspective view of a controller used in the pneumatic tool shown in Fig. 2.

Detailed Description of Preferred Embodiment

[0011] Referring to Fig. 1, shown is a pneumatic tool according to the preferred embodiment of the present invention.

[0012] Referring to Figs. 2 through 4, the pneumatic tool includes a shell 10 and a handle 13 projecting from the shell 10. The shell 10 defines a first chamber 11, a second chamber 15, a first channel 16 and a second channel 17. The first chamber 11 receives a cylinder 12 for driving a striker 18. The second chamber 15 receives a controller 30.

[0013] The handle 13 defines an intake 131 and an outlet 132. The intake 131 receives a valve 133 movable by means of a trigger 14 installed on the handle 13.

[0014] The second chamber 15 is in communication with the first channel 16 through an aperture 151 on a side. The second chamber 15 is in communication with the second channel 17 through an aperture 152 on another side. The second chamber 15 is in communication with the first chamber 11 through an aperture 153 near an end. Moreover, the second chamber 15 is in communication with the first chamber 11 through an aperture 154 near an opposite end. The second chamber 15 is in communication with the intake 131 through an aperture 155.

[0015] The controller 30 can be switched between a first position and a second position. In the first position, the controller 30 causes the cylinder 12 to rotate in a first direction. In the second position, the controller 30 causes the cylinder to rotate in a second position opposite to the first direction.

[0016] The controller 30 defines a first groove 31 on a side and a second groove 32 on an opposite side. The first groove 31 is separated from the second groove 32. The first groove 31 and the second groove 32 may be rectilinear, helical or S-shaped. The first groove 31 can be brought into communication with the first channel 16 through the aperture 151. The second groove 32 can be

brought into communication with the second channel 17 through the aperture 152.

[0017] The first groove 31 includes a downward intake end 311 and an upward outlet end 312. The intake end 311 is from the outlet end 312 by a distance 301. The second groove 32 includes a downward intake end 321 and an upward outlet end 322. The intake end 311 is from the outlet end 322 by a distance 301. Along the length of the controller 30, the intake end 321 and the outlet end 322 of the second groove 32 are positioned between the intake end 311 and the upward outlet end 312 of the first groove 31.

[0018] In the preferred embodiment, the distance 301 is smaller than the diameter of the aperture 155 so that the controller 30 can be switched between two positions, i.e., the first and second positions. In another embodiment, the distance 301 may be larger than the diameter of the aperture 155 so that the controller 30 can be switched between three positions, i.e., a neutral position, a first working and a second working position. The relation between the distance 301 and the diameter of the aperture 155 is similar and will not be described in detail.

[0019] Attached to the shell 10 is a cover 20 for sealing the first chamber 11 and the channels 16 and 17. The cover 20 defines an opening 21 in communication with the second chamber 15. On an external side of the cover 20 are two pivots 22 between which the opening 21 is. Although not shown for being conventional, the cover 20 defines two channels in communication with the channels 16 and 17, respectively. Thus, the pressurized air can between the cylinder 12 and the channels 16 and 17 through the channels on the internal side of the cover 20.

[0020] The controller 30 includes two ears 33 at an end. A T-shaped link 34 is connected to the ears 33. When the controller 30 is inserted in the second chamber 15 through the opening 21, the T-shaped link 34 is positioned outside. A lever 35 defines a T-shaped groove 351 and two recesses 352 on a side. The T-shaped groove 351 receives the T-shaped link 34 so that the lever 35 is connected to the T-shaped link 34. The recesses 352 receive the pivots 22 so that the lever 35 is installed on the pivots 22 like a seesaw. The lever 35 includes a first section on a side of the pivots 22 and a second section on another side of the pivots 22.

[0021] Referring to Figs. 3 and 4, a user operates the pneumatic tool with a single hand. The user pushes down the first section of the lever 35 with the thumb, and then moves the thumb from the lever 35, leaving the first section of the lever 35 down. The controller 30 is in the first position. To turn on the pneumatic tool, the user operates the trigger 14 with the index finger. Now, the user holds the handle 13 and the trigger 14 steady with all of the thumb, the index finger, the middle finger, the ring finger and the little finger.

[0022] The pressurized air goes from the intake 131 into the intake end 311 of the first groove 31 through the aperture 155. The pressurized air leaves the outlet end 312 of the first groove 31 for the first channel 16 through

the aperture 151. The pressurized air goes from the first channel 16 into an upper portion of the first chamber 11 through one of the channels of the cover 20. The pressurized air drives the cylinder 12 in the first direction. Then, the pressurized air leaves the upper portion of the first chamber 11 for the second channel 17 through the other channel of the cover 20. The pressurized air leaves the second channel 17 for the intake end 321 of the second groove 32 through the aperture 152. The pressurized air leaves the outlet end 322 of the second groove 32 for a lower portion of the first chamber 11. The pressurized air leaves the lower portion of the first chamber 11 for the outlet 132 through the aperture 154. Finally, the pressurized air leaves the pneumatic tool from the outlet 132.

[0023] Referring to Figs. 5 and 6, the pushes down the second section of the lever 35 with the thumb, and then moves the thumb from the lever 35, leaving the second section of the lever 35 down. The controller 30 is in the second position. To turn on the pneumatic tool, the user operates the trigger 14 with the index finger.

[0024] The pressurized air goes from the intake 131 into the intake end 321 of the second groove 32 through the aperture 155. The pressurized air leaves the outlet end 322 of the second groove 32 for the second channel 17 through the aperture 152. The pressurized air leaves the second channel 17 for the upper portion of the first chamber 11 through one of the channels of the cover 20. The pressurized air drives the cylinder 12 in the second direction. Then, the pressurized air leaves the upper portion of the first chamber 11 for the first channel 16 through the other channel of the cover 20. The pressurized air leaves the first channel 16 for the intake end 311 of the first groove 31 through the aperture 151. The pressurized air leaves the outlet end 312 of the first groove 31 for the lower portion of the first chamber 11 through the aperture 153. The pressurized air leaves the lower portion of the first chamber 11 for the outlet 132 through the aperture 154. Finally, the pressurized air leaves the pneumatic tool from the outlet 132.

[0025] The pneumatic tool according to the present invention exhibits several advantages. Firstly, the user holds the handle 13 and the trigger 14 steady with all of the thumb, the index finger, the middle finger, the ring finger and the little finger.

[0026] Secondly, to switch the cylinder 12 from one direction to another, the user operates the lever 35 with the thumb only. Having finished the switching, the user moves the thumb from the lever 35 to the handle 13. Thus, the user does not operate the lever 35 by mistake.

[0027] Thirdly, the structure of the pneumatic tool is simple for the use of the simple controller 30 including only the first groove 31 and the second groove 32.

[0028] The present invention has been described through the description of the preferred embodiment. Those skilled in the art can derive variations from the preferred embodiment without departing from the scope of the present invention. Therefore, the preferred embodiment shall not limit the scope of the present invention

defined in the claims.

Claims

5

1. A pneumatic tool operable with a single hand, the pneumatic tool comprising:

10

a shell (10) defining a first chamber (11) and a second chamber (15), the second chamber (15) comprising an intake aperture (153) in communication with a portion of the first chamber (11) and an outlet aperture (154) in communication with another portion of the first chamber (11); a cylinder (12) positioned in the first chamber (11);

15

a controller (30) movable in the second chamber (15) between a first position and a second position, the controller (30) comprises a first groove (31) and a second groove (32) so that in the first position, the first groove (31) communicates with the intake aperture (153) in order to direct pressurized air to drive the cylinder (12) in a first direction, and that in the second position, the second groove (32) communicates with the intake aperture (153) in order to direct pressurized air to drive the cylinder (12) in a second direction; and

20

a cover (20) for sealing the first chamber (11) and the second chamber (15), the cover (20) defining an opening (21) through which the controller (30) extends from the second chamber (15) so that the controller (30) can be moved.

25

30

2. The pneumatic tool according to claim 1 comprising a handle (13) projecting from the shell (10) and a trigger (14) on the handle (13) so that the trigger (14) is operable by the index finger.

35

3. The pneumatic tool according to claim 1 comprising a lever (35) connected to the controller (30) and installed on the cover (20) so that the lever is operable by the thumb between a first position corresponding to the first position of the controller (30) and a second position corresponding to the second position of the controller (30).

40

4. The pneumatic tool according to claim 1 wherein the first and second grooves (31; 32) are on two opposite sides of the controller (30).

45

5. The pneumatic tool according to claim 1 wherein the first and second grooves (31; 32) both comprise an intake end (311; 321) for communication with the intake aperture (153) and an outlet end (312; 322) for communication with the outlet aperture (154).

50

6. The pneumatic tool according to claim 5 wherein

55

along the controller (30), the intake and outlet ends (321; 322) of the second groove (32) are located between the intake and outlet ends (311; 312) of the first groove (31). 5

7. The pneumatic tool according to claim 5 wherein the inlet (311) of the first groove (31) is from the outlet (312) of the first groove (31) by a distance smaller than the diameter of the intake aperture (153) of the second chamber (15). 10

8. The pneumatic tool according to claim 5 wherein the inlet (311) of the first groove (31) is from the outlet (312) of the first groove (31) by a distance larger than the diameter of the intake aperture (153) of the second chamber (15). 15

9. The pneumatic tool according to claim 1 wherein the shell (10) defines first and second channels (16; 17) for communicating the first chamber (11) with the second chamber (15). 20

10. The pneumatic tool according to claim 1 comprising a link (34) for connecting the controller (30) to the lever (35). 25

11. The pneumatic tool according to claim 11 wherein the controller (30) comprises, on an end, two ears (33) to which the link (34) is pivotally connected. 30

12. The pneumatic tool according to claim 11 wherein the link (34) is T-shaped, wherein the lever (35) defines a T-shaped groove (351) for receiving the T-shaped link (34). 35

Amended claims in accordance with Rule 86(2) EPC.

1. A pneumatic tool operable with a single hand, the pneumatic tool comprising: 40

a shell (10) defining a first chamber (11) and a second chamber (15), the second chamber (15) comprising an intake aperture (153) in communication with a portion of the first chamber (11) and an outlet aperture (154) in communication with another portion of the first chamber (11); a cylinder (12) positioned in the first chamber (11); a controller (30) movable in the second chamber (15) between a first position and a second position, wherein the controller (30) comprises a first groove (31) and a second groove (32) so that in the first position, the first groove (31) communicates with a first channel aperture (151) in order to direct pressurized air to drive the cylinder (12) in a first direction, and that in the second position, the second groove (32) communicates with a second channel aperture (152) in order to direct pressurized air to drive the cylinder (12) in a second direction; and 45

a cover (20) for sealing the first chamber (11) and the second chamber (15), the cover (20) defining an opening (21) through which the controller (30) extends from the second chamber (15) so that the controller (30) can be moved, **characterized in** 50

that it comprises a lever (35) connected to the controller (30) and installed on the cover (20) so that the lever is operable by the thumb between a first position corresponding to the first position of the controller (30) and a second position corresponding to the second position of the controller (30). 55

2. The pneumatic tool according to claim 1 comprising a handle (13) projecting from the shell (10) and a trigger (14) in the handle (13) so that the trigger (14) is operable by the index finger. 60

3. The pneumatic tool according to claim 1 wherein the first and second grooves (31; 32) are on two opposite sides of the controller (30). 65

4. The pneumatic tool according to claim 1 wherein the first and second grooves (31; 32) both comprise an intake end (321) for communication with the aperture (155) and an outlet end (322) for communication with the intake aperture (153). 70

5. The pneumatic tool according to claim 4 wherein in the longitudinal direction of the controller (30) the intake and outlet ends (321; 322) of the second groove (32) are located between the intake and outlet ends (311; 312) of the first groove. 75

6. The pneumatic tool according to claim 4 wherein the intake end (311) of the first groove (31) is spaced from the intake end (321) of the second groove (32) by a distance smaller than the diameter of the aperture (155) of the second chamber (15) and wherein the outlet end (312) of the first groove (31) is spaced from the outlet end (322) of the second groove (32) by a distance smaller than the diameter of the intake aperture (153) of the second chamber (15). 80

7. The pneumatic tool according to claim 4 wherein the intake end (311) of the first groove (31) is spaced from the intake end (321) of the second groove (32) by a distance larger than the diameter of the intake aperture (153) of the second chamber (15) and wherein the outlet end (312) of the first groove (31) is spaced from the outlet end (322) of the second groove (32) by a distance smaller than the diameter of the intake aperture (153) of the second chamber (15). 85

8. The pneumatic tool according to claim 1 wherein the shell (10) defines first and second channels (16; 17) for communicating the first chamber (11) with the second chamber (15).

5

9. The pneumatic tool according to claim 1 comprising a link (34) for connecting the controller (30) to the lever (35).

10. The pneumatic tool according to claim 9 further comprising two ears (33) on an end of the controller to which the link (34) is pivotally connected.

11. The pneumatic tool according to claim 10 wherein in the link (34) is T-shaped, wherein the lever (35) defines a T-shaped groove (351) for receiving the T-shaped link (34).

10

15

20

25

30

35

40

45

50

55

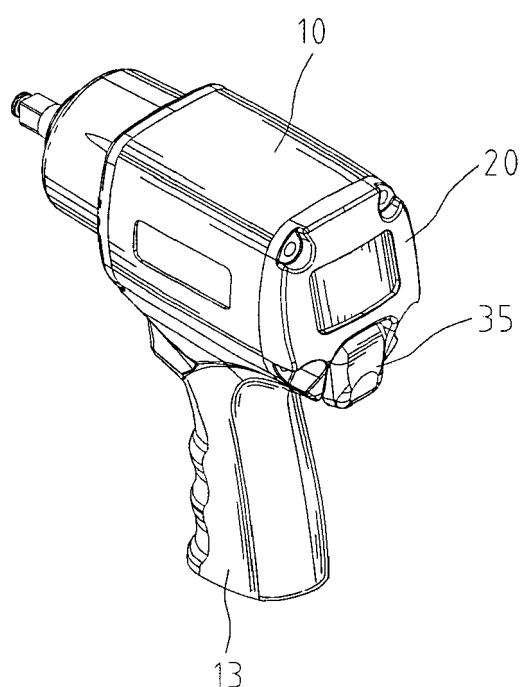


Fig.1

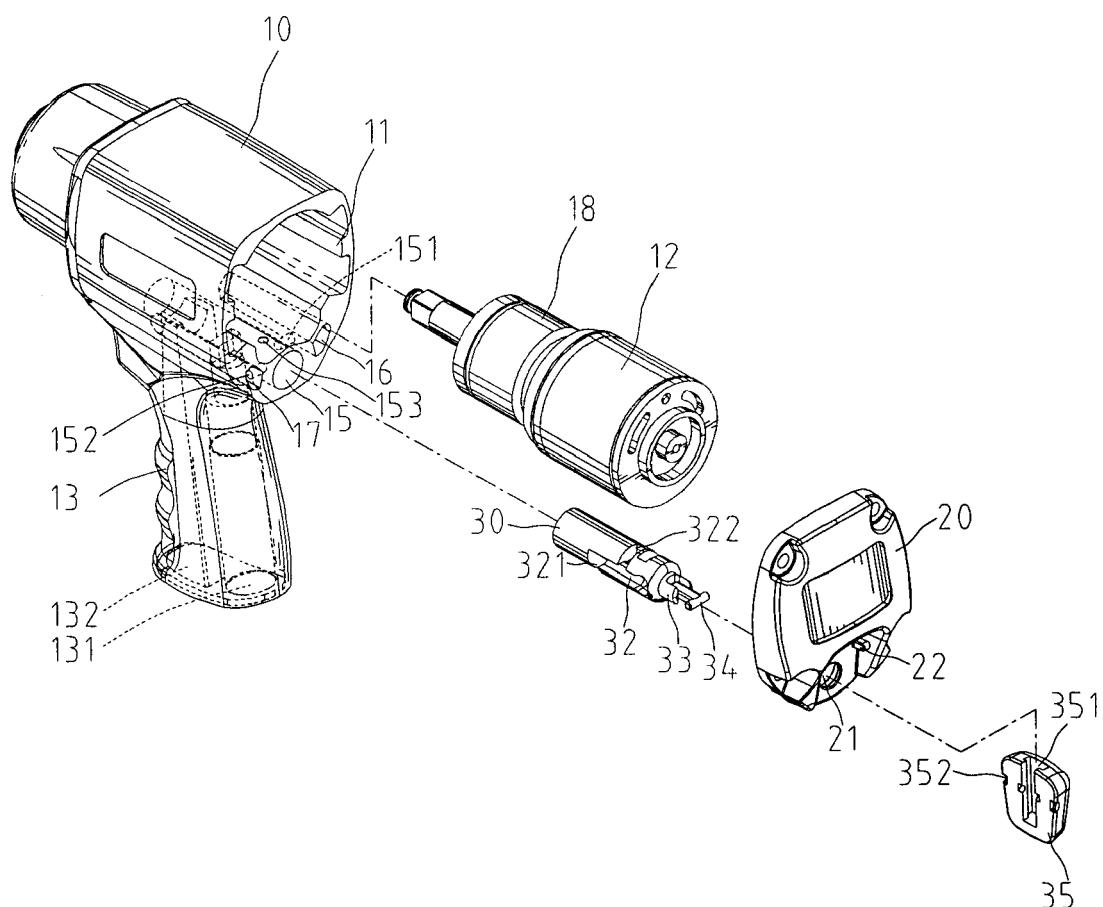


Fig.2

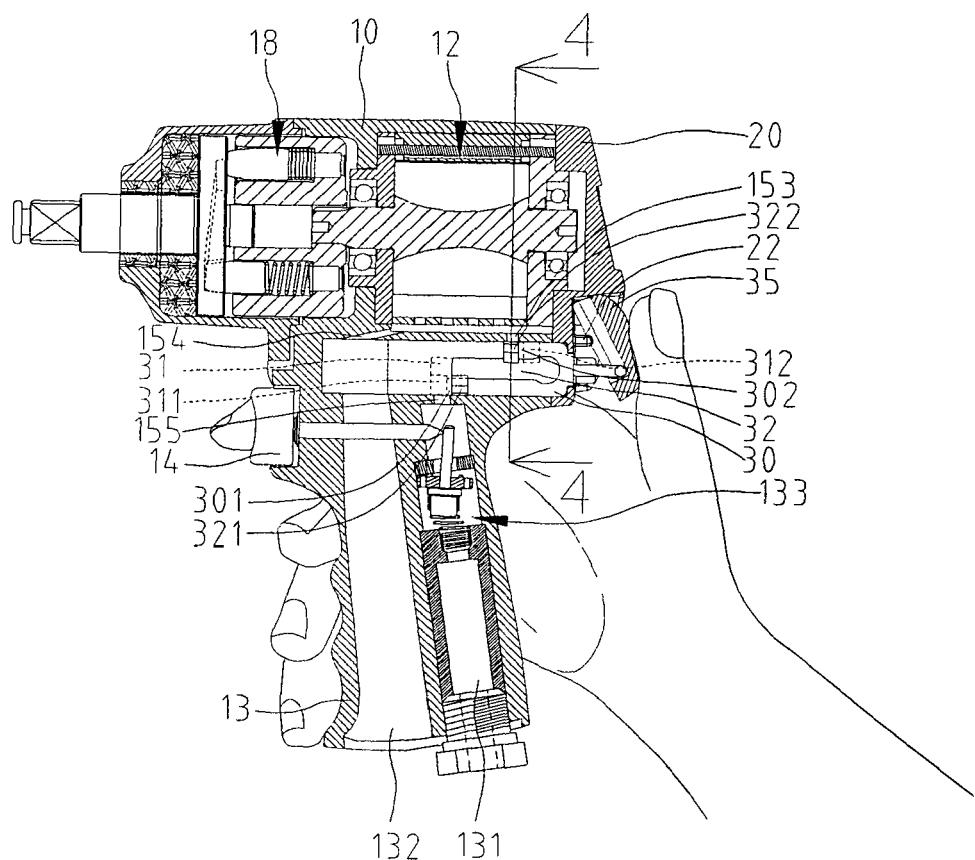


Fig.3

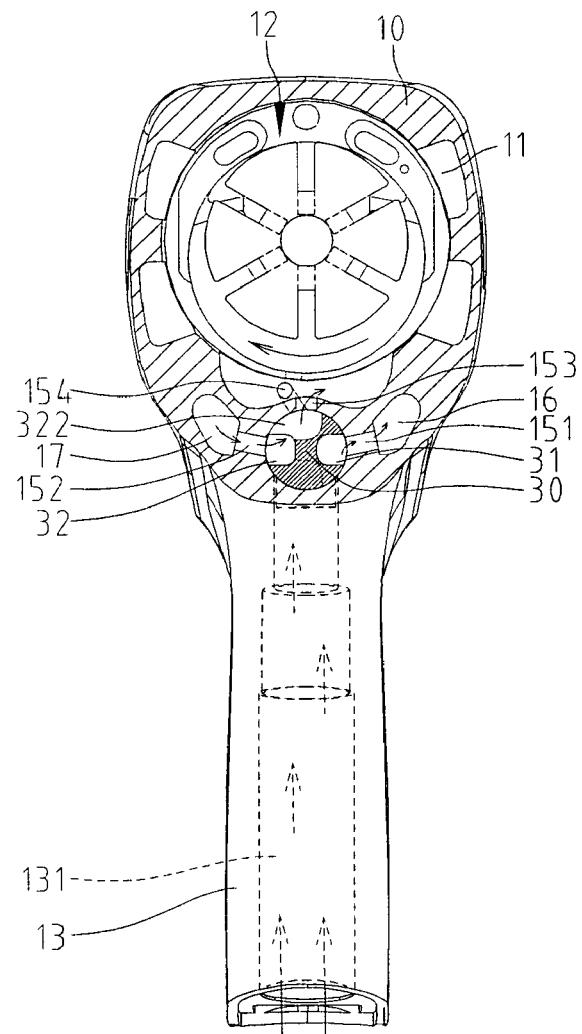


Fig.4

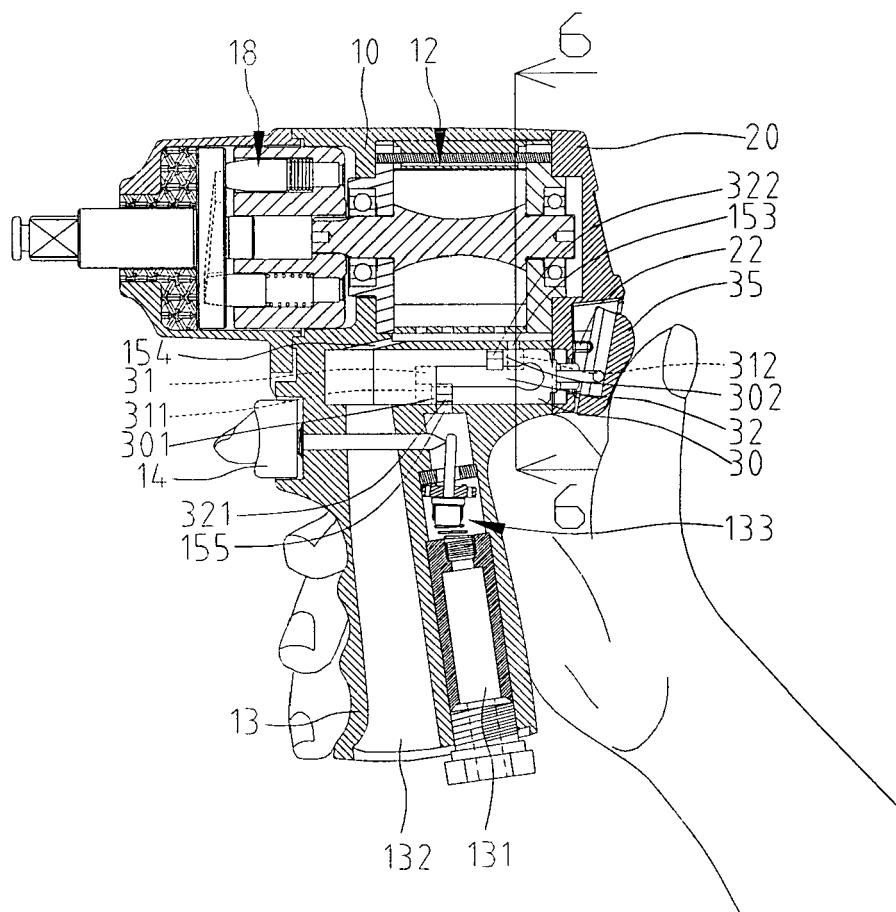


Fig.5

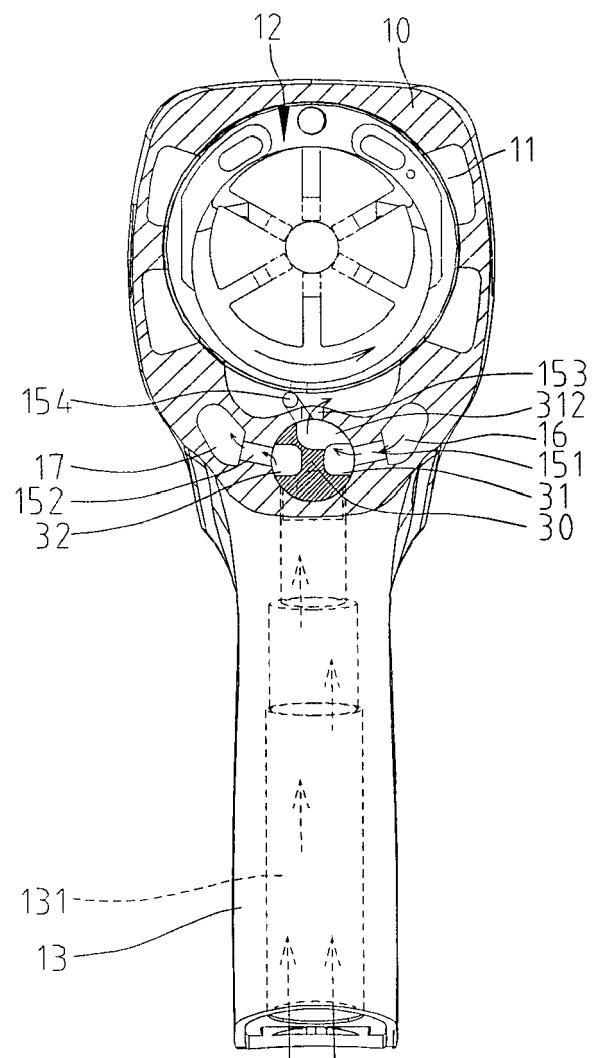


Fig.6

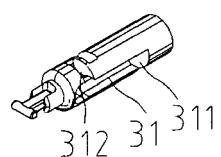


Fig.7

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
X	US 5 918 686 A (IZUMISAWA ET AL) 6 July 1999 (1999-07-06) * column 2, line 46 - column 6, line 3 * * figures 2,4-7 *	1,2,5,9	INV. B25B21/00 B25B21/02
Y	----- GB 2 106 024 A (SARL DITE ETABLISSEMENTS CHARLES * MAIRE) 7 April 1983 (1983-04-07) * page 2, line 43 - line 56 * * page 2, line 90 - line 112 * * figures 1-3 *	3,10-12	3,10-12
X	----- US 6 883 619 B1 (HUANG YUNG-CHAO) 26 April 2005 (2005-04-26) * column 2, line 33 - column 5, line 43 * * figures 1-8 *	1-9	-----
The present search report has been drawn up for all claims			TECHNICAL FIELDS SEARCHED (IPC)
3	Place of search Munich	Date of completion of the search 15 May 2006	Examiner Schultz, T
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 05 02 7396

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15-05-2006

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 5918686	A	06-07-1999	NONE		
GB 2106024	A	07-04-1983	DE	3233962 A1	31-03-1983
			DE	8225789 U1	14-11-1985
			FR	2512880 A1	18-03-1983
			SE	8205195 A	13-09-1982
US 6883619	B1	26-04-2005	NONE		

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- TW 387316 [0002]
- TW M275925 [0004]