EP 1 798 391 A2 (11)

F01N 7/08 (2006.01)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

(51) Int Cl.: F01N 7/00 (2006.01) 20.06.2007 Patentblatt 2007/25 F01N 7/18 (2006.01)

(21) Anmeldenummer: 06025023.0

(22) Anmeldetag: 04.12.2006

(84) Benannte Vertragsstaaten: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR

HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI

SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

(30) Priorität: 14.12.2005 DE 202005019662 U 29.08.2006 DE 202006013247 U (71) Anmelder: Dolmar GmbH 22045 Hamburg (DE)

(72) Erfinder: Kellermann, Christian 22145 Stapelfeld (DE)

(74) Vertreter: Richter, Werdermann, Gerbaulet & Hofmann Neuer Wall 10 20354 Hamburg (DE)

(54)**Abgasanlage**

(57)Um eine Abgasanlage (100) für einen Verbrennungsmotor mit einem Außengehäuse (10), in welches ein heißes Abgas (31) durch einen Abgaseinlass eingeleitet wird und aus einem Abgasauslass (12) ausgeleitet wird, wobei der Abgasauslass (12) röhrenförmig, insbesondere mit einem kreisrunden oder ovalen Querschnitt,

ausgestaltet ist, bereitzustellen, die auf einfache Art und Weise möglichst effektiv die Abgastemperatur im Abgasauslass senkt, wird vorgeschlagen, dass im Bereich des röhrenförmigen Abgasauslass (12) ein Abgasverwirbler (20) angeordnet ist, der zumindest eine Leitschaufel (23) aufweist, wodurch das Abgas (31) im Abgasauslass (12) abgelenkt wird.

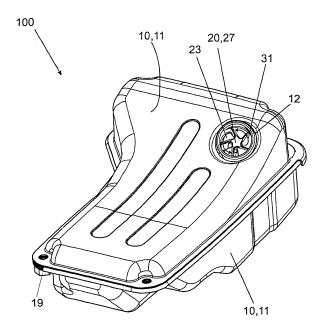


Fig. 1

Describering

Technisches Gebiet

[0001] Die vorliegende Erfindung betrifft eine Abgasanlage für einen Verbrennungsmotor mit einem Außengehäuse, in welches ein heißes Abgas durch einen Abgaseinlass eingeleitet wird. Eine solche Abgasanlage kann für einen Viertakt- oder einen Zweitaktbenzinmotor verwendet werden. Da die Abgasanlage selbst eine besonders kompakte Bauart aufweist, kann sie auch bei handbetriebenen Arbeitsmaschinen, wie z. B. benzinmotorbetriebene Trennschleifer, Kettensägen, Heckenscheren oder dergleichen genutzt werden. Nach einer Behandlung des Abgases innerhalb der Abgasanlage, wird das Abgas aus dem Abgasauslass in die Umgebung ausgeleitet. Bei der Behandlung des Abgases kann es sich um eine Maßnahme zur Schalldämpfung des Abgasgeräusches, zur Schadstoffreduzierung des Abgases oder zur Abkühlung des Abgases oder dergleichen handeln. Somit wird das Abgas durch die Abgasanlage aufbereitet, um es anschließend durch den Abgasauslass in die Umwelt zu leiten. Dabei ist der Abgassauslass röhrenförmig ausgestaltet, insbesondere mit einem kreisrunden oder ovalen Querschnitt.

1

Stand der Technik

[0002] Aus dem Stand der Technik ist allgemein bekannt, Abgasverwirbler innerhalb einer Abgasanlage anzuordnen. Dabei dienen diese Abgasverwirbler in der Regel dazu, glühende Teilchen in dem Verbrennungsabgas zu löschen, damit diese nicht durch den Abgasauslass an die Umgebung abgegeben werden. Zum Beispiel offenbart die DE-PS 948 210 eine Abgasanlage mit einer sogenannten Zyklonenwicklung bzw. -anordnung. Dabei wird durch die Zyklonenanordnung erreicht, dass die Abgase eine schnelle Drehbewegung erhalten, wodurch die in dem Abgas vorhandenen glühenden Teilchen gegen die Innenseite der Abgasanlage gequetscht und dadurch schnell und sicher gelöscht werden. Allerdings ist diese Zyklonenanordnung innerhalb der Abgasanlage, also weit vor dem Abgasauslass vorgesehen, damit die glühenden Teilchen noch an der Innenwand der Abgasanlage zum Erlöschen kommen können.

[0003] Weiter ist aus dem Stand der Technik bekannt, dass ein langer Abgaskanal beispielsweise hinter einem Abgaselement angeordnet wird, um die heißen, konvertierten Abgase abzukühlen. Dabei kann der Abgaskanal selber auch als Funkenlöscher dienen, in dem er einen zickzackartigen bzw. bogenförmigen Verlauf einnimmt. In der Regel werden dann die heißen Abgase aus dem Abgaskanal direkt ins Freie bzw. in die Umwelt geleitet. Hierbei treten allerdings immer noch sehr hohe Abgastemperaturen direkt hinter dem Abgasauslass auf.

Darstellung der Erfindung, Aufgabe, Lösung, Vorteile

[0004] Da das zuvor erwähnte Problem vor allem bei sehr kompakten Abgasanlagen auftritt, werden im Stand der Technik auch zusätzlich Schlitze oder Durchbrüche im Außengehäuse der Abgasanlage angeordnet, wodurch Frischluft in die Abgasanlage eindringen kann und durch den Sog des heißen Verbrennungsabgases wieder in die Umgebung geleitet werden. Durch die viel kühlere Frischluft findet eine Vermischung der heißen Abgase mit der kühlen Umgebungsluft bereits innerhalb der Abgasanlage statt. Auch sind Injektoren bekannt, die ebenfalls für eine Kühlung des heißen Abgases beim Abgasauslass dienen, die jedoch wegen der pulsierenden Strömung des Abgases wenig effektiv sind. Folglich treten immer noch sehr hohe Temperaturen direkt nach dem Abgasauslass im Abgasstrom auf. Durch diese hohen Temperaturen kann es zu einer Verletzungsgefahr besonders bei tragbaren Arbeitsmaschinen mit Verbrennungsmotoren kommen. Zusätzlich geht auch eine Brandgefahr von den heißen Abgasen aus.

[0005] Vor diesem Hintergrund ist es Aufgabe der vorliegenden Erfindung, eine kompakte Abgasanlage bereitzustellen, die auf einfache Art und Weise möglichst effektiv die Abgastemperatur im Abgasauslass senkt. Dabei soll möglichst auf bisher bekannte Konstruktionen von Abgasanlagen zurückgegriffen werden, um auch eine kostengünstige Lösung zu erzielen.

[0006] Zur Lösung dieser Aufgabe wird eine Abgasanlage mit den Merkmalen des Anspruches 1 vorgeschlagen.

[0007] Bei der erfindungsgemäßen Abgasanlage ist es vorgesehen, dass ein Abgasverwirbler im Bereich des röhrenförmigen Abgasauslasses angeordnet ist, der zumindest eine Leitschaufel aufweist, wodurch das austretende Abgas im Abgasauslass abgelenkt bzw. verwirbelt wird. Der Abgasverwirbler kann dabei vor oder im Abgasauslass vorgesehen sein oder der Abgasverwirbler stellt selber den Abgasauslass dar. Weiter wird durch die Erfindung vorgesehen, dass der Abgasverwirbler wenigstens eine Leitschaufel aufweist, wodurch eine Umlenkung bzw. Verwirbelung des Abgases mit der Umgebungsluft stattfindet. Auf diese Art und Weise kann eine ggf. laminare Strömung des Abgases in eine turbulente Strömung des austretenden Abgases überführt werden, die sich direkt mit der kühlen Umgebungsluft hinter dem Abgasauslass vermischt. Durch den erfindungsgemäßen Einsatz des Abgasverwirblers im Bereich des Abgasauslasses wird das Abgas durch die vorhandenen Leitschaufeln in eine schnelle Drehung versetzt. Das Abgas wird bedingt durch Zentripetalkraft beim Verlassen des Abgasauslasses stark in der Umgebungsluft aufgefächert. Somit kann auf wesentlich kürzerer Distanz das Abgas mit der Umgebungsluft gemischt und abgekühlt werden. Folglich dient der erfindungsgemäße Abgasverwirbler nicht als Funkenlöscher innerhalb einer Abgasanlage, wie aus dem Stand der Technik bekannt ist, sondern der Abgasverwirbler dient ausschließlich zur Redu-

40

zierung der Abgastemperatur hinter dem Abgasauslass. Da der Abgasverwirbler selbst bei dem hier vorgesehenen Einsatzbereich nur eine Bautiefe von wenigen Zentimetern aufweist, lässt sich die geforderte kompakte Bauweise der Abgasanlage realisieren. Auch kann der Abgasverwirbler in bereits bestehende Konstruktionen einer Abgasanlage integriert werden. Größere Bautiefen sind möglich, wenn das Erfordernis der kompakten Gauweise nicht so stark ist wie z. B. bei Rasenmähern.

[0008] Weitere vorteilhafte Ausgestaltungen der Abgasanlage sind in den Unteransprüchen 2 bis 24 aufgeführt.

[0009] Um möglichst eine kostengünstige Konstruktion der Abgasanlage zu erzielen und eine einfache Montage der Abgasanlage zu erhalten, kann es vorgesehen sein, dass der Abgasverwirbler als ein eigenständiges Bauteil im Bereich des Abgasauslasses vorgesehen ist. Folglich sind keine wesentlichen Änderungen bei der bisherigen Herstellung der bekannten Abgasanlagen erforderlich und auch die Montage der Abgasanlage wird durch den Abgasverwirbler kaum beeinflusst. Dabei kann der Abgasverwirbler als eigenständiges Bauteil einfach nur zusätzlich in den vorgesehenen Abgasauslass eingesetzt werden. Hierbei ist jedoch sicherzustellen, dass der Abgasverwirbler nicht durch den heißen Abgasstrom aus dem Abgasauslass gedrückt wird. Zu diesem Zweck kann der Abgasverwirbler form- und/oder kraftschlüssig im Abgasauslass angeordnet werden. Dabei ist es denkbar, den Abgasverwirbler mittels einer Schraub-, Niet-, Schweiß-, Löt- und/oder Klemmverbindung in dem Abgasauslass zu befestigen bzw. über einen Bajonettverschluss in dem Abgasauslass zu sichern. [0010] Als zweckmäßig hat sich auch erwiesen, dass der Abgasverwirbler in einem eigenen Gehäuse angeordnet ist. Somit enthält der Abgasverwirbler im Wesentlichen ein Gehäuse und einen in dem Gehäuse vorgesehenen Einsatz, der die Leitschaufel aufweist. Das zusätzliche Gehäuse kann zur Befestigung des Abgasverwirblers im Abgasauslass verwendet werden, wobei die im Absatz zuvor genannten Verbindungsmöglichkeiten zum Einsatz kommen können. Um möglichst den Strömungswiderstand des Abgasverwirblers gering zu halten, ist es empfehlenswert, einen kreisförmigen Querschnitt für das Gehäuse, des Abgasverwirblers vorzusehen. Selbstverständlich ist die vorliegende Erfindung jedoch nicht auf ein Gehäuse mit einem kreisförmigen Querschnitt beschränkt, so dass auch ovale oder andersartige Querschnittsflächen zum Einsatz kommen können. Zur Sicherstellung, dass das Abgas in eine turbulente Strömung übergeht, können kleine Vorsprünge an der Innenseite des Gehäuses angeordnet sein. Ebenfalls kann die Innenseite des Gehäuses über eine raue Oberfläche verfügen. Außerdem kann der Abgasverwirbler derart im Abgasauslass angeordnet sein, dass sich nach dem Abgasverwirbler ein kurzes Rohrstück des Abgasauslasses anschließt, bevor das Abgas das Gehäuse verlässt bzw. in die Umgebung gelangt. Durch diese Maßnahme kann bewirkt werden, dass Umgebungsluft

in den Abgasauslass hineingezogen wird, die sich dort mit dem austretenden Abgas vermischt, und somit insgesamt die Austrittstemperatur senkt, bevor das Abgas endgültig das Gehäuse der Abgasanlage verlässt.

[0011] Um möglichst die gesamte Querschnittsfläche des Gehäuses für den Abgasstrom zu nutzen, ist es empfehlenswert, eine mittlere Befestigungsfläche als feststehendes Element, an dem die Leitschaufel mittig angebracht sein können, kleinflächig auszugestalten. Dabei kann der gesamte Abgasstrom durch die Leitschaufeln umgelenkt bzw. verwirbelt werden, um wirkungsvoll Temperaturspitzen im Abgasstrom zu vermeiden. Optional kann auf das erwähnte feststehende Element in Form einer mittleren Befestigungsfläche verzichtet werden, um die gesamte Querschnittsfläche des Gehäuses für den kompletten Abgasstrom zu nutzen, wobei dann die Leitschaufeln mittig nicht befestigbar sind. In diesem Fall ist der mittlere Querschnittsbereich des Abgasverwirblers offen ausgestaltet.

[0012] Zur Erzielung einer kostengünstigen Herstellung des Abgasverwirblers, kann eine Blechkonstruktion vorgesehen sein. Dabei kann sowohl das Gehäuse als auch der Einsatz mit den Leitschaufeln aus Blech bestehen. Diese Blechkonstruktionen können durch ein Tiefziehverfahren oder ein sonstiges Umformungsverfahren hergestellt werden. Bei dieser Variante ist es möglich den Abgasverwirbler auch aus dem Außengehäuse, insbesondere einer Gehäuseschale, der Abgasanlage ausbzw. umzuformen. Folglich kann auf eine Verbindung des Abgasverwirblers mit der Abgasanlage verzichtet werden, da diese beiden Bauteile einteilig und materialeinheitlich ausgestaltet sind. Ebenfalls ist es denkbar, nur das Gehäuse oder den Einsatz des Abgasverwirblers aus dem Außengehäuse der Abgasanlage zu formen.

[0013] Bei einer anderen Ausführungsform der Abgasanlage ist es denkbar, dass der Abgasverwirbler, insbesondere sein Einsatz mit den Leitschaufeln, aus einem Gussteil besteht. Dabei ist es zweckmäßig, dass es sich bei dem Gussteil um ein Feingussteil handelt. Zwar ist ein Gussteil in der Fertigung teurer als eine vergleichbare Blechkonstruktion, allerdings ist der Gestaltungsspielraum größer, so können z. B. profilierte Leitschaufeln gegossen werden. Selbstverständlich kann auch der gesamte Abgasverwirbler also Einsatz und Gehäuse als ein oder mehrere Gussteile ausgestaltet sein.

[0014] Bei einer besonders interessanten Ausgestaltung des Abgasverwirblers ist es vorgesehen, dass zu jeder Leitschaufel eine dreieckförmige Öffnung vorgesehen ist, durch die ein Teil des Abgases bzw. des Abgasstromes geleitet wird. Dabei wird in der Regel der n-te Teil des Abgases über die n-te Leitschaufel durch die n-te Öffnung geführt. Folglich können zwei, drei oder mehrere Leitschaufeln für den Abgasverwirbler vorhanden sein. Dabei strömt das Abgas bzw. ein Teil des Abgases zuerst in Strömungsrichtung die Leitschaufeln entlang, um dann durch die dreieckförmige Öffnung in die Umgebungsluft geleitet zu werden. Durch den Einsatz von n Leitschaufeln wird der Abgasstrom in n-Teile aufgefä-

40

5

chert.

[0015] Ebenfalls ist es denkbar, dass die Leitschaufeln kreissegmentförmige Flächen aufweisen, die insbesondere über eine ebene bzw. flache Oberflächen verfügen. Bei dem Einsatz von n Leitschaufeln kommen dann 360°/n kreisbogenförmige Flächen für die Leitschaufeln zum Einsatz. Ebenfalls kann eine Leitschaufel über eine bogenförmige, wellenförmige oder gebogene Oberfläche verfügen, insbesondere wenn diese als kurze turbinenartige bzw. propellerartige Schaufel ausgestaltet ist. Optional können die Leitschaufeln auch in einer ungleichen Verteilung über den Umfang des Abgasaustritts angeordnet sein, d. h. benachbarte Leitschaufeln können jeweils unterschiedliche Winkel zu einander aufweisen. [0016] Um möglichst den gesamten Querschnitt des Abgasverwirblers für den Abgasaustritt zu verwenden, ist es zweckmäßig, dass die ungefähre Breite einer Leitschaufel einem Radius des Abgasverwirblers entspricht. Somit kann der Strömungswiderstand des Abgasverwirblers deutlich reduziert werden. Zu diesem Zweck sollte besonders die mittlere Befestigung der Leitschaufeln, falls vorhanden, möglichst platzsparend bzw. klein ausgestaltet sein. Diese Befestigungsfläche ist in der Regel um den Mittelpunkt des Abgasverwirblers angeordnet. Ebenso empfiehlt es sich alle Leitschaufeln symmetrisch gleich um den Mittelpunkt bzw. die Längsachse des Abgasverwirblers anzuordnen. Auf diese Art und Weise kann eine gleichmäßige sowie effektive Mischung des Abgases mit der Umgebungsluft garantiert werden. Allerdings ist die Erfindung nicht auf symmetrische Leitschaufeln beschränkt, so dass auch die einzelnen Leitschaufeln geometrisch unterschiedlich ausgestaltet sein können.

[0017] Ferner ist es zweckmäßig, wenn die Fläche sämtlicher Öffnungen für einen Teilstrom des Abgases mindestens genauso groß ist wie die Querschnittsfläche des Abgasauslasses. Somit kommt es nicht zu einer Querschnittsreduzierung, die zu einem erhöhten Strömungswiderstand führt. Dabei hängt die Durchtrittsfläche einer Öffnung für einen Teilstrom des Abgases im Wesentlichen auch von der axialen Vertiefung der entsprechenden Leitschaufel zusammen. Wobei sich feststellen lässt, dass umso größer die axiale Vertiefung der Leitschaufel ist, auch umso größer die Fläche der Durchtrittsöffnung für den jeweiligen Teilstrom des Abgases ist. Vorteilhafter Weise beträgt die axiale Vertiefung der Leitschaufel 5 - 70 % des Durchmessers des Abgaskanals, besonders vorteilhaft 10 - 50 % und ganz vorteilhaft 15 - 30 %. Durch dieses Durchmesser-Höhenverhältnis im Abgasverwirbler lässt sich eine optimale Strömung des Abgases erreichen. Bei einem Einsatz eines Zweitaktmotors kann ggf. der Abgasverwirbler auch dazu genutzt werden, den nötigen Strömungswiderstand für eine optimale Motorfüllung bereit zu stellen. Dementsprechend muss der Abgasverwirbler, insbesondere sein Strömungswiderstand, auf den Verbrennungsmotor eingestellt werden.

[0018] Zur Erreichung einer umfassenden Verwirbe-

lung des Abgases mit der Umgebungsluft, ist es zweckmäßig, dass der Abgasverwirbler das Abgas im Wesentlichen tangential zu seiner Längsachse bzw. schraubenartig herausleitet. Da das Abgas auch in Richtung der Längsachse (also axial) aus dem Abgasauslass herausgedrückt wird, findet somit eine umfassende dreidimensionale Vermischung des Abgases mit der Umgebungsluft statt. Folglich kühlt sich das Abgas bereits in einer kurzen Distanz hinter dem Abgasauslass deutlich ab, wobei diese Distanz wenige Zentimeter beträgt. Ebenfalls ist es denkbar, dass der Abgasverwirbler das Abgas im Wesentlichen radial zur Längsachse des Abgasverwirblers herausleitet. Dabei treten die gleichen positiven Effekte auf, die zuvor beschrieben worden sind. Um das Abgas wunschgemäß aus dem Abgasverwirbler bzw. aus dem Abgasauslass herauszuleiten, muss die Geometrie der Leitschaufeln entsprechend angepasst sein. Hierbei empfiehlt es sich, die Leitflächen ähnlich wie Turbinenschaufeln anzuordnen, um dem Abgas den gewünschten Drall zu verleihen. Zu diesem Zweck gleichen die ggf. rotationssymmetrisch angeordneten Leitschaufeln einem Flugzeugpropeller der über n Propellerflügel verfügt. Hierbei können die einzelnen Propellerflügel schräg zur Strömungsrichtung des eintretenden Abgases angeordnet sein. Aufgrund der Vielzahl der Gestaltungsmöglichkeiten, lässt sich eine gewünschte Verwirbelung des Abgases mit der Umgebungsluft realisieren. [0019] Des Weiteren kann die erfindungsgemäße Abgasanlage zweckmäßigerweise mit wenigstens einem Katalysatorelement zur Abgasbehandlung versehen sein. Durch den Einsatz eines oder mehrerer Katalysatorelemente wird eine Nachbehandlung des Abgases mit den im Abgas enthaltenen (chemischen) Komponenten ermöglicht. Dabei werden beispielsweise die vorhandenen Kohlenwasserstoffe mit Hilfe des Restsauerstoffgehaltes zu Kohlendioxide und Wasser bzw. Kohlenmonoxide umgesetzt. Da allerdings bei diesem chemischen Umwandlungsprozess zusätzlich Wärme freigesetzt wird, erhitzen sich die an sich schon heißen Abgase zusätzlich. Somit ist es weiter zweckmäßig, die durch das Katalysatorelement geleiteten Abgase mittels eines nachgeordneten Abgaskanals bereits innerhalb der Abgasanlage vorzukühlen. Dabei sollen gleichzeitig die Funken im Abgas zum Erlöschen kommen. Zu diesem Zweck kann ein zusätzliches Funkenschutzsieb, insbesondere vor oder in dem Abgasverwirbler angeordnet sein. Dieses Funkenschutzsieb erfüllt die Aufgabe, die im Abgas eventuell noch vorhandenen Funken herauszufiltern, damit diese nicht in die Umwelt gelangen. Bei einer besonders einfachen Konstruktion ist das Funkenschutzsieb direkt vor oder nach den Leitschaufeln angeordnet und kann zu Wartungszwecken entsprechend leicht ausgetauscht werden, sofern der Abgasverwirbler mittels einer reversibel lösbare Verbindung an der Abgasanlage oder im Abgasauslass angeordnet ist. Folglich kann bei einer Demontage des Abgasverwirblers direkt das Funkenschutzsieb mit gewechselt oder gewartet werden.

[0020] Bei einer besonders interessanten Ausführungsform der Abgasanlage kann es vorgesehen sein, dass das Katalysatorelement in einer Katalysatorkammer angeordnet ist und die Abgase, die aus der Katalysatorkammer geleitet werden, durch einen Abgaskanal zum Abgasverwirbler geleitet werden, bevor das Abgas durch den Abgasauslass in die Umgebung gelangt. Zusätzlich kann zwischen dem Abgaskanal und dem Abgasverwirbler das bereits beschriebene Funkenschutzsieb eingesetzt werden. Eine solche erfindungsgemäße Abgasanlage weist nicht nur eine kompakte Bauweise auf, sondern erfüllt auch die gesetzlichen Umweitvorschriften

[0021] Weiter ist die Erfindung auch auf einen Abgasverwirbler gemäß des Anspruches 25 gerichtet. Dieser Abgasverwirbler weist dabei die Merkmale aus einem der Ansprüche 1 bis 24 auf.

Kurze Beschreibung der Zeichnungen

[0022] Unterschiedliche Ausführungsbeispiele der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher beschrieben. Es zeigen in rein schematischer Darstellung:

- Fig. 1 in dreidimensionaler Ansicht eine erfindungsgemäße Abgasanlage mit einem Abgasverwirbler, der fünf propellerartige Leitflächen aufweist,
- Fig. 2 in dreidimensionaler Explosionsansicht eine ähnliche erfindungsgemäße Abgasanlage wie in Figur 1 mit einem Abgasverwirbler mit vier Leitschaufeln,
- Fig. 3 in einer schaubildlichen Ansicht einen Abgasverwirbler mit fünf propellerartigen Leitschaufeln,
- Fig. 4a, b, c in drei unterschiedlichen dreidimensionalen Ansichten einen Einsatz für einen Abgasverwirbler, der insgesamt vier ebene und kreissegmentförmige Leitschaufeln aufweist,
- Fig. 5a, b einen weiteren Einsatz für einen Abgasverwirbler, der ebenfalls vier ebene und kreissegmentförmige Leitschaufeln aufweist, allerdings im mittleren Querschnittsbereich offen ausgestaltet ist, und
- Fig. 6a bis e eine weitere Variante für einen Abgasverwirbler in verschiedenen Ansichten, bei dem der Abgasverwirbler teilweise aus der Abgasanlage ausgeformt ist, und

Fig. 7a bis d in verschiedenen Ansichten eine Abgasanlage mit dem Abgasverwirbler aus den Fig. 6a bis 6e.

5 Bester Weg zur Ausführung der Erfindung

[0023] In der Figur 1 ist eine erfindungsgemäße Abgasanlage 100 in dreidimensionaler Darstellung gezeigt. Dabei weist die Abgasanlage 100 einen Abgasverwirbler 20 auf, der im Abgasauslass 12 angeordnet ist. Dieser Abgasauslass 12 befindet sich in einer oberen Gehäuseschale 11, die mit einer unteren Gehäuseschale 11 zusammen das Außengehäuse 10 bildet. Die beiden unteren und oberen Gehäuseschalen 11 können durch eine Schweißverbindung, eine Umbördelung oder durch die dargestellten Verbindungsmitteln 19 miteinander gasdicht verbunden sein. In der Figur 1 ist nicht ein Abgaseinlass dargestellt, wodurch der Abgasstrom 31 direkt aus einem Zylinder des Verbrennungsmotors in die Abgasanlage 100 gelangen kann. Wie jedoch zu erkennen ist, kommt ein Abgasverwirbler 20 zum Einsatz, der insgesamt fünf propellerartige Leitschaufeln 23 aufweist, wobei die jeweiligen Leitflächen schräg zum eintretenden Abgasstrom angeordnet sind. Hierdurch wird dem austretenden Abgasstrom 31 ein Drall verliehen, wodurch das Abgas 31 direkt hinter dem Abgasauslass 12 mit der Umgebungsluft verwirbelt bzw. gemischt wird. Um möglichst keine Strömungsverluste durch den zusätzlich eingesetzten Abgasverwirbler 20 zu verursachen, reichen die einzelnen Leitschaufeln 23 vom Mittelpunkt 27, der auch die Längsachse des Abgasverwirblers 20 bildet, bis zur kreisförmigen Innenfläche des Abgaskanals 15. Folglich wird die gesamte Querschnittsfläche des Abgasverwirbiers 20 bzw. des Abgasauslasses 12 zur Verwirbelung des Abgasstromes 31 genutzt. Hierdurch kann eine laminare Strömung im Abgasstrom 31 vermieden wird. Damit wird eine optimale Verwirbelung des Abgases direkt nach dem Austritt aus dem Abgasauslass 12 bewirkt. [0024] Aus der Figur 2 geht eine weitere erfindungsgemäße Abgasanlage 100 vor, bei der ebenfalls ein Abgasverwirbler 20 im Abgasauslass 12 vorgesehen ist. Dieser Abgasverwirbler 20 enthält im Wesentlichen ein eigenes Gehäuse 21 und ein in dem Gehäuse 21 vorgesehenen Einsatz 22, an dem die Leitschaufeln 23 angeordnet sind. Folglich ist der Abgasverwirbler 20 zweiteilig aufgebaut. Hierdurch lässt sich eine kostengünstige Fertigung des Abgasverwirblers 20 erreichen. Auch die Montage des Abgasverwirblers 20 wird durch diesen modularen Aufbau der Abgasanlage 100 vereinfacht. Zusätzlich weist die Abgasanlage 100 ein Katalysatorelement (nicht dargestellt) auf, welches innerhalb einer Katalysatorkammer 13 angeordnet ist. Von der Katalysatorkammer 13 geht ein Abgaskanal 15 aus, welcher mäanderförmig ausgestaltet ist und beim Abgasverwirbler 20 endet. Zwischen dem Abgaskanal 15 und dem Abgasverwirbler 20 kann zusätzlich zumindest ein Funkenschutzsieb angeordnet sein. Um möglichst eine einfache Aus-

gestaltung der Katalysatorkammer 13 und des Abgaska-

nals 15 zu bewirken, sind zwei Kammerhälften 14 vorgesehen, die die Katalysatorkammer 13 und gleichzeitig den Abgaskanal 15 bilden. Bei diesen beiden Kammerhälften 14 handelt es sich um eine obere und untere Kammerhälfte 14, die selbst aus Blechformteilen bestehen können. Diese beiden Kammerhälften 14 werden durch Distanzstücke 17 ungefähr mittig in der Abgasanlage 100 gehalten. Um die obere Kammerhälfte 14 mit der unteren Kammerhälfte 14 zu verbinden, können zusätzliche Verbindungsmittel 19, die aus einer Schraubenmutterverbindung bestehen, vorgesehen sein. Ebenfalls ist es denkbar, dass die beiden Kammerhälften 14 durch eine Umbördelung ihres Randbereiches miteinander verbunden werden. Vorteilhafterweise lässt sich beim Einsatz von zusätzlichen Verbindungsmitteln 19 auch der Abgasverwirbler 20 bzw. sein Gehäuse 21 mit den Kammerhälften 14 verbinden. Hierzu sind in dem Gehäuse 21 des Abgasverwirblers 20 Durchbrüche 30 vorgesehen, die mit weiteren Durchbrüchen 30 in den Kammerhälften 14 deckungsgleich angebracht sind.

[0025] Um den Einsatz 22 sicher im Gehäuse 21 des Abgasverwirblers 20 anzubringen, kann dieser formund/oder kraftschlüssig im Gehäuse 21 vorgesehen sein. Auch ist es denkbar, den Einsatz 22 zwischen dem Rand des Abgasauslasses 12 und dem Verwirblergehäuse 21 einzuklemmen. Bei einer besonderen Variante kann sogar der Einsatz 22 drehbar im Gehäuse 21 angeordnet werden

[0026] Weiterhin ist bei der Abgasanlage 100 aus der Figur 2 unterhalb der Katalysatorkammer 13 ein Strömungsblech 16 mit Öffnungen für einen Abgasdurchtritt vorgesehen. Somit ist dieses Strömungsblech 16 zwischen der unteren Kammerhälfte 14 und der unteren Gehäuseschale 11 angeordnet. Ebenfalls kann eine Flanschscheibe 18 zwischen dem Strömungsblech 16 und der unteren Gehäuseschale 11 vorhanden sein.

[0027] Aus der Figur 3 geht ein Abgasverwirbler 20 hervor, der in dreidimensionaler Darstellung wiedergegeben ist. Bei diesem Abgasverwirbler 20 besteht das Gehäuse 21 aus einem Blechformteil. In dem Gehäuse 21 ist der Einsatz 22 mit insgesamt fünf propellerartigen Leitschaufeln 23 angeordnet. Diese Leitschaufeln 23 weisen eine kreissegmentartige Kontur auf, wobei die Kreissegmente ungefähr einen Winkel von 72° bilden (360°/5=72°, da fünf Leitschaufeln). Die Flächen der Leitschaufeln 23 sind schräg bzw. gekippt zur Strömungsrichtung des eintretenden Abgasstromes 31 angeordnet. Die Breite 28 der Leitschaufeln 23 geht im Wesentlichen von der Mitte 27, die als feststehendes Element ausgebildet ist, bis zum kreisförmigen oder ovalen Rand des zylinderartigen Einsatzes 22. Der Mittelpunkt 27 bzw. die Längsachse 27 wird durch eine fünfsternige geschlossene Fläche gebildet, von der die fünf Leitschaufeln 23 radial ausgehen bzw. zusammenlaufen. Ebenfalls ist es denkbar, anstelle der geschlossenen, mittigen Fläche beispielsweise ein Rohr oder einen durchgehenden Zylinder einzusetzen, von dessen Außenrand die Leitschaufeln 23 radial abgehen. Auch kann dieser mittlere

Querschnittsbereich offen ausgestaltet sein, wie nachfolgend noch beschrieben wird.

[0028] Wie in der Figur 3 zu erkennen ist, wird der Abgasstrom 31 durch die seitliche Öffnung 29 in den Abgasverwirbler 20 eingeleitet. Der Abgasstrom 31 wird dann durch das Gehäuse 21 umgelenkt, um auf den Einsatz 22 mit den Leitschaufeln 23 zu treffen. Hierbei kann im Gehäuse 21 zusätzlich zumindest ein Funkenschutzsieb eingesetzt werden. Dieses Funkenschutzsieb kann zwischen dem Gehäuse 21 und der oberen Kammerhälfte 14 angeordnet und befestigt sein. Ebenfalls weist der Abgasverwirbler 20 noch ein kurzes Rohrstück hinter den Leitschaufeln 23 auf, welches entweder durch den Abgasverwirbler 20, insbesondere den Einsatz 22, oder durch den rohrförmigen Abgasauslass 12 gebildet werden kann.

[0029] In den Figuren 4a, b und c ist ein Ausführungsbeispiel für einen Einsatz 22 des Abgasverwirblers 20 in dreidimensionaler Darstellung dargestellt. Dabei zeigen die einzelnen Figuren 4a, b und c jeweils unterschiedliche Ansichten des gleichen dreidimensionalen Einsatzes 22. Zur Verdeutlichung der Funktionsweise des Abgasverwirblers 20 bzw. des Einsatzes 22 und der daran angeordneten Leitschaufeln 23 ist der Abgasstrom 31 in dicken Pfeilen beispielhaft dargestellt.

[0030] Die Figur 4a zeigt den Einsatz 22 im Wesentlichen von seiner Vorderseite 24. Dabei wird die Vorderseite 24 durch den Abgasstrom 31 angeströmt. Dieser Abgasstrom 31 trifft nun auf die kreissegmentförmigen Leitschaufeln 23, welche schräg nach hinten bzw. axial nach hinten verlaufen. Insgesamt sind vier Leitschaufeln 23 bei dem Einsatz 22 vorgesehen. Um eine möglichst stabile Befestigung der Leitschaufeln 23 zu erreichen, ist ein Kreuz als feststehendes Element in der Vorderseite 24 vorgesehen. An jeweils einer Seite des Kreuzes geht eine Seite der Leitschaufel 23 ab. Durch diese Seite wird die Breite 28 der Leitschaufel 23 vorgegeben. Die Breite 28 entspricht im Wesentlichen dem Radius des zylinderförmigen Einsatzes 22 bzw. des kreisförmigen Gehäuse 21. Nachdem nun das Abgas 31 auf die schräg nach hinten gerichteten Leitschaufeln 23 trifft, wird es durch die ebenen Leitflächen tangential zur Längsachse 27 durch dreiecksförmige Öffnungen 26 geleitet. Am Ende der offenen Seite der Leitschaufel 23 ist jeweils eine dreiecksförmige Öffnung 26 vorgesehen. Folglich sind für die vier Leitschaufeln 23 auch vier dreiecksförmige Öffnungen 26 vorgesehen. Die dreiecksförmige Öffnung wird einerseits durch die unbefestigte Seite der Leitschaufel 23 gebildet und andererseits aus einer Seite des bereits beschriebenen, feststehenden Kreuzes auf der Vorderseite 24 und einer davon abgehenden im Wesentlichen orthogonal angeordneten Seiten des kreisförmigen Randes des Einsatzes 22.

[0031] In der Figur 4b ist der gleiche Einsatz 22 aus Figur 4a in dreidimensionaler Seitenansicht dargestellt. Hierbei ist deutlich die kreissegmentartige Leitfläche 23 zu erkennen, die im vorliegenden Fall aus einem 90° Kreisbogensegment besteht (Viertelkreisbogen). Eben-

20

30

40

45

20

40

falls ist die dreieckige Öffnung 26 gut sichtbar, durch die das an der Leitschaufel 23 abgeleitete Abgas 31 dringt, um dann mit dem erhaltenen Drall aus dem Einsatz 22 bzw. dem Abgasauslass 12 austreten zu können. Dieser Drall des Abgasstromes 31 ist beispielhaft durch die beiden Pfeile 31 dargestellt. Selbstverständlich kann dieser Abgasstrom auch weiter radial nach außen erzeugt werden. Durch die Anzahl n der Leitschaufeln 23 sowie die Ausgestaltung der einzelnen Leitschaufeln 23 selbst, kann ein direkter Einfluss auf den gewünschten Drall des Abgasstromes 31 genommen werden.

[0032] Der vorliegende Einsatz 22 besteht aus einem Blechformteil, was selbst kostengünstig herzustellen ist. Um die Lebensdauer dieses Einsatzes 22 zu erhöhen, kann eine spezielle Legierung für das Blech verwendet werden. Ebenfalls kann ein Edelstahlblech verwendet werden. Auch ist es denkbar, den Einsatz 22 mit einer Oberflächenbeschichtung zu versehen, wodurch die Standzeiten bzw. Lebensdauer des Einsatzes 22 verlängert werden können.

[0033] Die Figur 4c zeigt den bereits bekannten Einsatz 22 aus den Figuren 4a, b. Jedoch wird diesmal besonders die Rückseite 25 des Einsatzes 20 dargestellt. Dabei tritt das an der Vorderseite 24 auftreffende Abgas 31 auf die vier Leitschaufeln 23 und wird durch diese durch die vier dreiecksförmigen Öffnungen 26 durch den Einsatz 22 selbst geleitet. Durch die vier Leitschaufel 23 wird der Abgasstrom 31 in insgesamt vier Teilströme unterteilt. Diese Abgasteilströme treten tangential bzw. radial zur Längsachse 27 aus den dreieckförmigen Öffnungen 26 aus. Folglich hat der Abgasstrom 31 durch die Leitschaufel 23 den gewünschten Drall erhalten, damit er sich anschließend nach seinem Austritt aus dem Abgasauslass 12 direkt mit der Umgebungsluft vermischen kann.

[0034] In den Figuren 5a, b wird ein weiterer Einsatz 22 für ein Abgasverwirbler 20 dargestellt. Dieser Einsatz 22 weist ebenfalls vier Leitschaufeln 23 auf. Der wesentliche Unterschied zu dem Einsatz 22 aus den Figuren 4a, b, c besteht darin, dass hier die Leitschaufeln 23 im mittleren Querschnittsbereich nicht befestigt sind. Folglich ist der mittlere Querschnittsbereich um den Mittelpunkt 27 bzw. die Längsachse 27 offen ausgestaltet, da auf ein feststehendes Element verzichtet worden ist. Somit steht die gesamte Querschnittsfläche für eine Durchströmung des Abgases 31 offen. Allerdings wird dadurch der äußere Teil des Abgases 31 stärker von den Leitschaufeln 23 umgelenkt als der innere Teil des Abgases 31, der mehr oder weniger unbeeinflusst die (kreuzförmige) Öffnung 26 des Abgasverwirblers 20 passieren kann. Je nach Anströmgeschwindigkeit des Abgases 31 kann trotzdem eine Verwirbelung des inneren Teils vom Abgas 31 statifinden, da dieser Teil durch den äußeren Teil des Abgases 31 mitgerissen werden kann. Hierbei handelt es sich um eine indirekte Umlenkung bzw. Verwirbelung des inneren Teils.

[0035] Wie aus der Figur 5a, die den Einsatz 22 im Wesentlichen von seiner Vorderseite 24 darstellt, er-

sichtlich ist, wird der Einsatz 22 auf seiner Vorderseite 24 vom Abgas 31 angeströmt, damit das Abgas 31 dann gemischt und/oder verwirbelt an der Rückseite 25 aus dem Einsatz 22 strömt.

[0036] Im Gegensatz zur Figur 5a ist in der Figur 5b der Einsatz 22 im Wesentlichen von seiner Rückseite 25 dargestellt. Hierbei ist besonders deutlich, das kurze Rohrstück des Einsatzes 22 hinter den Leitschaufeln 23 erkennbar. Dieses kurze Rohrstück weist im vorliegenden Fall einen kreisrunden Querschnitt auf. Die einzelnen Leitschaufeln 23 sind dabei nur an der kreisrunden Außenwand des Einsatzes 22 befestigt. Deutlich zu erkennen ist weiterhin, die kreuzförmige Öffnung 26 im mittleren Querschnittsbereich des Einsatzes 22. Außerdem ist sichtbar, wie das austretende Abgas 31 zunächst noch im kurzen Rohrstück des Einsatzes 22 geführt wird, bevor es dann endgültig den Abgasauslass 12 verlassen kann, um in die Umgebungsluft zu gelangen.

[0037] Teilweise kann sich - je nach Strömungsgeschwindigkeit des Abgasstromes 31 - ein Sog im Bereich des Mittelpunktes 27 bilden, wodurch die Umgebungsluft außerhalb der Abgasanlage 100 mittig in den Abgasauslass 12 bzw. den Einsatz 22 hineingesogen wird. Somit kommt es bereits zu einer Vermischung der austretenden Abgase innerhalb des Abgasauslasses 12. Um diesen Sog weiter zu forcieren, ist es ratsam, die abgelenkten bzw. herausgeleiteten Abgasströme 31 innerhalb eines kurzen Rohrstückes zu führen, damit die Sogwirkung, die sich im Bereich des Mittelpunktes 27 bildet, verstärkt wird

[0038] Die dargestellten Einsätze 22 aus den Figuren 4a, b, c sowie 5a, b können - wie bereits erwähnt - als ein Blechformteil ausgestaltet sein. Allerdings kann der Einsatz 22 auch als ein Gussteil, insbesondere ein Feingussteil, ausgestaltet sein. Auch dieses Gussteil kann zusätzlich oberflächenbeschichtet werden.

[0039] Selbstverständlich ist es auch denkbar, dass der Abgasverwirbler 20 einteilig aus einem Gehäuse 21 und einem Einsatz 22 mit den entsprechenden Leitschaufeln 23 ausgestaltet sein kann, sodass das Gehäuse 21 und der Einsatz 22 ein Teil bzw. ein Stück bilden und insbesondere materialeinheitlich ausgestaltet sind. [0040] In den Figuren 6a bis e ist ein weiterer Abgasverwirbler 20 gezeigt, bei dem das Gehäuse 21 und der Einsatz 22 einteilig ausgestaltet sind. Das besondere dieses Abgasverwirblers 20 liegt darin, dass der Abgasverwirbler 20 ganz oder teilweise aus einer Gehäuseschale 11 bzw. dem Außengehäuse 10 der Abgasanlage 100 ausgeformt sein kann. Um eine besonders preiswerte und einfache Konstruktion zu erhalten, kann ein weiterer Aufsatz 11a im Bereich des Abgasauslasses 12 verwendet werden. Dabei kann dieses Aufsatzblech 11a über Schweiß-, Niet-, Schraub- oder Lötverbindungen an dem Außengehäuse befestigt werden. Bei dieser Variante ist es denkbar, das bereits beschriebene Funkenschutzsieb zwischen den Leitschaufeln 23 und dem zusätzlichen Aufsatzblech 11a anzuordnen. Selbstverständlich kann das Funkenschutzsieb auch vor den Leitschaufeln 23

anordbar sein.

[0041] In der Figur 6a ist eine Vorderansicht auf einen aus dem Außengehäuse 10 ausgeformten Abgasverwirbler 20 dargestellt. Dabei sind durch den Abgasauslass 12 die Leitschaufeln 23 des Abgasverwirblers 20 zu erkennen. Diese Leitschaufeln 23 sind aus dem Außengehäuse 10 durch ein Tiefzieh- oder sonstiges Formverfahren ausgeformt. Dieser Umformschritt für den Abgasverwirbler 20 kann direkt beim Umformen des Außengehäuses 10 zur Gehäuseschale 11 erfolgen. Damit ist kein zusätzlicher Fertigungsschritt erforderlich, wodurch eine deutliche Kosteneinsparung möglich ist. Ferner kann bei diesem Umformschritt durch die axiale Vertiefung der Leitschaufeln 23 auch das Durchmesser-Höhenverhältnis im Abgasverwirbler 20 bestimmt werden.

[0042] In der Figur 6b ist der Schnitt I-I durch die Figur 6a dargestellt. Hierbei wird deutlich, dass das Gehäuse 21 des Abgasverwirblers 20 einteilig zum Einsatz 22 des Abgasverwirblers ausgestaltet ist. Sowohl das Gehäuse 21 als auch der Einsatz 22 werden dabei durch das Außengehäuse 10 gebildet. Der Vorteil bei dieser Variante besteht darin, dass weniger Bauteile und damit weniger Dichtstellen vorhanden sind. Es sei jedoch bemerkt, dass der Abgasverwirbler 20 aus den Figuren 6a bis e auch aus zusätzlichen Blechteilen bestehen kann, die im Bereich des Abgasauslasses 12 auf dem Außengehäuse 10 befestigt werden.

[0043] In der Figur 6c ist eine Rückansicht auf den Abgasverwirbler 20 aus den Figuren 6a und b gezeigt. Dabei ist deutlich zu erkennen, dass die vier Leitschaufeln 23 segmentartig aus dem Außengehäuse 10 ausgeformt worden sind. Bei diesem Umformprozess ist jedoch ein sternförmiger Mittelpunkt 27 stehen geblieben. Selbstverständlich ist es auch denkbar, beim Umformen auf diesen sternförmigen Mittelpunkt 27 zu verzichten.

[0044] In den Figuren 6d und 6e ist eine dreidimensionale Ansicht des Abgasverwirblers 20 dargestellt. In beiden Figuren ist dabei die dreieckförmige Öffnung 26 nach den Leitschaufeln 23 zu erkennen. Bei der hier vorliegenden Variante des Abgasverwirblers 20 ist die Fläche sämtlicher Öffnungen 26 für einen Teilstrom des Abgases 31 kleiner als die Querschnittsfläche des Abgasauslasses 12. Somit kommt es zu einer Querschnittsreduzierung im Abgasverwirbler. Sofern die Leitflächen 23 tiefer, d. h. mit einer größeren axialen Vertiefung aus dem Außengehäuse 10 ausgeformt werden, kann sich die Gesamtfläche aller Öffnungen 26 vergrößern.

[0045] In den Figuren 7a bis d ist eine weitere Variante der Abgasanlage 100 mit einem Abgasverwirbler 20 aus den Figuren 6a bis e in verschiedenen Ansichten dargestellt.

[0046] Die Figuren 7a und 7b zeigen eine dreidimensionale Ansicht auf die Außenseite der Abgasanlage 100. Dabei ist deutlich zu erkennen, dass der Abgasverwirbler 20 teilweise aus dem Außengehäuse 10, insbesondere der Gehäuseschale 11, ausgeformt worden ist. Zusätzlich kommt im Bereich des Abgasauslasses 12 ein Aufsatzblech 11a zum Einsatz, wodurch der eigentliche röh-

renförmige Abgasauslass 12 gebildet wird.

[0047] In der Figur 7c ist ein Schnitt II-II durch die Figur 7b dargestellt. Aus dieser Schnittzeichnung wird deutlich, dass der Abgasverwirbler 20 aus der Gehäusehälfte 11 ausgeformt worden ist. Ferner ist das zusätzliche Aufsatzblech 11a zu erkennen.

[0048] In der Figur 7d ist eine schematische Explosionsansicht von den Außenteilen der Abgasanlage 100 gezeigt. Auch in dieser Ansicht wird deutlich, dass der Abgasverwirbler 20 mit seinen Leitschaufeln 23 und den dazugehörigen Öffnungen 26 aus der Gehäusehälfte 11 ausgeformt worden ist. Ebenfalls wird deutlich, dass zwischen den Leitschaufeln 23 und dem separaten Aufsatzblech 11a ein Funkenschutzsieb anordbar ist. Dieses Funkenschutzsieb könnte dann durch die Befestigung des Aufsatzbleches 11a mitgehalten werden.

[0049] Abschließend ist zu erwähnen, dass die zuvor beschriebenen technischen Merkmale einzeln oder in beliebiger Kombination für die erfindungsgemäße Abgasanlage 100 bzw. den Abgasverwirbler 20 verwendet werden können, sofern sie sich nicht gegenseitig explizit ausschließen.

BEZUGSZEICHENLISTE

[0050]

25

- 100 Abgasanlage
- 10 Außengehäuse
- 11 Gehäuseschale
- 11a Aufsatz
- 12 Abgasauslass in 11
- 13 Katalysatorkammer
- 14 Kammerhälfte
- 35 15 Abgaskanal
 - 16 Strömungsblech (mit Öffnungen)
 - 17 Distanzstück
 - 18 Flanschscheibe
 - 19 Verbindungsmittel
 - 20 Abgasverwirbler
 - 21 Gehäuse von 20
 - 22 Einsatz von 20
 - 23 Leitschaufel
- 45 24 Vorderseite von 22
 - 25 Rückseite von 22
 - 26 Öffnung für Abgasstrom
 - 27 Mittelpunkt / Längsachse von 20 bzw. 22
 - 28 Breite von 23
- 0 29 Eingangsöffnung für Abgasstrom
 - 30 Durchbruch für Verbindungsmittel
 - 31 Pfeil für Abgasstrom

Patentansprüche

1. Abgasanlage (100) für einen Verbrennungsmotor mit einem Außengehäuse (10), in welches ein hei-

25

30

ßes Abgas (31) durch einen Abgaseinlass eingeleitet wird und aus einem Abgasauslass (12) ausgeleitet wird, wobei der Abgasauslass (12) röhrenförmig, insbesondere mit einem kreisrunden oder ovalen Querschnitt, ausgestaltet ist, **dadurch gekennzeichnet**, dass im Bereich des röhrenförmigen Abgasauslass (12) ein Abgasverwirbler (20) angeordnet ist, der zumindest eine Leitschaufel (23) aufweist, wodurch das Abgas (31) im Abgasauslass (12) abgelenkt wird.

- Abgasanlage nach Anspruch 1, dadurch gekennzeichnet, dass der Abgasverwirbler (20) als ein eigenständiges Bauteil im Bereich des Abgasauslasses (12) vorgesehen ist.
- 3. Abgasanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Abgasverwirbler (20) in einem eigenen Gehäuse (21) angeordnet ist, insbesondere in einem Gehäuse (21) mit einem abschnittsweisen, kreisförmigen oder ovalen Querschnitt, wobei das Gehäuse (21) insbesondere zur Befestigung des Abgasverwirblers (20) im Bereich des röhrenförmigen Abgasauslasses (12) dient.
- 4. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abgasverwirbler (20) derart im Abgasauslass (12) angeordnet ist, dass sich nach dem Abgasverwirbler (20) noch ein kurzes Rohrstück, insbesondere des Abgasauslasses (12), anschließt, bevor das Abgas (31) das Gehäuse (10) verlässt.
- 5. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abgasverwirbler (20) eine Blechkonstruktion aufweist, wobei insbesondere ein Teil oder der gesamte Abgasverwirbler (20) aus dem Außengehäuse (10) ausformbar ist.
- Abgasanlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Abgasverwirbler (20) ein Gussteil, insbesondere ein Feingussteil, aufweist.
- Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das gesamte Abgas (31) mittels der Leitschaufel(n) (23) umlenkbar ist, wodurch eine Verwirbelung des gesamten Abgases (31) mit der Umgebungsluft stattfindet.
- 8. Abgasanlage nach Anspruch 7, dadurch gekennzeichnet, dass im mittleren Querschnittsbereich des Abgasverwirblers (20) ein feststehendes Element vorgesehen ist, an dem auch die Leitschaufel (n) (23) befestigbar sind.

- 9. Abgasanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass nur ein Teil des Abgases (31) mittels der Leitschaufel(n) (23) umlenkbar ist, wobei ein äußerer Teil des Abgases (31) durch die Leitschaufel(n) (23) beeinflussbar ist, während ein innerer Teil im mittleren Querschnittsbereich unbeeinflusst den Abgasverwirbler (20) passiert.
- 10 10. Abgasanlage nach Anspruch 9, dadurch gekennzeichnet, dass der mittlere Querschnittsbereich des Abgasverwirblers (20) offen ausgestaltet ist.
 - Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zu jeder Leitschaufel (23) eine dreieckförmige Öffnung (26) vorgesehen ist, durch die ein Teil des Abgases (31) geleitet wird.
- 20 12. Abgasanlage nach Anspruch 11, dadurch gekennzeichnet, dass das Abgas (31) in Strömungsrichtung zuerst die Leitschaufel(n) (23) passiert und dann durch die dreieckförmigen Öffnungen (26) geleitet wird.
 - 13. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Leitschaufel (23) eine kreissegmentförmige Fläche aufweist, die insbesondere eben ausgestaltet ist.
 - 14. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Leitschaufel (23) bogenförmig bzw. wellenartig ausgestaltet ist.
 - **15.** Abgasanlage nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, **dass** die ungefähre Breite (28) einer Leitschaufel (23) einem Radius des Abgasverwirblers (20) entspricht.
 - Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass alle Leitschaufeln (23) die symmetrisch gleich aufgebaut sind.
 - 17. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abgasverwirbler (20) das Abgas (31) im Wesentlichen tangential zur Längsachse (27) des Abgasverwirblers (20) herausleitet.
 - **18.** Abgasanlage nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass der Abgasverwirbler (20) das Abgas (31) im Wesentlichen radial zur Längsachse (27) des Abgasverwirblers (20) herausleitet.
 - 19. Abgasanlage nach einem der vorhergehenden An-

9

55

45

sprüche, **dadurch gekennzeichnet**, **dass** das heiße Abgas (31) nach einer Behandlung des Abgases (31) aus dem Abgasauslass (12) ausgeleitet wird.

- **20.** Abgasanlage nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, **dass** wenigstens ein Katalysatorelement zur Abgasbehandlung in der Abgasanlage angeordnet ist.
- 21. Abgasanlage nach Anspruch 20, dadurch gekennzeichnet, dass das Katalysatorelement in einer Katalysatorkammer (13) angeordnet ist und die Abgase (31) aus der Katalysatorkammer (13) durch einen Abgaskanal (15) zum Abgasverwirbler (20) geleitet werden, bevor das Abgas (31) durch den Abgasauslass (12) in die Umgebung gelangt.
- **22.** Abgasanlage nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, **dass** zumindest ein Funkenschutzsieb vor oder in dem Abgasverwirbler (20) angeordnet ist.
- 23. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die axiale Vertiefung der Leitschaufeln (23) 5 bis 70 % des Durchmessers des Abgaskanals (12) umfasst, vorteilhaft 10 bis 50% und besonders vorteilhaft 15 bis 30 % umfasst.
- **24.** Abgasanlage nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, **dass** die Fläche sämtlicher Öffnungen (26) für einen Teilstrom des Abgasses (31) mindestens so groß ist wie die Querschnittsfläche des Abgasauslasses (12).
- **25.** Abgasverwirbler (20) mit den Merkmalen aus einem der vorhergehenden Ansprüche für eine Abgasanlage.

.

20

30

35

40

45

50

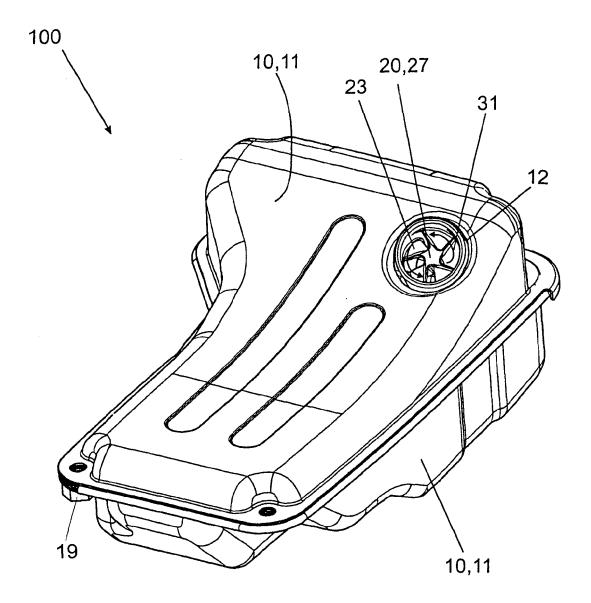


Fig. 1

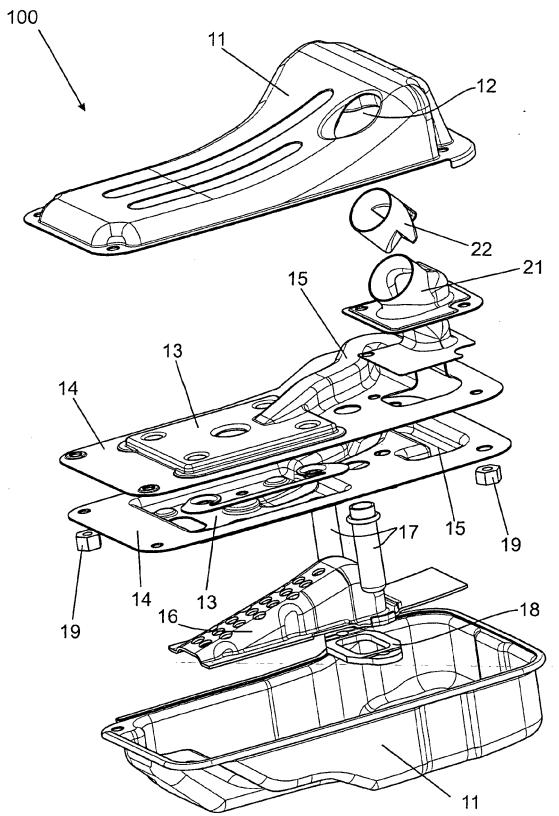


Fig. 2

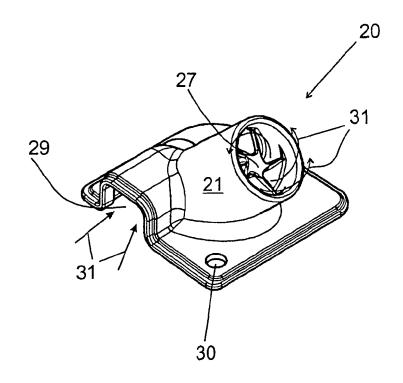


Fig. 3

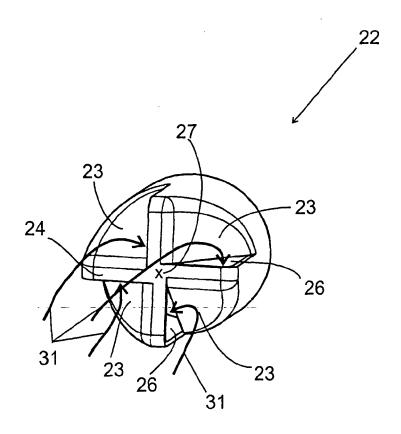


Fig. 4a

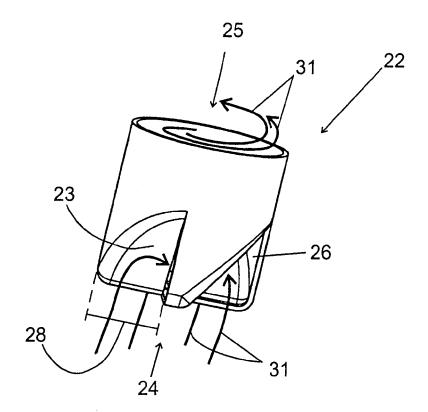


Fig. 4b

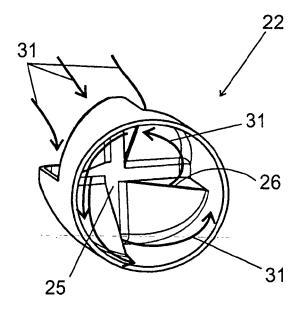
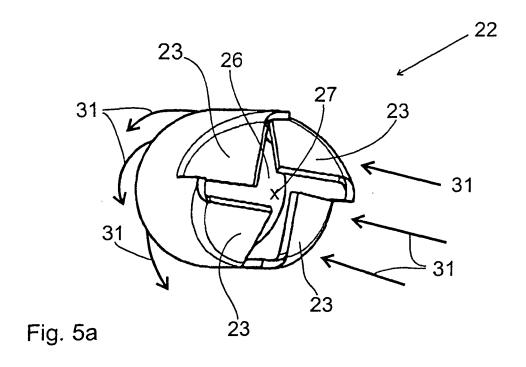
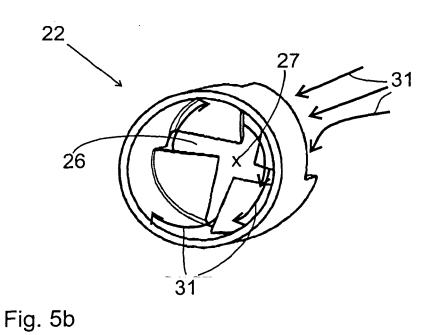
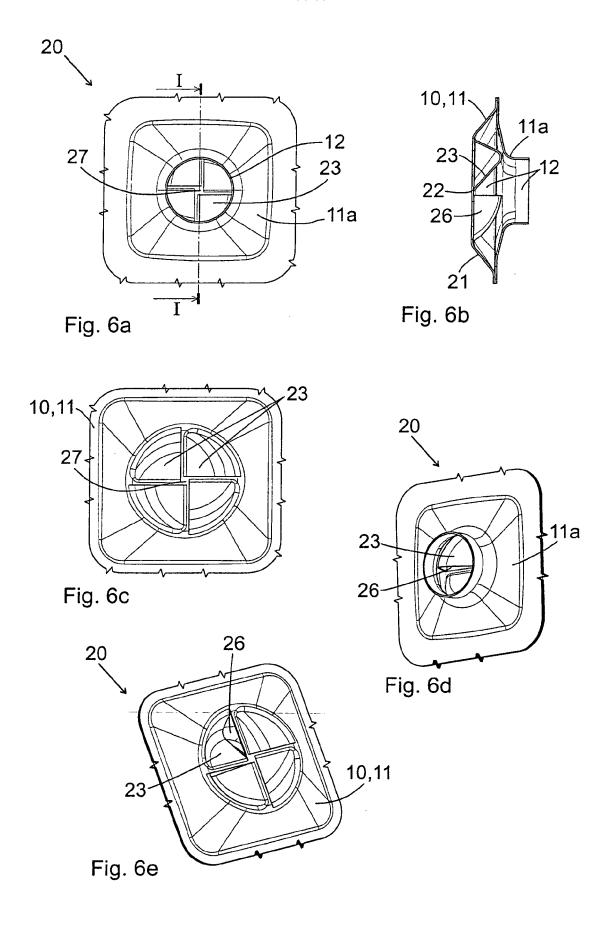





Fig. 4c

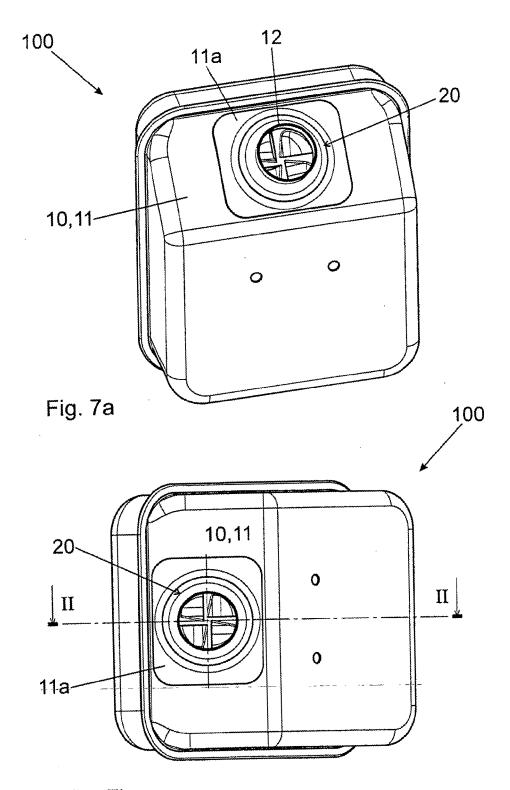


Fig. 7b

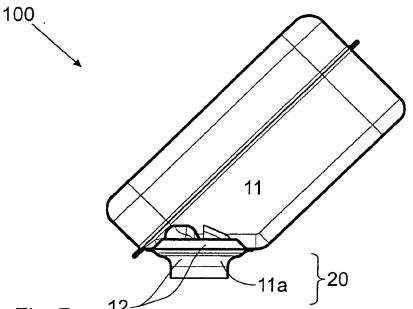


Fig. 7c

Fig. 7d

EP 1 798 391 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 948210 C [0002]