(11) EP 1 801 770 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

27.06.2007 Bulletin 2007/26

(51) Int Cl.: **G09G** 3/28 (2006.01)

(21) Application number: 06125983.4

(22) Date of filing: 13.12.2006

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Designated Extension States:

AL BA HR MK YU

(30) Priority: 20.12.2005 EP 05292769

(71) Applicant: Thomson Licensing 92100 Boulogne-Billancourt (FR)

(72) Inventors:

- THEBAULT, Cédric 92648, BOULOGNE CEDEX (FR)
- CORREA, Carlos
 92648, BOULOGNE CEDEX (FR)
- ZWING, Rainer
 92648, BOULOGNE CEDEX (FR)
- (74) Representative: Le Dantec, Claude 46, Quai Alphonse Le Gallo 92100 Boulogne-Billancourt (FR)

(54) Method and device for processing video pictures

(57) The invention relates to a method for processing video pictures data for display on a display device having a plurality of luminous elements corresponding to the pixels of a video picture. The invention is related to every kind of display devices based on the principle of duty cycle modulation (pulse width modulation) of light emis-

sion and comprising a data driver.

The aim of this method is to reduce the data driver overheating by optimizing the dithering of the pixel values of the video pictures. According to the invention, the pixel values used for dithering are chosen for reducing the state changes between successive bits of subfield code words of adjacent luminous elements.

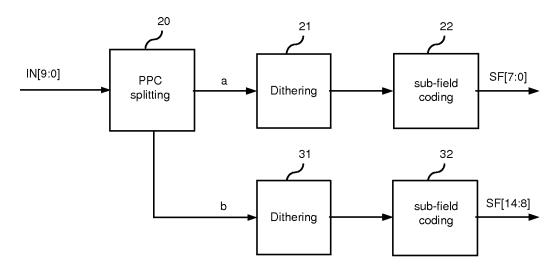


FIG.8

EP 1 801 770 A2

Description

[0001] The invention relates to a method for processing video pictures data for display on a display device having a plurality of luminous elements corresponding to the pixels of a video picture, the luminous elements being organized in columns and lines, wherein the time of a video frame or field is divided into a plurality of sub-fields during which the luminous elements can be activated for light emission, a sub-field code word corresponding to said plurality of sub-fields being used for encoding the pixels values in which each bit can have either an "OFF" state or an "ON" state such that each luminous element is activated during a subfield when the corresponding bit of sub-field code word has an "ON" state. The invention is related to every kind of display devices based on the principle of duty cycle modulation (pulse width modulation) of light emission and comprising at least a data driver.

Background of the invention

[0002] Figure 1 illustrates the actual structure of a Plasma Display Panel, called hereinafter PDP. Video is sent to a digital board 10 including a PDP controller. This controller is an integrated circuit (IC) that takes care of all PDP relevant signal processing and converts video information into sub-field information. This controller is responsible for sending all power signals to data drivers 11, line drivers 12 and a common part 13 of the PDP. Line drivers 12 are responsible for selecting, one by one, the lines of cells to be written. Data drivers 11 are responsible for sending bits (0 or 1) on the vertical electrodes of all cells of the current selected lines. Finally, the common part 13 is responsible for generating global signals in combination with line drivers 12 like sustain signals, erase signals, priming signals... A PDP cell is present at the crossing point between a vertical electrode coming from a data driver output, a horizontal electrode coming from a line driver output and a horizontal electrode coming from the common part.

[0003] As illustrated by Figure 2, each data driver 11 works as a serial to parallel converter. For a data driver with n outputs, the n data samples Cn,t for a line t are sent serially from the PDP controller 10 to said data driver. The input works at a frequency defined by a clock circuit. On each starting edge of an enable signal ENA, the n outputs of the data driver take the n last input values. In fact when the data Cn,t are sent to the input of the data driver, the outputs take the values Cn,t-1. The enable signal is included in the addressing signal used to activate the current line t-1. The important point is that the input signals are control logic signals (low voltage) whereas the output signals are power signal (high voltage $\approx 60V$). The global activity of the data driver is defined by two main parameters:

30

10

15

20

- the number of changes occurring at the input of the driver during the loading of the data driver, and
- the number of changes occurring at the output of the driver from one line to another.
 It is also important to notice how these changes are appearing. Indeed if all outputs have the same value and are changing in one time, this is less energy consuming than if each output is different and is changing.

35

40

45

[0004] Then, based on all these assumptions, a critical test pattern called hereinafter chequered pattern can be defined per driver as illustrated by figure 3. This chequered pattern, which is a bit series always toggling between 0 and 1, introduces an overheating of the data driver and above all when the addressing speed is fast (clk and ENA are high) like for high-resolution displays. If the data driver is overheated a long time (many frames) it can be definitely damaged. Moreover, today, the data drivers are bonded on the PDP glass by using glue and it is almost impossible to remove them in order to perform an exchange. Therefore, if a data driver has been damaged, the whole panel can be thrown away. [0005] Today, there are mainly three possibilities to avoid such a problem:

- limiting either the addressing speed, or the number of sub-fields used per frame;
- using a specific coding that should reduce the situation depicted in figure 3 for standard picture (reducing the toggling inside a codeword),
- detecting the critical patterns and reducing the number of sub-fields used during their addressing.

[0006] Solutions consisting in detecting chequered patterns in video pictures to be displayed also exist but the problem is not solved because chequered patterns can also be introduced by the dithering operation applied to any pictures. Indeed in case of cell-based dithering as defined in WO 01/71702 and EP 1 262 947, the structure of dithering with a level ½ is exactly the chequered pattern. Such a dithering is illustrated by the following example. In this example, the sub-fields have the following weights: 1-2-3-5-8-13-18-26-39-57-83. The following pixel values can be displayed: 0: 000000000000

55 (...)

46:01011110000 56:10111101000

(...)

255:11111111111

[0007] The dithering consists in associating to each pixel value V of the picture to be displayed a dithering level L used to dither between two different pixel values V_1 and V_2 that can be coded by the given set of subfields such that $V=(1-L)xV_1 + LxV_2$ with $V_1 < V_2$ and $L \in [0, 1]$. The pixel values can be displayed by a group of adjacent cells (or luminous elements) of the panel or by a same cell on a plurality of frames. In the present case, to render the pixel value V=51, we will use spatial dithering of level $\frac{1}{2}$ with the pixel values $V_1=46$ and $V_2=56$ So if a uniform gray level with value V=51 is to be displayed on the whole panel, the following picture pixel values are displayed during one frame :

46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56
56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46
46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56
56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46
46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56
56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46
46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56
56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46
46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56
56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46	56	46

[0008] The subfield information sent to the data drivers are given by the following tables.

									1 st su	b-field									
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

20																				
										2 nd su	b-field	d								
	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
25	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
20	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
30	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
35	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
55	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

									3 rd su	b-field	t								
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

									4 th 5 th	and 6	S th sub	-fields	6							
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

20										7 th su	b-field									
	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
25	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
30	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
35	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

										8 th su	b-field									
40	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
45	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
70	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
50	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

								9	th 10 th	and 1	11 th sı	ub-field	ds							
С)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

[0009] As it can be seen in the previous tables, 5 sub-fields will use a chequered pattern. This means that even with a standard picture, the data driver overheat problem may occur because of dithering.

Invention

5

10

15

20

35

40

45

50

55

[0010] It is an object of the present invention to disclose a method and an apparatus reducing the number of chequered patterns in order to prevent the driver overheating.

[0011] According to the invention, this object is solved by selecting appropriate dithering levels for limiting the number of bit changes between the subfield code words of adjacent luminous elements.

[0012] More particularly, the invention concerns a method for processing video pictures data for display on a display device having a plurality of luminous elements corresponding to the pixels of a video picture, the luminous elements being organized in columns and lines, wherein the time of a video frame or field is divided into a plurality of sub-fields during which the luminous elements can be activated for light emission, a sub-field code word corresponding to said plurality of sub-fields being used for encoding the pixels values in which each bit can have either an "OFF" state or an "ON" state such that each luminous element is activated during a subfield when the corresponding bit of sub-field code word has an "ON" state. This method comprises:

- a splitting step for splitting each pixel value of the picture to be displayed into at least first and second split pixel values, each split value being associated to a group of subfields of said plurality of subfields,
 - a spatial dithering step for associating to each split pixel value V one dithering level L used to dither between two
 different pixel values V₁ and V₂ that can be coded by the associated group of subfields such that V=(1-L)xV₁ + LxV₂
 with V₁<V₂ and L ∈ [0,1],
- a coding step for coding the pixel values V₁ and V₂ into sub-field code words, each bit of the sub-field code word
 having a bit state.

According to the invention, the split pixel values and the dithering levels are selected such that, if the sum of the number of bits having a different state in the subfield code word of the pixel value V1 and the subfield code word of the pixel value V2 associated to the first split pixel value and the number of bits having a different state in the subfield code word of the pixel value V1 and the subfield code word of the pixel value V2 associated to the second split pixel value is greater than or equal to a first threshold, the sum of the absolute differences between the dithering level of each split pixel value and 1/2 is made greater than a second threshold. Thus, the split values and the dithering levels are selected to avoid that the dithering levels are close to ½ simultaneously, specially when the total number of different states in the subfield code word of the pixel value V1 and the subfield code word of the pixel value V2 associated to the first split pixel value and the number of bits having a different state in the subfield code word of the pixel value V2 associated to the second split pixel value) is high.

[0013] Preferably, the second threshold is greater than or equal to 1/4. Under the value 1/4, the benefits of the invention would not be significant. Preferably, the second threshold is equal to 1/2

[0014] In a preferred embodiment, the first threshold is equal to 0. Thus, for all the pixel values, the split pixel values and the dithering levels are selected such that the sum of the absolute differences between the dithering level of each

split pixel value and 1/2 is greater than the second threshold. This aims at reducing in average the data driver current and not only the peak current.

[0015] In other embodiments, the first threshold can be chosen different from 0, for example for reducing only the peak current in the driver circuits.

- [0016] The inventive method is particularly adapted to a specific coding called parallel Peak Coding (PPC) wherein
 - each pixel value of the picture to be displayed is split into two first and second split pixel values, the first and second split values (a,b) being associated to first and second groups of subfields respectively,
 - the number of subfields of the first group of subfields is substantially equal to the number of subfields of the second group of subfields, and
 - the first and second pixel values are substantially equal.

10

20

35

40

[0017] With this coding, the dithering levels are selected as follows:

- 15 the dithering level for the first split pixel value is 1/2 and the dithering level for the second split pixel value is 0, or
 - the dithering level for the first split pixel value is 0 and the dithering level for the second split pixel value is ½, or
 - the dithering level for the first and second split pixel values are different from 1/2.
 - The invention concerns also a device for processing video pictures data for display on a display device having a plurality of luminous elements corresponding to the pixels of a video picture, the luminous elements being organized in columns and lines, wherein the time of a video frame or field is divided into a plurality of sub-fields during which the luminous elements can be activated for light emission, a sub-field code word corresponding to said plurality of sub-fields being used for encoding the pixels values in which each bit can have either an "OFF" state or an "ON" state such that each luminous element is activated during a subfield when the corresponding bit of sub-field code word has an "ON" state The device comprises
- splitting means for splitting each pixel value of the picture to be displayed into at least first and second split pixel values, each split value being associated to a group of subfields of said plurality of subfields,
 - spatial dithering means for associating to each split pixel value V one dithering level L used to dither between two
 different pixel values V₁ and V₂ that can be coded by the associated group of subfields such that V=(1-L)xV₁ + LxV₂
 with V₁<V₂ and L ∈ [0, 1], and
- coding means for coding the pixel values V₁ and V₂ into sub-field code words, each bit of the sub-field code word
 having a bit state.
 - In this device, the splitting means and the spatial dithering means are controlled such that, if the sum of the number of bits having a different state in the subfield code word of the pixel value V1 and the subfield code word of the pixel value V2 associated to the first split pixel value and the number of bits having a different state in the subfield code word of the pixel value V1 and the subfield code word of the pixel value V2 associated to the second split pixel value is greater than or equal to a first threshold, the sum of the absolute differences between the dithering level of each split pixel value and 1/2 is made greater than a second threshold.

Brief description of the drawings

[0018] Exemplary embodiments of the invention are illustrated in the drawings and are explained in more detail in the following description. In the drawings:

- Fig.1 shows the overall electronic structure of a plasma display panel;
- Fig.2 shows the global functioning of the data driver of the plasma display panel of Fig.1;
 - Fig.3 shows the critical data pattern introducing an overheating of the data driver;
 - Fig.4 shows the equivalent number of chequered patterns for every dithering level;
 - Fig.5 shows the equivalent number of chequered patterns for every pixel value between 2 and 232;
 - Fig.6 shows the partition between the first peak and the second peak for all the pixel values between 0 and 255;
- Fig.7 shows the equivalent number of chequered patterns for every pixel value between 0 and 255 when the inventive method is applied;
 - Fig.8 shows a block diagram of a first possible circuit implementation of the inventive method; and
 - Fig.9 shows a block diagram of a second possible circuit implementation of the inventive method.

55 Description of preferred embodiments

[0019] The inventive method proposes to reduce the number of chequered patterns by splitting each pixel value into a plurality of split pixel values and by selecting appropriate pixel values and appropriate dithering levels for these pixel

values.

20

25

30

35

40

[0020] It is possible to define for every dithering level the equivalent number of chequered pattern (ENCP). A dithering level of ½ on one sub-field corresponds to one chequered pattern (ENCP=1) i.e. when looking at 5 adjacent cells (01010 or 10101) there are 4 transitions (0 to 1 or 1 to 0). For a dithering level of 1/4 or 3/4, when looking at 5 adjacent cells (00010 or 11101), there are only 2 transitions, so this will be equivalent to a half chequered pattern (ENCP=0.5). The dithering levels of 1/8, 3/8, 5/8 and 7/8 correspond to a fourth of a chequered pattern (ENCP=0.25). Figure 4 shows the equivalent number of chequered patterns for every dithering level.

[0021] As mentioned previously, it is proposed to reduce this number of chequered patterns on at least one subfield of the subfields set. The subfields set is divided into two groups of subfields and the number of chequered patterns is reduced at least in one of the two groups.

[0022] The invention will be described with reference to a specific coding called parallel Peak Coding (PPC) using two groups of subfields having substantially the same number of subfields and for which the driver circuit overheating is a big problem. So, the principle of this coding will be first described and the inventive method will follow.

[0023] The general idea of the Parallel Peak Coding is to have almost always the same energy in two packets of light and to encode the code words for these two packets differently so that changes in sub-field code word will not appear in the two packet code words simultaneously. This coding is notably used for reducing the false contour effect with any number of sub-fields. It will be illustrated by a Parallel Peak Coding with 15 sub-fields. Considering a frame comprising 15 sub-fields with the following weights:

1-2-3-5-7-9-11-14-17-20-24-28-33-38-43

[0024] In the parallel peak coding, these sub-fields are organized in two consecutive groups. A part of a sub-field code word is assigned to each group. These two groups of sub-fields are used for generating the two packets of light. The pixel value to be displayed is thus split into two split pixel values: one split pixel value is displayed by the first group of subfields and the other split is displayed by the second group of subfields.

[0025] For example, the odd sub-fields are grouped in a first group, called G1, and the even sub-fields are grouped in a second group called G2.

1 -3-7-11 -17-24-33-43 G1: G2: 2-5-9-14-20-28-38

[0026] Of course, the distribution of the sub-fields between the two groups can be carried out differently. The only condition is that the two groups should comprise sub-fields of different weights. Furthermore, the sub-fields of the group G1 could be put before or after the sub-fields of the group G2.

[0027] Furthermore, a different coding is selected for each group of sub-fields. For example, the following encoding tables can be used:

- for the group G1 (1-3-7-11-17-24-33-43)

	Pixel value	Code word	Code number	Pixel value	Code word	Code number
	value 0:	00000000	Code 0	value 72:	11111010	Code 44
	value 1:	10000000	Code 1	value 75:	00110110	Code 45
	value 3:	01000000	Code 2	value 76:	10110110	Code 46
45	value 4:	11000000	Code 3	value 78:	01110110	Code 47
	value 7:	00100000	Code 4	value 79:	11110110	Code 48
	value 8:	10100000	Code 5	value 81:	00101110	Code 49
	Value 10:	01100000	Code 6	value 82:	10101110	Code 50
50	Value 11:	11100000	Code 7	value 84:	01101110	Code 51
	Value 14:	01010000	Code 8	value 85:	11101110	Code 52
	Value 15:	11010000	Code 9	value 86:	10011110	Code 53
	Value 18:	00110000	Code 10	value 88:	01011110	Code 54
	Value 19:	10110000	Code 11	value 89:	11011110	Code 55
55	Value 21:	01110000	Code 12	value 92:	00111110	Code 56
	Value 22:	11110000	Code 13	value 93:	10111110	Code 57
	Value 24:	00101000	Code 14	value 95:	01111110	Code 58

(continued)

	Pixel value	Code word	Code number	Pixel value	Code word	Code number
	Value 25:	10101000	Code 15	value 96:	11111110	Code 59
5	Value 27:	01101000	Code 16	value 98:	01011101	Code 60
	Value 28:	11101000	Code 17	value 99:	11011101	Code 61
	Value 29:	10011000	Code 18	value 102:	00111101	Code 62
	Value 31:	01011000	Code 19	value 103:	10111101	Code 63
	Value 32:	11011000	Code 20	value 105:	01111101	Code 64
10	Value 35:	00111000	Code 21	value 106:	11111101	Code 65
	Value 36:	10111000	Code 22	value 107:	01011011	Code 66
	Value 38:	01111000	Code 23	value 108:	11011011	Code 67
	Value 39:	11111000	Code 24	value 111:	00111011	Code 68
15	Value 42:	00110100	Code 25	value 112:	10111011	Code 69
10	Value 43:	10110100	Code 26	value 114:	01111011	Code 70
	Value 45:	01110100	Code 27	value 115:	11111011	Code 71
	Value 46:	11110100	Code 28	value 118:	00110111	Code 72
	Value 48:	00101100	Code 29	value 119:	10110111	Code 73
20	Value 49:	10101100	Code 30	value 170:	01110111	Code 74
	Value 43:	01101100	Code 31	value 121:	11110111	Code 75
	Value 51:	11101100	Code 32	value 122:	00101111	Code 76
	Value 52: Value 53:	10011100	Code 32 Code 33	value 124:	10101111	Code 77
	Value 55:	01011100	Code 34	value 123.	01101111	Code 77 Code 78
25						Code 78
	Value 56:	11011100	Code 35	value 128:	11101111	
	Value 59:	00111100	Code 36	value 129:	10011111	Code 80
	Value 60:	101111100	Code 37	value 131:	01011111	Code 81
30	Value 62:	011111100	Code 38	value 132:	11011111	Code 82
00	Value 63:	111111100	Code 39	value 135:	00111111	Code 83
	Value 65:	11011010	Code 40	value 136:	10111111	Code 84
	Value 68:	00111010	Code 41	value 138:	01111111	Code 85
	value 69:	10111010	Code 42	value 139:	11111111	Code 86
35	value 71:	01111010	Code 43			
- for the gro	oup G2 (2-5-9-1	14-20-28-38)				
	Pixel value	Code word	Code number	Pixel value	Code word	Code number
40						
40	value 0: value 2:	0000000 1000000	Code 0	value 62:	0110110	Code 26
			Code 1	value 64:	1110110	Code 27
	value 5:	0100000	Code 2	value 67:	0101110	Code 28
	value 7:	1100000	Code 3	value 69:	1101110	Code 29
45	value 9:	0010000	Code 4	value 71:	0011110	Code 30
	value 11:	1010000	Code 5	value 73:	1011110	Code 31
	value 14:	0110000	Code 6	value 76:	0111110	Code 32
	value 16:	1110000	Code 7	value 78:	1111110	Code 33
	value 19:	0101000	Code 8	value 81:	0011101	Code 34
50	value 21:	1101000	Code 9	value 83:	1011101	Code 35
	value 23:	0011000	Code 10	value 86:	0111101	Code 36
	value 25:	1011000	Code 11	value 88:	1111101	Code 37
	value 28:	0111000	Code 12	value 89:	0011011	Code 38
55	value 30:	1111000	Code 13	value 91:	1011011	Code 39
55	value 34:	0110100	Code 14	value 94:	0111011	Code 40
	value 36:	1110100	Code 15	value 96:	1111011	Code 41
	value 39:	0101100	Code 16	value 97:	1010111	Code 42

(continued)

	Pixel value	Code word	Code number	Pixel value	Code word	Code number
	value 41:	1101100	Code 17	value 100:	0110111	Code 43
5	value 43:	0011100	Code 18	value 102:	1110111	Code 44
	value 45:	1011100	Code 19	value 105:	0101111	Code 45
	value 48:	0111100	Code 20	value 107:	1101111	Code 46
	value 50:	1111100	Code 21	value 109:	0011111	Code 47
	value 53:	1011010	Code 22	value 111:	1011111	Code 48
10	value 56:	0111010	Code 23	value 114:	0111111	Code 49
	value 58:	1111010	Code 24	value 116:	1111111	Code 50
	value 59:	1010110	Code 25			

[0028] All the pixel values can not be achieved. So, the missing pixel values are expressed from the available values by a dithering step. Two independent dithering blocks can be used for the two codes of these two packets of light.

[0029] A way to determine the two split pixel values to be displayed by the two packets of light is given below. If *i* designates an input pixel value, *a* the split pixel value assigned to the first group of subfields G1, and *b* the split pixel value assigned to the second group of subfields G2, the values a and b can be computed as follows:

For $0 \le i \le 1$, a = i and b = 0.

20

30

35

45

50

55

For $1 \le -i \le -2$, a=1 and b=i-1.

For $2 \le i \le 232$, a = i/2 and b = i/2. (232=2x116)

For $232 \le i \le 255$, a = i - 116 and b = 116.

[0030] In PPC, the same light energy is emitted during these two packets of light. In this example, for all levels between 2 and 232, half of this value is expressed by the first peak and the second half by the second peak. So for the input pixel value 140, the two peaks have to express the level 70. They both need dithering to render it because this level is not available with these groups of sub-fields. The first peak will use a dithering level 1/2 using the pixel values 69 (10111010) and 71 (01111010). The second peak will use a dithering level 1/2 using the pixel values 69 (1101110) and 71 (0011110). In case of a uniform gray level of 70 in input, the code of the first split pixel value will display a chequered pattern on 2 sub-fields, while the code of the second split pixel value on 3 sub-fields, so in total 5 sub-fields will use a chequered pattern. This means that the data driver could overheat.

[0031] Since the two peaks are working in parallel, the number of sub-field bit changes between two pixel values can be twice as big as when working with only one peak (classical code). For the input levels below 2 and above 232, since the two peaks are not working in parallel, the number of sub-field bit changes will be minimal.

[0032] Figure 5 shows the equivalent number of chequered pattern for every pixel value between 2 and 232 for the Parallel Peak Coding as defined previously. The equivalent number of chequered patterns for a pixel value is the sum of the ENCPs defined for all its subfields. As it can be seen the equivalent number of chequered patterns for different pixel values displayed by using the Parallel Peak Coding can be quite high (higher than 3 or 4) for some pixel values.

[0033] In one peak, there are maximum 4 sub-field bit changes between the two pixel values used for the dithering. But since the two peaks are working in parallel, these sub-field bit changes add up. When the dithering level is close to 1/2 on the two peaks, the number of bit changes is maximum for the considered pixel value and can reach 6 or 7.

[0034] The inventive method consists in selecting appropriate split pixel values and dithering levels to reduce the equivalent number of chequered patterns. The invention is described for a dithering step consisting in associating to each split pixel value V one dithering level L used to dither between two different pixel values V_1 and V_2 that can be coded by the given group of subfields such that $V=(1-L)xV_1 + LxV_2$ with $V_1 < V_2$ and $L \in [0,1]$. According to the invention, the split pixel values and dithering levels are selected such that, if the sum of the number of bits having a different state in the subfield code word of the pixel value V2 associated to the first split pixel value and the number of bits having a different state in the subfield code word of the pixel value V1 and the subfield code word of the pixel value V1 and the subfield code word of the pixel value V2 associated to the second split pixel value is greater than or equal to a first threshold, the sum of the absolute differences between the dithering level of each split pixel value and 1/2 is greater than a second threshold.

[0035] Thus, the split pixel values and the dithering levels are selected such that the two or more split pixel values do not have simultaneously a dithering level close to 1/2 where the ENCP is maximal (see figure 4).

[0036] The second threshold is advantageously equal to or greater than 1/4 and is preferably equal to 1/2.

[0037] The first threshold is preferably equal to 0. Thus, the dithering level is optimized whatever the number of bit changes in the two split pixel values.

[0038] In a variant, the first threshold can be increased to a value greater than 0. For example, it can be equal to 4. So, the optimized selection of the split pixel values and the dithering levels will be done only if the number of bit changes

in the two split pixel values is 4 or more.

[0039] In the following description, the first threshold is preferably equal to 0.

[0040] In a specific embodiment, it consists in splitting the set of subfields into at least two groups of subfields and using dithering levels other than 1/2 for the split pixel values associated to these groups of subfields or using a dithering level of 1/2 for only one split pixel value and a dithering level of 0 (no dithering) for the other split pixel value.

[0041] For this Parallel Peak Coding (PPC), it consists in using a dithering level of 1/2 on only one of the two split pixel values or by using a dithering level other than 1/2 on the two split pixel values. The goal of the inventive method is to maximize the sum of the absolute differences between the dithering level of each split value and 1/2 (dithering level where the ENCP is maximal).

[0042] The inventive method solution will be now described in detail for Parallel Peak Coding (PPC), i.e. two substantially identical split pixel values (a and b) and two groups of subfields (G1 and G2) having substantially the same number of subfields.

[0043] As mentioned before, the inventive method for PPC consists in using a dithering level of 1/2 on only one of the two split pixel values or by using a dithering level other than 1/2 on the two split pixel values. For example basic pixel values using a dithering level of 0 for at least one of the two split pixel values are first defined. When one split pixel value uses a dithering level 1/2, the other one is forced to use a dithering level 0 (no dithering). Thus the two split pixel values are not necessarily exactly identical but they are very close. For these basic pixel values, the maximum ENCP is then equal to the number of sub-field bit changes for the split pixel value having a dithering level different from 0.

[0044] More precisely, each basic pixel value is the combination of a split pixel value *a* displayed during the first peak and a split pixel value *b* displayed during the second peak. Each split pixel value is either a pixel value without dithering or a pixel value using a dithering level 1/2. It can not be the combination of two split pixel values using dithering levels 1/2. From one new pixel value to the next new pixel value, the first split pixel value (respectively the second split pixel value) can either be unchanged if the dithering level is equal to 0 or go from a code using no dithering to a code using a dithering level 1/2 or inversely.

[0045] Below is given an example of the new Parallel peak Code, called hereinafter matched PPC, made for the 15 Sub-fields presented previously. If we consider two successive code numbers n and n+1 in the encoding table defined previously for the group G1 or for the group G2, the code $n\frac{1}{2}$ means that a dithering level of 1/2 is assigned to the code n and that the pixel value of the code $n\frac{1}{2}$ is equal to the sum of half of the value of the code n and half of the value of the code n+1.

30

20

35

40

45

50

1 st p	eak	2 nd p	oeak	basic		1 st	oeak	2 nd	oeak	basic
code	Pixel	code	Pixel	pixel	l	code	Pixel	code	Pixel	pixe
	value a		value b	value	l		value a		value b	value
0	0	0	0	0	l	43½	71.5	30	71	142.
0½	0.5	0	0	0.5	l	44	72	301/2	72	144
1	1	01/2	1	2	l	441/2	73.5	31	73	146.
11/2	2	1	2	4	l	45	75	31½	74.5	149.
2	3	11/2	3.5	6.5	l	451/2	75.5	32	76	151.
21/2	3.5	2	5	8.5	l	46	76	32½	77	153
3	4	2	5	9	l	461/2	77	33	78	155
31/2	5.5	2	5	10.5	l	47	78	33	78	156
4	7	21/2	6	13	l	471/2	78.5	33	78	156.
41//2	7.5	3	7	14.5	l	48	79	331/2	79.5	158.
5	8	31/2	8	16	l	481/2	80	34	81	161
5½	9	4	9	18	l	49	81	34	81	162
6	10	41/2	10	20	l	49½	81.5	34	81	162.
6½	10.5	5	11	21.5	l	50	82	34½	82	164
7	11	51/2	12.5	23.5	l	501/2	83	35	83	166
71/2	12.5	6	14	26.5	l	51	84	35½	84.5	168.
8	14	6	14	28	l	51½	84.5	36	86	170.
81/2	14.5	6	14	28.5	l	52	85	36	86	171
9	15	61/2	15	30	l	521/2	85.5	36	86	171.
9½	16.5	7	16	32.5	l	53	86	36½	87	173
10	18	71/2	17.5	35.5	l	531/2	87	37	88	175
10½	18.5	8	19	37.5	l	54	88	37	88	176
11	19	8	19	38	l	54	88	371/2	88.5	176.
1111/2	20	8	19	39		541/2	88.5	38	89	177.
12	21	81/2	20	41		55	89	38½	90	179
121/2	21.5	9	21	42.5	١	551/2	90.5	39	91	181.
13	22	91/2	22	44		56	92	39	91	183
13½	23	10	23	46		56½	92.5	39	91	183.
14	24	10½	24	48		57	93	39½	92.5	185.

1 st peak		2 nd peak		basic	1 st peak		2 nd peak		basic
code	Pixel	code	Pixel	pixel	code	Pixel	code	Pixel	pixel
	value a		value b	value		value a		value b	value
141/2	24.5	11	25	49.5	571/2	94	40	94	188
15	25	11	25	50	58	95	40½	95	190
151⁄₂	26	11	25	51	581⁄2	95.5	41	96	191.5
16	27	111/2	26.5	53.5	59	96	411/2	96.5	192.5
16½	27.5	12	28	55.5	59½	97	42	97	194
17	28	12	28	56	60	98	421/2	98.5	196.5
171/2	28.5	12	28	56.5	601/2	98.5	43	100	198.5
18	29	121/2	29	58	61	99	43	100	199
181/2	30	13	30	60	61½	100 5	43	100	200.5
19	31	13	30	61	62	102	43½	101	203
191/2	31.5	13	30	61.5	621/2	102.5	44	102	204.5
20	32	13½	32	64	63	103	44½	103.5	206.5
20½	33.5	14	34	67.5	631/2	104	45	105	209
21	35	141/2	35	70	64	105	45	105	210
21½	35.5	15	36	71.5	641/2	105.5	45	105	210.5
22	36	15	36	72	65	106	45½	106	212
221/2	37	15	36	73	651/2	106.5	46	107	213.5
23	38	15½	37.5	75.5	66	107	46	107	214
231/2	38.5	16	39	77.5	661/2	107.5	46	107	214.5
24	39	16½	40	79	67	108	46½	108	216
241/2	40.5	17	41	81.5	671/2	109.5	47	109	218.5
25	42	171/2	42	84	68	111	471/2	110	221
25½	42.5	18	43	85.5	681/2	111.5	48	111	222.5
26	43	18	43	86	69	112	48½	112.5	224.5
261/2	44	18	43	87	691/2	113	49	114	227
27	45	18½	44	89	70	114	49	114	228
271/2	45.5	19	45	90.5	70½	114.5	49	114	228.5
28	46	19½	46.5	92.5	71	115	49½	115	230
28½	47	20	48	95	711/2	116.5	50	116	232.5
29	48	20	48	96	72	118	50	116	234
29½	48.5	20	48	96.5	721/2	118.5	50	116	234.5
30	49	20½	49	98	73	119	50	116	235
301/2	50	21	50	100	731/2	120	50	116	236

1 st n	1 st peak		2 nd peak		1 st peak		2 nd peak		basic	
	1			basic						pixel
code	Pixel	code	Pixel	pixel		code	Pixel	code	Pixel	
	value a	**********	value b				value a		value b	value
31	51	211/2	51.5	102.5		74	121	50	116	237
311/2	51.5	22	53	104.5		741/2	121.5	50	116	237.5
32	52	22	53	105		75	122	50	116	238
321/2	52.5	22	53	105.5		751/2	123	50	116	239
33	53	22	53	106		76	124	50	116	240
331/2	54	22	53	107		761/2	124.5	50	116	240.5
34	55	221/2	54.5	109.5		77	125	50	116	241
341/2	55.5	23	56	111.5		771/2	126	50	116	242
35	56	231/2	57	113		78	127	50	116	243
351/2	57.5	24	58	115.5		78½	127.5	50	116	243.5
36	59	24½	58.5	117.5		79	128	50	116	244
361/2	59.5	25	59	118.5		79½	128.5	50	116	244.5
37	60	25½	60.5	120.5		80	129	50	116	245
371/2	61	26	62	123		80%	130	50	116	246
38	62	26	62	124		81	131	50	116	247
381/2	62.5	26	62	124.5		81½	131.5	50	116	247.5
39	63	261/2	63	126		82	132	50	116	248
391/2	64	27	64	128		821/2	133.5	50	116	249.5
40	65	27½	65.5	130.5		83	135	50	116	251
401/2	66.5	28	67	133.5		831/2	135.5	50	116	251.5
41	68	28½	68	136		84	136	50	116	252
411/2	68.5	29	69	137.5		841/2	137	50	116	253
42	69	29½	70	139		85	138	50	116	254
421/2	70	30	71	141		85½	138.5	50	116	254.5
43	71	30	71	142		86	139	50	116	255

[0046] The missing pixel values (pixel values between two basic pixel values) are generated by interpolation of these basic pixel values.

[0047] It is interesting to see what happens in the two peaks when interpolating the missing pixel values. Each interpolated pixel value is located between two consecutive basic pixel values (a first one and a second one). Depending on the nature of these two basic pixel values (using a ½ dithering or no dithering for the first split pixel value and/or for the second split pixel value), two different cases can be defined (all the others being symmetrical):

a) the first basic pixel value has one split pixel value using no dithering (code n) and the other one using also no dithering (code p), and the second basic pixel value has one split pixel value using a dithering level 1/2 (code $n\frac{1}{2}$) and the other one using no dithering (code p). In this case, all the interpolated pixel values between the pixel values corresponding to the codes (n+p) and $(n\frac{1}{2}+p)$ will use a dithering only on one split pixel value, the dithering level of

this split pixel value being included between 0 and 1.

5

10

15

20

30

35

40

45

50

55

As an example in the previous table, the interpolated pixel value 200 is generated by the code 61 with a dithering level equal to $1/3(=2/3 \times 1/2)$ for the first split pixel value and the code 43 with no dithering for the second split pixel value. The ENCP is then about 0.66 x 3 (3 subfield bit changes) for the first split pixel value and 0 for the second split pixel value according to figure 4. The global ENCP is thus about 2.

b) The first basic pixel value has one split pixel value having a dithering level equal to 1/2 (code $n\frac{1}{2}$) and the other one using no dithering (code p), and the second basic pixel value has one split pixel value using no dithering (code (n+1)) and the other one using a dithering level 1/2 (code $p\frac{1}{2}$). In this case, all the interpolated pixel values between the pixel values corresponding to the codes $(n\frac{1}{2}+p)$ and $((n+1)+p\frac{1}{2})$ will use dithering on the two split pixel values. But the two dithering levels will be, in a certain sense, complementary (the difference of the two dithering levels will always be equal to 1/2). For example, one pixel value will use a dithering level 3/4 for one split pixel value and 1/4 on the other. If the number of sub-field bit changes between code n and code (n+1) is the same than between the code p and (p+1), then all pixel values between the pixel values corresponding to the codes $(n\frac{1}{2}+p)$ and $((n+1)+p\frac{1}{2})$ will have the same ENCP. In other words, the ENCP between the two new pixel values between the pixel values corresponding to the codes $(n\frac{1}{2}+p)$ and $((n+1)+p\frac{1}{2})$ will go from the ENCP of one split pixel value to the ENCP of the other split pixel value. It means that the ENCP will smaller than or equal to the biggest ENCP of the two split pixel values).

²⁵ **[0048]** This matched PPC remains compatible with the standard PPC implementation since the two split pixel values have substantially the same energy. Only modified look-up tables are needed.

[0049] For all video inputs, the partition between the first and the second split pixel values is shown at figure 6. In case of standard PPC, the two curves would be identical for all input values between 2 and 232. Here, they are slightly different. But because their differences are very small, the picture quality is substantially the same than with standard PPC. In fact, the picture quality is slightly better because the dithering levels on the two split pixel values are mostly complementary. **[0050]** Concerning driver heat, Figure 7 shows the equivalent number of chequered patterns for every video input between 2 and 232 when the inventive method is applied. This figure is to be compared with Figure 5 related to the standard PPC. The maximum equivalent number of chequered pattern is now reduced to 4.

[0051] The inventive method has been described for the Parallel Peak Coding, i.e. for a coding wherein the subfields are divided into two groups of subfields generating substantially the same light energy and wherein the two split pixel values are substantially equal. It can be extended to other codings wherein the subfields are divided into three or more groups of subfields generating different light energy and wherein the pixel values are thus split into three or more different split pixel values.

[0052] The circuit for implementing the inventive method is the same than the one used for implementing the standard PPC. Only the content of the look-up tables is amended. The driver heat problem is thus solved without extra costs and without loss of quality.

[0053] In figure 8, a block diagram of a possible circuit implementation for encoding the pixel values into sub-field code word as described above is illustrated. Input R,G,B video data, IN[9:0], coming for example from a video degamma unit, are forwarded to splitting means 20 used for outputting, for each input video data, the split pixel values a and b. These means comprise for example at least two Look-Up Tables (LUTs), one for each split value. In the case of PPC, there are two LUTs, one delivering the split pixel value a and one for delivering the split pixel value b. The split pixel value a (respectively a) is then advantageously transmitted to a dithering block 21 (resp. 31) for generating, if need be, values encodable by the subfield group G1 (resp. G2) as described before. The dithered value is then forwarded to a subfield coding block 22 (resp. 32) for outputting the corresponding subfield code word. This sub-field code word will be used by the display panel for driving the lighting period of the cells of the panel.

[0054] It is also possible to use the matched Parallel Peak Code with a frame frequency twice as high. For example, instead of having a 50Hz video input, it is also possible to have a 100Hz video input and to use, depending on the parity of the frame (odd or even), the first or the second group of sub-fields (G1 or G2) and the corresponding encoding table. Of course, it is not limited to 100Hz; it can also be used for other frequencies like 72, 75, 80, 85, 90 or even 120 Hz. Figure 9 is illustrated this possibility. Count is a 1-bit counter, which is incremented at each frame. Depending on its value (0 or 1), the video is encoded with sub-field group G1 and the encoding table assigned to this first group (case 0) or with sub-field group G2 and the encoding table assigned to this second group (case 1).

[0055] The invention has been described for The Parallel Peak Coding (PPC) having a big problem of driver overheating.

Of course, the principle of the inventive method can be extended to other codings using at least two groups of subfields.

Claims

5

1. Method for processing video pictures data for display on a display device having a plurality of luminous elements corresponding to the pixels of a video picture, the luminous elements being organized in columns and lines, wherein the time of a video frame or field is divided into a plurality of subfields (SF) during which the luminous elements can be activated for light emission, a sub-field code word corresponding to said plurality of sub-fields being used for encoding the pixels values in which each bit can have either an "OFF" state or an "ON" state such that each luminous element is activated during a subfield when the corresponding bit of sub-field code word has an "ON" state, comprising:

15

10

- a splitting step for splitting each pixel value of the picture to be displayed into at least first and second split pixel values (a,b), each split value being associated to a group of subfields (G1,G2) of said plurality of subfields, - a spatial dithering step for associating to each split pixel value V one dithering level L used to dither between two different pixel values V_1 and V_2 that can be coded by the associated group of subfields such that V=(1-L)

 $xV_1 + LxV_2$ with $V_1 < V_2$ and $L \in [0, 1]$,

- a coding step for coding the pixel values V_1 and V_2 into sub-field code words, each bit of the sub-field code word having a bit state,

20

characterized in that the split pixel values and the dithering levels are selected such that, if the sum of the number of bits having a different state in the subfield code word of the pixel value V1 and the subfield code word of the pixel value V2 associated to the first split pixel value (a) and the number of bits having a different state in the subfield code word of the pixel value V2 associated to the second split pixel value (b) is greater than or equal to a first threshold, the sum of the absolute differences between the dithering level of each split pixel value and 1/2 is made greater than a second threshold.

25

2. Method according to claim 1, wherein said second threshold is greater than or equal to 1/4.

30

3. Method according to claim 1 or 2, wherein the first threshold is zero.

first and second groups of subfields (G1,G2) respectively.

4. Method according to claim 1 or 2, wherein the first threshold is different from zero.

35

5. Method according to any one of claims 1 to 4, wherein the second threshold is equal to 1/2.6. Method according to any one of claims 1 to 5, characterized in that each pixel value of the picture to be displayed

40

7. Method according to claim 6, **characterized in that** the dithering level for the first split pixel value is 1/2 and the dithering level for the second split pixel value is 0 or the dithering level for the first split pixel value is 0 and the dithering level for the second split pixel value is 1/2 or the dithering level for the first and second split pixel values

is split into two first and second split pixel values (a,b), the first and second split values (a,b) being associated to

45

8. Method according to any one of Claims 1 to 7, **characterized in that** the number of subfields of the first group of subfields (G1) is substantially equal to the number of subfields of the second group of subfields (G2).

50

9. Method according to one of Claims 6 to 8, **characterized in that** the first and second pixel values are substantially equal.

55

10. Device for processing video pictures data for display on a display device having a plurality of luminous elements corresponding to the pixels of a video picture, the luminous elements being organized in columns and lines, wherein the time of a video frame or field is divided into a plurality of subfields (SF) during which the luminous elements can be activated for light emission, a sub-field code word corresponding to said plurality of sub-fields being used for encoding the pixels values in which each bit can have either an "OFF" state or an "ON" state such that each luminous element is activated during a subfield when the corresponding bit of sub-field code word has an "ON" state, comprising:

are different from 1/2.

- splitting means for splitting each pixel value of the picture to be displayed into at least first and second split pixel values (a,b), each split value being associated to a group of subfields (G1,G2) of said plurality of subfields, spatial dithering means for associating to each split pixel value V one dithering level L used to dither between two different pixel values V_1 and V_2 that can be coded by the associated group of subfields such that $V=(1-L)xV_1+LxV_2$ with $V_1<V_2$ and $L\in[0,1]$, and
- coding means for coding the pixel values V_1 and V_2 into sub-field code words, each bit of the sub-field code word having a bit state,

characterized in that the splitting means and the spatial dithering means are controlled in order that, if the sum of the number of bits having a different state in the subfield code word of the pixel value V1 and the subfield code word of the pixel value V2 associated to the first split pixel value (a) and the number of bits having a different state in the subfield code word of the pixel value V1 and the subfield code word of the pixel value V2 associated to the second split pixel value (b) is greater than or equal to a first threshold, the sum of the absolute differences between the dithering level of each split pixel value and 1/2 is made greater than a second threshold.

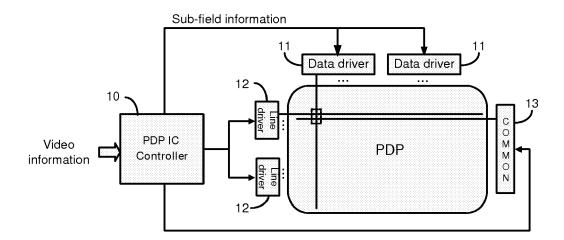


FIG.1

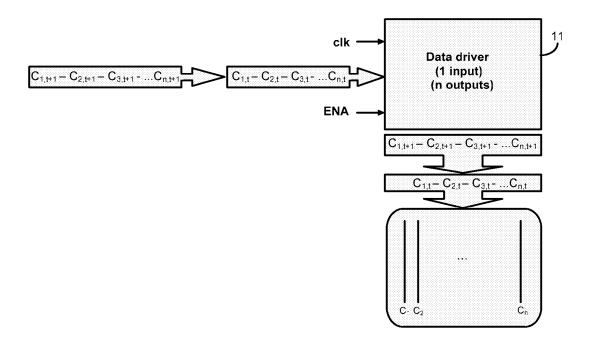


FIG.2

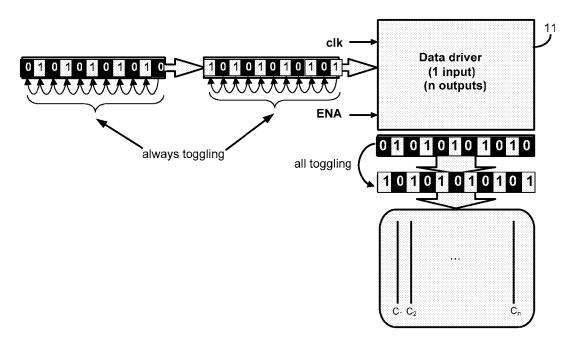


FIG.3

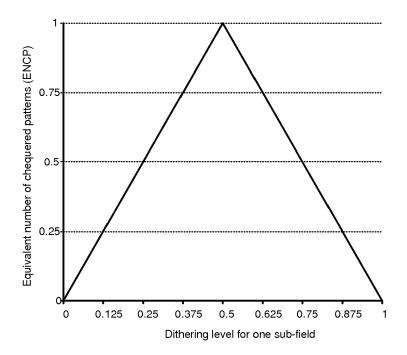


FIG.4

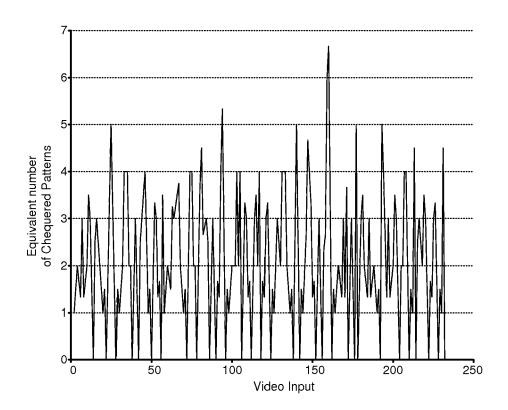


FIG.5

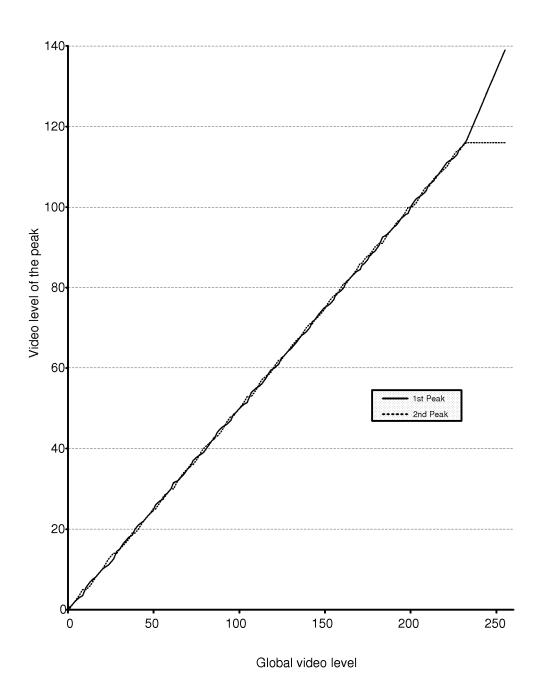


FIG.6

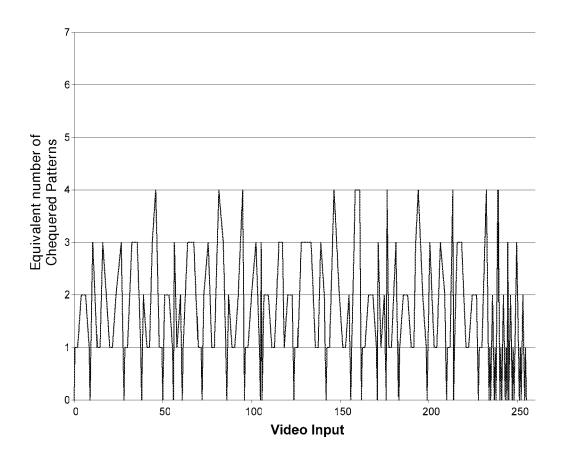


FIG.7

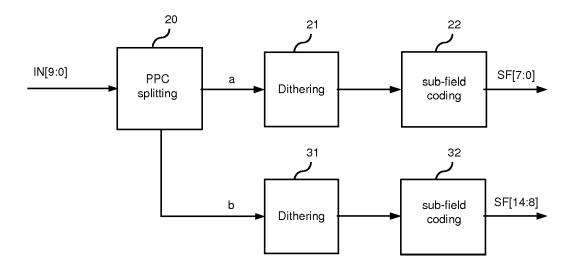


FIG.8

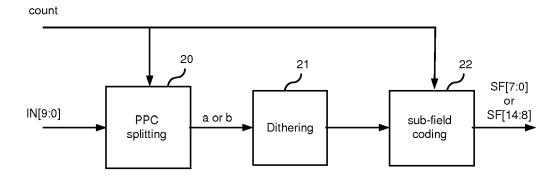


FIG.9

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 0171702 A [0006]

• EP 1262947 A [0006]