FIELD OF THE INVENTION
[0001] The invention relates to recombinantly constructed proteins useful for treating pathological
neovascularization,
e.g., asthma, arthritis, cancer, and macular degeneration.
BACKGROUND OF THE INVENTION
[0002] Pathological neovascularization is a key component of diseases like wet age-related
macular degeneration (AMD), proliferative diabetic retinopathy, rheumatoid arthritis,
osteoarthritis, and asthma. It also plays an important role in growth and spread of
tumors. Neovascularization is regulated by an exquisite balance of pro- and anti-angiogenic
factors.
[0003] Vascular endothelial growth factor (VEGF) is known to be necessary for neovascularization.
Inhibition of VEGF activity has been shown to inhibit neovascularization in animal
models of AMD, arthritis and in various tumor models. Methods used to inhibit VEGF
activity include antibodies, receptor fusion proteins, peptides and small molecules.
[0004] VEGF-R1 (Flt-1) and VEGF-R2 (KDR) proteins have been shown to bind VEGF with high
affinity. Both Flt-1 and KDR have seven Ig-like domains in their extracellular region.
Domain 2 has been shown to be essential for VEGF binding. Fusions of each of the full-length,
soluble receptor (domains 1-7) and domains 1-3 to IgG Fc bind VEGF efficiently IgG
Fc fusions to Ig-like domain 2 alone was, however, incapable of binding VEGF, as was
a combination of Ig-like domain 1 and 2. Davis-Smyth, 1996. Therefore, Ig-like domains
1 and 3 seem to be required along with domain 2 for efficient VEGF binding.
BRIEF SUMMARY OF THE INVENTION
[0006] According to one aspect of the present disclosure, a fusion protein is provided.
The fusion protein has the formula X-Y-Z. X comprises a polypeptide selected from
the group consisting of an extracellular receptor, an antibody variable region, a
cytokine, a chemokine, and a growth factor. Y consists essentially of a 5 - 25 amino
acid residue polypeptide. Z is a CH3 region of an IgG heavy chain molecule.
[0007] Another aspect of the present disclosure is a polypeptide of the formula X-Y-Z. X
comprises a polypeptide selected from the group consisting of an extracellular receptor,
an antibody variable region, a cytokine, a chemokine, and a growth factor. Y consists
essentially of a linker moiety which provides the spatial separation of 5-25 amino
acid residue. Z is a CH3 region of an IgG heavy chain molecule.
[0008] Yet another aspect of the present disclosure is a fusion protein of the formula X-Y-Z.
X comprises a polypeptide selected from the group consisting of an extracellular receptor,
an antibody variable region, a cytokine, a chemokine, and a growth factor. Y consists
essentially of a 5 - 25 amino acid residue polypeptide. Z is an Fc portion of an antibody
molecule.
[0009] A fusion protein of the formula X-Y-Z is also provided by the present disclosure.
X comprises a polypeptide selected from the group consisting of an extracellular receptor,
an antibody variable region, a cytokine, a chemokine, and a growth factor. Y consists
essentially of a linker moiety which provides the spatial separation of 5-25 amino
acid residues. Z is an Fc portion of an antibody molecule.
[0010] Still another aspect of the present disclosure is a method of multimerizing a polypeptide
X. A polypeptide X is linked to a polypeptide Z via a polypeptide Y to form polypeptide
XYZ. X comprises a polypeptide selected from the group consisting of an extracellular
receptor, an antibody variable region, a cytokine, a chemokine, and a growth factor.
Y consists essentially of a 5 - 25 amino acid residue polypeptide. Z is a CH3 region
of an IgG heavy chain molecule. Polypeptide XYZ which is formed multimerizes.
[0011] Yet another aspect of the present disclosure provides a method of multimerizing a
polypeptide X. Polypeptide X is linked to a polypeptide Z via a moiety Y to form polymer
XYZ. X comprises a polypeptide selected from the group consisting of an extracellular
receptor, an antibody variable region, a cytokine, a chemokine, and a growth factor.
Y consists essentially of a linker moiety which provides the spatial separation of
5-25 amino acid residues. Z is a CH3 region of an IgG heavy chain molecule. Polypeptide
XYZ which is so formed multimerizes.
[0012] In one aspect of the present disclosure a nucleic acid molecule is provided. The
nucleic acid molecule encodes a fusion protein which comprises an Ig-like domain 2
of VEGF-R1 (Flt-1); a linker, and a multimerization domain. The fusion protein comprises
a sequence selected from the group consisting of SEQ ID NO: 2, 8, 21, 23, and 25.
[0013] In another aspect of the present disclosure a fusion protein is provided. The fusion
protein comprises an Ig-like domain 2 of VEGF-R1 (Flt-1), a linker, and a multimerization
domain. The fusion protein comprises a sequence selected from the group consisting
of SEQ ID NO: 2, 8, 21, 23, and 25.
[0014] In another aspect of the present disclosure an
in vitro method is provided. A nucleic acid molecule is delivered to an isolated mammalian
cell. The nucleic acid molecule encodes a fusion protein which comprises an Ig-like
domain 2 of VEGF-R1 (Flt-1); a linker; and a multimerization domain. The fusion protein
comprises a sequence selected from the group consisting of SEQ ID NO: 2, 8, 21, 23,
and 25. Expression of the fusion protein is controlled by a promoter. A cell is formed
which expresses a fusion protein.
[0015] Still another aspect of the present disclosure is a method for delivering a fusion
protein to a mammal. A mammalian cell which expresses the fusion protein is delivered
to a mammal. The cell expresses and secretes the fusion protein thereby supplying
the fusion protein to the mammal. The fusion protein comprises an Ig-like domain 2
of VEGF-R1 (Flt-1), a linker, and a multimerization domain. The fusion protein comprises
a sequence selected from the group consisting of SEQ ID NO: 2, 8, 21, 23, and 25.
[0016] Another aspect of the present disclosure is a method for supplying a fusion protein
to a mammal. A fusion protein which comprises an Ig-like domain 2 of VEGF-R1 (Flt-1),
a linker, and a multimerization domain is delivered to a mammal. The fusion protein
comprises a sequence selected from the group consisting of SEQ ID NO: 2, 8, 21, 23,
and 25. Alternatively, a nucleic acid construct which encodes said fusion protein
can be delivered to the mammal, whereby the fusion protein is expressed by the mammal.
[0017] These and other aspects of the present disclosure, which will be described in more
detail below, provide the art with methods and agents for treating diseases related
to vascular proliferation and inflammation. The agents may provide increased stability
and bioavailability relative to natural forms of the proteins.
[0018] Now a part of the disclosure that is contained herein provides the aspects and embodiments
of the present invention. More particularly, a first aspect of the present invention
provides a fusion protein of the formula X-Y-Z, wherein: X comprises the Ig-like domain
2 of VEGF-R1 but lacks the Ig-like domains 1 and 3 of VEGF-R1, with said Ig-like domain
2 of VEGF-R1 being covalently linked to moiety Z via moiety Y; Y consists of a 5 -
25 amino acid residue polypeptide; and Z is a CH3 region of an IgG heavy chain molecule
or an Fc portion of an antibody molecule.
[0019] In a related aspect, the present invention provides a composition comprising this
fusion protein of the invention, which composition further comprises one or more pharmaceutically
acceptable excipients or carriers.
[0020] In a further aspect, the present invention provides a method of multimerizing a polypeptide
X, the method comprising: linking a polypeptide X to a polypeptide Z via a polypeptide
Y to form a polypeptide XYZ, wherein: X comprises the Ig-like domain 2 of VEGF-R1
but lacks the Ig-like domains 1 and 3 of VEGF-R1, with said Ig-like domain 2 of VEGF-R1
being covalently linked to polypeptide Z via polypeptide Y; Y consists of a 5 - 25
amino acid residue polypeptide; and Z is a CH3 region of an IgG heavy chain molecule
or an Fc portion of an antibody molecule; whereby the polypeptide XYZ multimerizes.
[0021] In yet further aspects, the present invention provides a nucleic acid molecule which
encodes the fusion protein of the present invention, a vector which comprises said
nucleic acid molecule, a mammalian cell which comprises the nucleic acid molecule,
and an
in vitro method comprising delivering the nucleic acid molecule to an isolated mammalian cell
so as to form a cell which expresses said fusion protein.
[0022] In still further aspects, the present invention provides the fusion protein, nucleic
acid, vector or mammalian cell of the present invention, for use in treating a mammal.
In one embodiment, the mammal has wet age-related macular degeneration or proliferative
diabetic retinopathy. In another embodiment, the mammal has cancer. In another embodiment,
the mammal has rheumatoid arthritis. In another embodiment, the mammal has asthma.
In another embodiment, the mammal has osteoarthritis.
[0023] Additional aspects and embodiments of the present invention are set out in the appended
claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0024] Fig. 1. Flexible region of 9-Gly linker in D2-9Gly-Fc construct. The predicted relative
flexibility by Karpus and Schultz (1985) method shows the polyglycine 9-mer (9-Gly)
linker (aa 94 to 103) in D2-9Gly-Fc protein as a region with greater flexibility than
the average (>1) as compared to D2-Fc construct that does not contain 9-Gly linker.
Both fusion proteins contain identical amino acid sequences enclosed in boxes: sp
- signal peptide (aa -24 to -1), Flt-1 domain 2 (aa 1 to 93) and IgGl-Fc residues
(244 aa). The arrow represents the signal peptidase cleavage site as predicted using
the SignalP V2.0 program (Nielsen et al., 1997).
[0025] Fig. 2. Biological activity of D2-9Gly-Fc vs. D2-Fc. 293 cells were grown in the
starvation media (M199 + 5% FCS) and transfected with plasmids containing D2-9Gly-Fc
and D2-Fc expression cassettes under control of CMV promoter. Conditioned media (CM)
was collected 72 h later. HUVECs were seeded into 96 well plate (2E3 cells/well) in
starvation media + VEGF (10 ng/mL) and 50 ul CM plus VEGF (10 ng/mL) was added 24
h later. The controls (+/- VEGF) were incubated with CM from the control pEGFP (Clontech;
pEGFP carries a red-shifted variant of wild-type green fluorescent protein (GFP) which
has been optimized for brighter fluorescence and higher expression in mammalian cells)
plasmid transfection The positive control was treated with 50 ng of Flt-1-IgG recombinant
protein (R&D Systems). The HUVECs were assayed for proliferation 3 days post treatment
using CellTiter 96
® AQ
ueous reagent (Promega). The data represent the means of the average values of OD
490 of two experiments each assayed in triplicates.
[0026] Fig. 3. Western blot analysis of D2-9Gly-Fc and D2-Fc. The size of both D2-9Gly-Fc
and D2-Fc proteins appears to be twice as large while migrating in non-reducing gel
as compared to migration in reducing gel. The proteins were loaded from the conditioned
media following 293 cell transfection of plasmids expressing D2-9Gly-Fc and D2-Fc
were separated by SDS-electrophoresis and transferred to PVDF membrane. The blot was
probed with goat anti-human anti-IgG1 Fc and rabbit anti-goat IgG-HRP antibodies.
[0027] Fig. 4. sFlt-1 hybrid proteins containing 9Gly linker and VEGF Ex3. Structure comparison
of D2-9Gly-Ex3/CH3 to previously constructed proteins. All three proteins contain
identical amino acid sequence of Flt-1 domain 2, consisting of 24 aa of Flt-1 signal
peptide and 93 aa of Flt-1 domain 2. D2-9Gly-Ex3/CH3 contains 9 aa of 9Gly linker,
14 aa of VEGF Ex3 and 120 aa of the CH3 region of human IgG1 heavy chain Fc.
[0028] Fig. 5. Biological activity of D2-9Gly-Ex3/CH3 vs. D2-9Gly-Fc. Protein D2-9Gly-Ex3/CH3,
where domain 2 is connected to the CH3 region through 9Gly linker and VEGF Ex 3, is
also efficiently inhibiting VEGF-dependent HUVECs proliferation as compared to control
proteins D2-9Gly-Fc and D2-Fc. 50 ng of the recombinant Flt-1-IgG (R&D Systems) was
used as a control.
[0029] Fig. 6. HUVECs proliferation assay comparing D2-(Gly
4Ser)
3-Fc protein activity with D2-9Gly-Fc and D2-9Gly-Ex3/CH3.
[0030] Fig. 7. Western blot Proteins (non-reduced and reduced) from conditioned medium of
transfected 293 cells (15 ul of CM) with plasmids expressing (1): D2-9Gly-Fc; (2):
D2-(G
4S)
3-Fc and (3) - EGFP proteins were separated by SDS-electrophoresis and transferred
to PVDF membrane. The blot was probed with goat anti-human IgG1 Fc and rabbit anti-goat
IgG-HRP antibodies.
[0031] Fig. 8. Combinations of proteins with/without 9Gly linker or VEGF Ex3. Structure
comparison of three novel proteins with or without 9Gly linker and/or VEGF Ex3, D2-9Gly-CH3,
D2-CH3 and D2-Ex3/CH3.
[0032] Fig. 9. HUVECs proliferation assay with the Flt-1(D2) constructs with 9Gly, Ex3 and
CH3 combinations. Conditioned media from 293 cells (5 ul) containing proteins D2-Ex3/CH3,
D2-9Gly-CH3 and D2-CH3 were compared to D2-9Gly-Fc and D2-9Gly-Ex3/CH3.
[0033] Fig. 10 Western blot 293 cells were transfected with plasmids expressing: (1) D2-9Gly-Fc;
(2) D2-9Gly-CH3 (52/26 kDa); and (3) D2-CH3 (50/25 kDa). Proteins from 293 cells conditioned
medium (15 ul of CM non-reduced and/or reduced) were separated by SDS-electrophoresis
and transferred to PVDF membrane. The blot was probed with anti-human VEGF-R1 HRP
conjugate (R&D Systems).
[0034] Fig. 11. VEGF "in vitro" binding assay. Conditioned media from 293 cells containing
known concentrations of both D2-9Gly-Fc and Flt-1 D(1-3) control soluble receptors
(ranging in concentrations from 0.29 -150 pM) were serially diluted and mixed with
10 pM VEGF. The amount of unbound VEGF was then measured by ELISA. D2-9Gly-Fc binds
VEGF with higher affinity than all other constructs. "n" represents the number of
independent experiments (transfection and binding assay).
[0035] Fig. 12. The binding kinetics of the soluble Flt-1 constructs were measured by surface
plasmon resonance with a BIAcore instrument. sFlt-1 constructs were immobilized onto
a sensor chip, and VEGF165 was injected at concentrations ranging from 0.2 to 15 nM.
The sensorgrams were evaluated using the BIA Evaluation program, the rate constants
Ka and Kd were determined and the dissociation constant (KD) calculated from the ratio
of Kd/Ka = KD. The lower KD value means better affinity.
[0036] Fig. 13A-13C. Fig 13A shows expression levels of Flt-1 constructs having various
linkers. Fig. 13B shows dimerization or multimerization of Flt-1 constructs having
various linkers and a CH3 moiety of Fc of IgG1. The difference between the non-reduced
and the reduced conditions indicates that the proteins had multimerized. Fig. 13C
shows the inhibitory bioactivity of indicated Flt-1 constructs present in condition
medium in a HUVEC proliferation assay in the presence of VEGF. Each of the constructs
demonstrated inhibitory activity approaching proliferation levels of the HUVEC in
the absence of VEGF.
[0037] Fig. 14. Using a murine oxygen-induced retinopathy (OIR) model of retinal neovascularization
(NV), one of the Flt-1 constructs was administered to the mouse eyes and neovascularization
was determined. The mice were exposed to hyperoxic conditions. The number of neovascular
events was determined in the treated eyes compared to the events in the untreated
eyes of the same animals. The animal was considered a "responder" if there was a greater
than 50% reduction in neovascular events.
DETAILED DESCRIPTION OF THE INVENTION
[0038] It is a discovery of the present inventors that a Flt-1 Ig-like domain 2 without
domains 1 and 3 is capable of efficiently binding VEGF and inhibiting VEGF-dependent
endothelial cell proliferation. Domain 2 can be covalently linked to a multimerization
domain via a linker. Linkers are typically polypeptide chains. The length of the chain
may be 6, 7, 9, 11, 13, 15 or more amino acid residues, but typically is between 5
and 25 residues. Depending upon the length and side chain composition, a linker may
have but need not have greater than average flexibility. Flexibility can be calculated
using algorithms known in the art. Multimerization domains are those portions of multimeric
proteins which promote the association of subunits to form, for example, dimers, trimers,
tetramers, etc. Suitable recombinant proteins for efficiently binding VEGF and/or
inhibiting VEGF-dependent endothelial cell proliferation are selected from the group
consisting of SEQ ID NO: 2, 8, 21, 23, and 25.
[0039] Moreover, the inventors have found that the multimerization domains and linkers can
be used with a variety of other proteins or portions of proteins to induce multimerization.
Such proteins may be those which bind to ligand or receptor only when multimerized,
or may be those whose binding affinity is enhanced when multimerized. Suitable proteins
for multimerization include extracellular receptors (which include portions thereof),
antibody variable regions, cytokines, chemokines, and growth factors. Suitable proteins
include tyrosine kinase receptors and serine thereonine kinase receptors. Specific
examples of extracellular receptors include EGF-receptor, G protein coupled receptors,
FGF receptor, Fc receptors, T cell receptors, etc. Examples of antibody variable regions
include Fab, F(ab')
2, and ScFv. Examples of cytokines include GM-CSF, IL-1α, IL-1β, IL-2, IL-3, IL-4,
IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-18, IL-21, IL-23, IFN-α, IFN-β, IFN-γ, MIP-1α,
MIP-1β, TGF-β, TNFα, and TNF-β. Examples of chemokines include BCA-1 / BLC, BRAK,
Chemokine CC-2, CTACK, CXCL-16, ELC, ENA, ENA-70, ENA-74, ENA-78, Eotaxin, Exodus-2,
Fractalkine, GCP-2, GRO, GRO alpha (MGSA), GRO-beta, GRO-gamma, HCC-1, HCC-4, 1-309,
IP-10, I-TAC, LAG-1, LD78-beta, LEC / NCC-4, LL-37, Lymphotactin, MCP, MCAF (MCP-1),
MCP-2, MCP-3, MCP-4, MDC, MDC, MDC-2, MDC-4, MEC / CCL28, MIG, MIP, MIP-1 alpha, MIP-1
beta, MIP-1 delta, MIP-3 / MPIF-1, MIP-3 alpha, MIP-3 bet, MIP-4 (PARC), MIP-5, NAP-2
, PARC, PF-4, RANTES, RANTES-2, SDF-1 alpha, SDF-1 beta, TARC, and TECK. Examples
of growth factors include Human Amphiregulin, Human Angiogenesis Proteins, Human ACE,
Human Angiogenin, Human Angiopoietin, Human Angiostatin, Human Betacellulin, Human
BMP, Human BMP-13 / CDMP-2, Human BMP-14 /CDMP-1, Human BMP-2, Human BMP-3, Human
BMP-4, Human BMP-5, Human BMP-6, Human BMP-7, Human BMP-8, Human BMP-9, Human Colony
Stimulating Factors, Human flt3-Ligand, Human G-CSF, Human GM-CSF, Human M-CSF, Human
Connective Tissue Growth Factor, Human Cripto-1, Human Cryptic, Human ECGF, Human
EGF, Human EG-VEGF, Human Erythropoietin, Human Fetuin, Human FGF, Human FGF-1, Human
FGF-10, Human FGF-16, Human FGF-17, Human FGF-18, Human FGF-19, Human FGF-2, Human
FGF-20, Human FGF-3, Human FGF-4, Human FGF-5, Human FGF-6, Human FGF-7 / KGF, Human
FGF-8, Human FGF-9, Human FGF-acidic, Human FGF-basic, Human GDF-11, Human GDF-15,
Human Growth Hormone Releasing Factor, Human HB-EGF, Human Heregulin, Human HGF, Human
IGF, Human IGF-I, Human IGF-II, Human Inhibin, Human KGF, Human LCGF, Human LIF, Human
Miscellaneous Growth Factors, Human MSP, Human Myostatin, Human Myostatin Propeptide,
Human Nerve Growth Factor, Human Oncostatin M, Human PD-ECGF, Human PDGF, Human PDGF
(AA Homodimer), Human PDGF (AB Heterodimer), Human PDGF (BB Homodimer), Human PDGF
(CC Homodimer), Human PIGF, Human PIGF, Human PIGF-1, Human PIGF-2, Human SCF, Human
SMDF, Human Stem Cell Growth Factor, Human SCGF-alpha, Human SCGF-beta, Human Thrombopoietin,
Human Transforming Growth Factor, Human TGF-alpha, Human TGF-beta, and Human VEGF.
[0040] Flt-1 receptor protein has an extracellular portion which comprises seven Ig-like
domains. These are located at residue numbers 32...123, 151...214, 230...327, 335...421,
428...553, 556...654, and 661...747 of Genbank accession no. P17948, see also SEQ
ID NO: 15. Residue numbers 1-26 comprise a signal sequence. Flt-1 protein is encoded
by the DNA sequence shown at Genbank accession no. NM_002019 (SEQ ID NO: 14).
[0041] Multimerization domains that can be used in accordance with the present disclosure
are known in the art. Sequences of the Fc portion of IgG1 or IgG2 gamma heavy chain
can be used, for example, CH3 alone (aa 371-477) or both of CH2 and CH3 domains (aa
247-477). Fc portion of Ig molecules is that which is obtained by cleavage of whole
antibody molecules with the enzyme papain. Other means can be used to obtain these
portions. For the IgG1 gamma heavy chain protein sequence, see Genbank accession no
Y144737 and SEQ ID NO: 10. Other Fc regions can be used for example from other IgG
types and from IgA, IgM, IgD, or IgE antibodies. The multimerization region of VEGF
can also be used. A DNA sequence encoding VEGF is shown at Genbank accession no. NM_003376
and SEQ ID NO: 11. An amino acid sequence of VEGF is shown at Genbank accession no.
CAC19513 and SEQ ID NO: 12. The multimerization region of VEGF (SEQ ID NO: 13), encoded
by VEGF exon 3 (VEGF Ex3), is at about amino acid residues 75-88 of VEGF protein (SEQ
ID NO: 12). Multimerization domains will cause at least 5 %,10%,20%,30%,40%,50%,60%,75%,80%,85%,90%,
or 95% of the monomeric fusion proteins to migrate on a non-denaturing polyacrylamide
gel at a rate appropriate for a multimer. Glycosylation can affect the migration of
a protein in a gel. Although particular sequences are shown here, variants such as
allelic variants can be used as well. Typically such variants will have at least 85
%, 90 %, 95 %, 97 %, 98 %, or 99 % identity with the disclosed sequence.
[0042] Multimerization can be assayed, for example, using reducing and non-reducing gels,
as demonstrated herein. Multimerization can also be assayed by detection of increased
binding affinity of a protein for its ligand/receptor. BiaCore™ surface plasmon resonance
assays can be used in this regard. These assays detect changes in mass by measuring
changes in reactive index in an aqueous layer close to a sensor chip surface. Any
method known in the art can be used to detect multimerization.
[0043] Linker moieties according to the present disclosure can be comprised of for example
5-100 amino acid residues, 5-75 amino acid residues, 5-50 amino acid residues, 5-25
amino acid residues, 5-20 amino acid residues, 5-15 amino acid residues, 5-10 amino
acid residues, or 5-9 amino acid residues. Examples of useful linkers include: gly
9 (SEQ ID NO: 27), glu
9 (SEQ ID NO: 28), ser
9 (SEQ ID NO: 29), gly
5cyspro
2cys (SEQ ID NO: 30), (gly
4ser)
3 (SEQ ID NO: 31), SerCysValProLeuMetArgCysGlyGlyCysCysAsn (SEQ ID NO: 32), Pro Ser
Cys Val Pro Leu Met Arg Cys Gly Gly Cys Cys Asn (SEQ ID NO: 13), Gly Asp Leu Ile Tyr
Arg Asn Gln Lys (SEQ ID NO: 26), and Gly
9ProSerCysValProLeuMetArgCysGlyGlyCysCysAsn (SEQ ID NO: 34). Other polypeptide linkers
which can be used include a polyglycine of different lengths, including of 5, 7, or
30 residues. Additionally, other portions of Flt-1 can be used as a linker, for example
domain 3 of Flt-1. See SEQ ID NO: 15. Linker moieties can also be made from other
polymers, such as polyethylene glycol. Such linkers can have from 10 to 1000, 10-500,
10-250, 10-100, or 10-50 ethylene glycol monomer units. Suitable polymers should be
of a size similar to the size occupied by the appropriate range of amino acid residues.
A typical sized polymer would provide a spacing of from about 10-25 angstroms.
[0044] Notwithstanding the generality of the foregoing disclosure, however, the present
invention relates to a fusion protein of the formula X-Y-Z, wherein: X comprises the
Ig-like domain 2 of VEGF-R1 but lacks the Ig-like domains 1 and 3 of VEGF-R1, with
said Ig-like domain 2 of VEGF-R1 being covalently linked to moiety Z via moiety Y;
Y consists of a 5 - 25 amino acid residue polypeptide; and Z is a CH3 region of an
IgG heavy chain molecule or an Fc portion of an antibody molecule.
[0045] Fusion proteins according to the present disclosure, including the fusion proteins
of the present invention, can be made by any means known in the art. While such proteins
can be made synthetically, or by linking portions which are made, recombinant production
can also be used. A fused gene sequence can be produced using the standard tools of
recombinant DNA. The fused gene sequence can be inserted into a vector, for example
a viral or plasmid vector, for replicating the fused gene sequence. A promoter sequence
which is functional in the ultimate recipient cell can be introduced upstream of the
fused gene sequence. Promoters used can be constitutive, inducible or repressible.
Examples of each type are well-known in the art. The vector can be introduced into
a host cell or mammal by any means known in the art. Suitable vectors which can be
used include adenovirus, adeno-associated virus, retrovirus, lentivirus, and plasmids.
If the vector is in a viral vector and the vector has been packaged, then the virions
can be used to infect cells. If naked DNA is used, then transfection or transformation
procedures as are appropriate for the particular host cells can be used. Formulations
of naked DNA utilizing polymers, liposomes, or nanospheres can be used for fusion
gene delivery. Cells which can be transformed or transfected with recombinant constructs
according to the invention may be any which are convenient to the artisan. Exemplary
cell types which may be used include bacteria, yeast, insects, and mammalian cells.
Among mammalian cells, cells of many tissue types may be chosen, as is convenient.
Exemplary cells which may be used are fibroblasts, hepatocytes, endothelial cells,
stem cells, hematopoietic cells, epithelial cells, myocytes, neuronal cells, and keratinocytes.
These cells can be used to produce protein
in vitro, or can be delivered to mammals including humans to produce the encoded proteins
in vivo. This means of delivery is an alternative to delivering nucleic acid to a mammal,
delivering viral vector to a mammal, and delivering fusion protein to a mammal.
[0046] Compositions of protein or nucleic acids can be in carriers, such as buffers, aqueous
or lipophilic carriers, sterile or non-sterile, pyrogenic or non-pyrogenic vehicles.
Non-pyrogenic vehicles are useful for injectible formulations. Formulations can be
liquid or solid, for example, lyophilized. Formulations can also be administered as
aerosols. Compositions may contain one or more fusion proteins or one or more nucleic
acids, or both fusion proteins and nucleic acids. The fusion proteins and or nucleic
acids in a composition may be homogeneous, in which case homomultimer proteins will
form, or they may be heterogeneous in the composition, in which case heteromultimer
proteins will form. In the case of heteromultimers, typically the X moiety will vary
between fusion proteins, but the Z moiety will be the same between fusion proteins.
[0047] Fusion proteins can be provided to a cell or mammalian host by any means known in
the art. Protein can be delivered to the cell or host. Nucleic acid can be administered
to the cell or host. Transformed or transfected cells can be administered to the cell
or host. In the latter case, cells of the same genetic background are desired to reduce
transplantation rejection.
[0048] Suitable cells for delivery to mammalian host animals include any mammalian cell
type from any organ, tumor, or cell line. For example, human, murine, goat, ovine,
bovine, dog, cat, and porcine cells can be used. Suitable cell types for use include
without limitation, fibroblasts, hepatocytes, endothelial cells, keratinocytes, hematopoietic
cells, epithelial cells, myocytes, neuronal cells, and stem cells.
[0049] Means of delivery of fusion proteins or nucleic acids encoding fusion proteins include
delivery of cells expressing the fusion proteins, delivery of the fusion proteins,
and delivery of nucleic acids encoding the fusion proteins. Fusion proteins, cells,
or nucleic acids can be delivered directly to the desired organ or tumor, for example
by injection, catheterization, or endoscopy They can also be delivered intravenously,
intrabronchially, intra-tumorally, intrathecally, intramuscularly, intraocularly,
topically, subcutaneously, transdermally or
per os. Patients who can be effectively treated include those with wet age-related macular
degeneration, proliferative diabetic retinopathy, rheumatoid arthritis, osteoarthritis,
uveitis, asthma, and cancer. The treatments will improve symptoms and/or markers of
disease and/or disease severity.
[0050] Nucleic acids can be delivered to mammals, and in particular to humans, in any desired
vector. These include viral or non-viral vectors, including adenovirus vectors, adeno-associated
virus vectors, retrovirus vectors, lentivirus vectors, and plasmid vectors. Exemplary
types of viruses include HSV (herpes simplex virus), adenovirus, AAV (adeno associated
virus), HIV (human immunodeficiency virus), BIV (bovine immunodeficiency virus), and
MLV (murine leukemia virus). Nucleic acids can be administered in any desired format
that provides sufficiently efficient delivery levels, including in virus particles,
in liposomes, in nanoparticles, and complexed to polymers.
[0051] Combinations of protein and nucleic acid treatments can be used. For example, a fusion
protein according to the present disclosure, e.g. a fusion protein according to the
present invention, can be administered to a patient. If a favorable response is observed,
then a nucleic acid molecule encoding the fusion protein can be administered for a
long term effect. Alternatively, the protein and nucleic acid can be administered
simultaneously or approximately simultaneously. In another alternative, an antibody
or fusion protein for a ligand can be administered followed by or concomitantly with
an antibody or fusion partner for a receptor. Another option employs a combination
of nucleic acids in which one encodes an antibody and another encodes a fusion protein.
Some antibodies that can be employed in combination with the Flt-1 constructs of the
present disclosure, e.g. in combination with the Flt-1 constructs of the present invention,
(whether in the protein or nucleic acid form) are bevacizumab and ranibizumab, both
directed to VEGF. These are particularly useful for treating cancer and macular degeneration,
respectively.
[0052] The practice of the present disclosure, including the practice of the present invention,
employs, unless otherwise indicated, conventional techniques of molecular biology
(including recombinant techniques), microbiology, cell biology, biochemistry and immunology,
which are within the skill of the art. Such techniques are explained fully in the
literature, such as,
Molecular Cloning: A Laboratory Manual, Second Edition (Sambrook et al., 1989);
Current Protocols In Molecular Biology (F.M. Ausubel et al., eds., 1987);
Oligonucleotide Synthesis (M.J. Gait, ed., 1984);
Animal Cell Culture (R.I. Freshney, ed., 1987);
Methods In Enzymology (Academic Press, Inc.);
Handbook Of Experimental Immunology (D.M. Wei & C.C. Blackwell, eds.);
Gene Transfer Vectors For Mammalian Cells (J.M. Miller & M.P. Calos, eds., 1987);
PCR: the Polymerase Chain Reaction, (Mullis et al., eds., 1994);
Current Protocols In Immunology (J.E. Coligan et aL, eds., 1991);
Antibodies: A Laboratory Manual (E. Harlow and D. Lane eds. (1988)); and
PCR 2: A Practical Approach (M.J. MacPherson, B.D. Hames and G.R. Taylor eds. (1995)).
[0053] A gene delivery vehicle is any molecule that can carry inserted polynucleotides into
a host cell. Examples of gene delivery vehicles are liposomes, biocompatible polymers,
including natural polymers and synthetic polymers; lipoproteins; polypeptides; polysaccharides;
lipopolysaccharides; artificial viral envelopes; metal particles; and bacteria, viruses,
such as baculovirus, adenovirus and retrovirus, bacteriophage, cosmid, plasmid, fungal
vectors and other recombination vehicles typically used in the art which have been
described for expression in a variety of eukaryotic and prokaryotic hosts, and may
be used for gene therapy as well as for simple protein expression.
[0054] Gene delivery, gene transfer, and the like as used herein, are terms referring to
the introduction of an exogenous polynucleotide (sometimes referred to as a "transgene")
into a host cell, irrespective of the method used for the introduction. Such methods
include a variety of well-known techniques such as vector-mediated gene transfer (by,
e.g., viral infection/transfection, or various other protein-based or lipid-based gene
delivery complexes) as well as techniques facilitating the delivery of "naked" polynucleotides
(such as electroporation, "gene gun" delivery and various other techniques used for
the introduction of polynucleotides). The introduced polynucleotide may be stably
or transiently maintained in the host cell. Stable maintenance typically requires
that the introduced polynucleotide either contains an origin of replication compatible
with the host cell or integrates into a replicon of the host cell such as an extrachromosomal
replicon (
e.g., a plasmid) or a nuclear or mitochondrial chromosome. A number of vectors are known
to be capable of mediating transfer of genes to mammalian cells, as is known in the
art and described herein.
[0055] The exogenous polynucleotide is inserted into a vector such as adenovirus, partially-deleted
adenovirus, fully-deleted adenovirus, adeno-associated virus (AAV), retrovirus, lentivirus,
naked plasmid, plasmid/liposome complex, etc. for delivery to the host via intravenous,
intramuscular, intraportal or other route of administration. Expression vectors which
can be used in the methods and compositions of the present disclosure, e.g. in the
compositions of the present invention, include, for example, viral vectors. One of
the most frequently used methods of administration of gene therapy, both
in vivo and
ex vivo, is the use of viral vectors for delivery of the gene. Many species of virus are
known, and many have been studied for gene therapy purposes. The most commonly used
viral vectors include those derived from adenoviruses, adeno-associated viruses (AAV)
and retroviruses, including lentiviruses, such as human immunodeficiency virus (HIV).
[0056] Adenovirus is a non-enveloped, nuclear DNA virus with a genome of about 36 kb, which
has been well-characterized through studies in classical genetics and molecular biology
(
Hurwitz, M.S., Adenoviruses Virology, 3rd edition, Fields et al., eds., Raven Press,
New York, 1996;
Hitt, M.M. et al., Adenovirus Vectors, The Development of Human Gene Therapy, Friedman,
T. ed., Cold Spring Harbor Laboratory Press, New York 1999). The viral genes are classified into early (designated E1-E4) and late (designated
L1-L5) transcriptional units, referring to the generation of two temporal classes
of viral proteins. The demarcation of these events is viral DNA replication. The human
adenoviruses are divided into numerous serotypes (approximately 47, numbered accordingly
and classified into 6 groups: A, B, C, D, E and F), based upon properties including
hemaglutination of red blood cells, oncogenicity, DNA and protein amino acid compositions
and homologies, and antigenic relationships.
[0057] Recombinant adenoviral vectors have several advantages for use as gene delivery vehicles,
including tropism for both dividing and non-dividing cells, minimal pathogenic potential,
ability to replicate to high titer for preparation of vector stocks, and the potential
to carry large inserts (
Berkner, K.L., Curr. Top. Micro. Immunol. 158:39-66, 1992;
Jolly, D., Cancer Gene Therapy 1:51-64 1994). Adenoviral vectors with deletions of various adenoviral gene sequences, such as
pseudoadenoviral vectors (PAVs) and partially-deleted adenoviral (termed "DeAd"),
have been designed to take advantage of the desirable features of adenovirus which
render it a suitable vehicle for delivery of nucleic acids to recipient cells.
[0058] In particular, pseudoadenoviral vectors (PAVs), also known as 'gutless adenovirus'
or mini-adenoviral vectors, are adenoviral vectors derived from the genome of an adenovirus
that contain minimal
cis-acting nucleotide sequences required for the replication and packaging of the vector
genome and which can contain one or more transgenes (
See, U.S. Patent No. 5,882,877 which covers pseudoadenoviral vectors (PAV) and methods for producing PAV). PAVs
have been designed to take advantage of the desirable features of adenovirus which
render it a suitable vehicle for gene delivery. While adenoviral vectors can generally
carry inserts of up to 8kb in size by the deletion of regions which are dispensable
for viral growth, maximal carrying capacity can be achieved with the use of adenoviral
vectors containing deletions of most viral coding sequences, including PAVs.
See U.S. Patent No. 5,882,877 of Gregory et al.;
Kochanek et al., Proc. Natl. Acad. Sci. USA 93:5731-5736, 1996;
Parks et al., Proc. Natl. Acad. Sci. USA 93:13565-13570, 1996;
Lieber et al., J. Viral. 70:8944-8960, 1996;
Fisher et al., Virology 217:11-22, 1996;
U.S. Patent No. 5,670,488;
PCT Publication No. WO96/33280, published October 24, 1996;
PCT Publication No. WO96/40955, published December 19, 1996;
PCT Publication No. WO97/25446, published July 19, 1997;
PCT Publication No. WO95/29993, published November 9, 1995;
PCT Publication No. WO97/00326, published January 3, 1997;
Morral et al., Hum. Gene Ther. 10:2709-2716,1998. Such PAVs, which can accommodate up to about 36 kb of foreign nucleic acid, are
advantageous because the carrying capacity of the vector is optimized, while the potential
for host immune responses to the vector or the generation of replication-competent
viruses is reduced. PAV vectors contain the 5' inverted terminal repeat (ITR) and
the 3' ITR nucleotide sequences that contain the origin of replication, and the cis-acting
nucleotide sequence required for packaging of the PAV genome, and can accommodate
one or more transgenes with appropriate regulatory elements,
e.g. promoter, enhancers, etc.
[0059] Other, partially deleted adenoviral vectors provide a partially-deleted adenoviral
(termed "DeAd") vector in which the majority of adenoviral early genes required for
virus replication are deleted from the vector and placed within a producer cell chromosome
under the control of a conditional promoter. The deletable adenoviral genes that are
placed in the producer cell may include E1A/E1B, E2, E4 (only ORF6 and ORF6/7 need
be placed into the cell), pIX and pIVa2. E3 may also be deleted from the vector, but
since it is not required for vector production, it can be omitted from the producer
cell. The adenoviral late genes, normally under the control of the major late promoter
(MLP), are present in the vector, but the MLP may be replaced by a conditional promoter.
[0060] Conditional promoters suitable for use in DeAd vectors and producer cell lines include
those with the following characteristics: low basal expression in the uninduced state,
such that cytotoxic or cytostatic adenovirus genes are not expressed at levels harmful
to the cell; and high level expression in the induced state, such that sufficient
amounts of viral proteins are produced to support vector replication and assembly.
Preferred conditional promoters suitable for use in DeAd vectors and producer cell
lines include the dimerizer gene control system, based on the immunosuppressive agents
FK506 and rapamycin, the ecdysone gene control system and the tetracycline gene control
system. Also useful in the present disclosure, including the present invention may
be the GeneSwitch
™ technology (Valentis, Inc., Woodlands, TX) described in
Abruzzese et al., Hum. Gene Ther. 1999 10:1499-507. The partially deleted adenoviral expression system is further described in
WO99/57296.
[0061] Adeno-associated virus (AAV) is a single-stranded human DNA parvovirus whose genome
has a size of 4.6 kb. The AAV genome contains two major genes: the rep gene, which
codes for the rep proteins (Rep 78, Rep 68, Rep 52, and Rep 40) that are involved
in AAV replication, rescue, transcription and integration; and the cap gene, which
codes for the cap proteins that form the AAV viral particle. AAV derives its name
from its dependence on an adenovirus or other helper virus (
e.g., herpesvirus) to supply essential gene products that allow AAV to undergo a productive
infection, i.e., reproduce itself in the host cell. In the absence of helper virus,
AAV integrates as a provirus into the host cell's chromosome, until it is rescued
by superinfection of the host cell with a helper virus, usually adenovirus (
Muzyczka, Curr. Top. Micor. Immunol. 158:97-127,1992).
[0062] Interest in AAV as a gene transfer vector results from several unique features of
its biology. At both ends of the AAV genome is a nucleotide sequence known as an inverted
terminal repeat (ITR), which contains the cis-acting nucleotide sequences required
for virus replication, rescue, packaging and integration. The integration function
of the ITR mediated by the rep protein in trans permits the AAV genome to integrate
into a cellular chromosome after infection, in the absence of helper virus. This unique
property of the virus has relevance to the use of AAV in gene transfer, as it allows
for the integration of a recombinant AAV containing a gene of interest into the cellular
genome. Therefore, stable genetic transformation, ideal for many of the goals of gene
transfer, may be achieved by use of rAAV vectors. Furthermore, the site of integration
for AAV is well-established and has been localized to chromosome 19 of humans (
Kotin et al., Proc. Natl. Acad. Sci. 87:2211-2215, 1990). This predictability of integration site reduces the danger of random insertional
events into the cellular genome that may activate or inactivate host genes or interrupt
coding sequences, consequences that can limit the use of vectors whose integration
of AAV, removal of this gene in the design of rAAV vectors may result in the altered
integration patterns that have been observed with rAAV vectors (
Ponnazhagan et al., Hum Gene Ther. 8:275-284,1997).
[0063] There are other advantages to the use of AAV for gene transfer. The host range of
AAV is broad. Moreover, unlike retroviruses, AAV can infect both quiescent and dividing
cells. In addition, AAV has not been associated with human disease, obviating many
of the concerns that have been raised with retrovirus-derived gene transfer vectors.
[0064] Standard approaches to the generation of recombinant rAAV vectors have required the
coordination of a series of intracellular events: transfection of the host cell with
an rAAV vector genome containing a transgene of interest flanked by the AAV ITR sequences,
transfection of the host cell by a plasmid encoding the genes for the AAV rep and
cap proteins which are required in trans, and infection of the transfected cell with
a helper virus to supply the non-AAV helper functions required in trans (
Muzyczka, N., Curr. Top. Micor. Immunol. 158:97-129, 1992). The adenoviral (or other helper virus) proteins activate transcription of the AAV
rep gene, and the rep proteins then activate transcription of the AAV cap genes. The
cap proteins then utilize the ITR sequences to package the rAAV genome into an rAAV
viral particle. Therefore, the efficiency of packaging is determined, in part, by
the availability of adequate amounts of the structural proteins, as well as the accessibility
of any cis-acting packaging sequences required in the rAAV vector genome.
[0065] Retrovirus vectors are a common tool for gene delivery (
Miller, Nature (1992) 357:455-460). The ability of retrovirus vectors to deliver an unrearranged, single copy gene
into a broad range of rodent, primate and human somatic cells makes retroviral vectors
well suited for transferring genes to a cell.
[0066] Retroviruses are RNA viruses wherein the viral genome is RNA. When a host cell is
infected with a retrovirus, the genomic RNA is reverse transcribed into a DNA intermediate
which is integrated very efficiently into the chromosomal DNA of infected cells. This
integrated DNA intermediate is referred to as a provirus. Transcription of the provirus
and assembly into infectious virus occurs in the presence of an appropriate helper
virus or in a cell line containing appropriate sequences enabling encapsidation without
coincident production of a contaminating helper virus. A helper virus is not required
for the production of the recombinant retrovirus if the sequences for encapsidation
are provided by co-transfection with appropriate vectors.
[0067] The retroviral genome and the proviral DNA have three genes: the gag, the pol, and
the env, which are flanked by two long terminal repeat (LTR) sequences. The gag gene
encodes the internal structural (matrix, capsid, and nucleocapsid) proteins; the po1
gene encodes the RNA-directed DNA polymerase (reverse transcriptase) and the env gene
encodes viral envelope glycoproteins. The 5' and 3' LTRs serve to promote transcription
and polyadenylation of the virion RNAs. The LTR contains all other cis-acting sequences
necessary for viral replication. Lentiviruses have additional genes including vit
vpr, tat, rev, vpu, nef, and vpx (in HIV-1, HIV-2 and/or SIV). Adjacent to the 5'
LTR are sequences necessary for reverse transcription of the genome (the tRNA primer
binding site) and for efficient encapsidation of viral RNA into particles (the Psi
site). If the sequences necessary for encapsidation (or packaging of retroviral RNA
into infectious virions) are missing from the viral genome, the result is a cis defect
which prevents encapsidation of genomic RNA. However, the resulting mutant is still
capable of directing the synthesis of all varion proteins.
[0068] Lentiviruses are complex retroviruses which, in addition to the common retroviral
genes gag, po1 and env, contain other genes with regulatory or structural function.
The higher complexity enables the lentivirus to modulate the life cycle thereof, as
in the course of latent infection. A typical lentivirus is the human immunodeficiency
virus (HIV), the etiologic agent of AIDS.
In vivo, HIV can infect terminally differentiated cells that rarely divide, such as
lymphocytes and macrophages. In vitro, HIV can infect primary cultures of monocyte-derived
macrophages (MDM) as well as HeLa-Cd4 or T lymphoid cells arrested in the cell cycle
by treatment with aphidicolin or gamma irradiation. Infection of cells is dependent
on the active nuclear import of HIV preintegration complexes through the nuclear pores
of the target cells. That occurs by the interaction of multiple, partly redundant,
molecular determinants in the complex with the nuclear import machinery of the target
cell. Identified determinants include a functional nuclear localization signal (NLS)
in the gag matrix (MA) protein, the karyophilic virion-associated protein, vpr, and
a C-terminal phosphotyrosine residue in the gag MA protein. The use of retroviruses
for gene therapy is described, for example, in United States Patent
6,013,516; and
U.S. Patent 5,994,136.
[0069] Other methods for delivery of DNA to cells do not use viruses for delivery. For example,
cationic amphiphilic compounds can be used to deliver the nucleic acid of the present
disclosure, e.g. the nucleic acid of the present invention. Because compounds designed
to facilitate intracellular delivery of biologically active molecules must interact
with both non-polar and polar environments (in or on, for example, the plasma membrane,
tissue fluids, compartments within the cell, and the biologically active molecular
itself), such compounds are designed typically to contain both polar and non-polar
domains. Compounds having both such domains may be termed amphiphiles, and many lipids
and synthetic lipids that have been disclosed for use in facilitating such intracellular
delivery (whether for
in vitro or
in vivo application) meet this definition. One particularly important class of such amphiphiles
is the cationic amphiphiles. In general, cationic amphiphiles have polar groups that
are capable of being positively charged at or around physiological pH, and this property
is understood in the art to be important in defining how the amphiphiles interact
with the many types of biologically active (therapeutic) molecules including, for
example, negatively charged polynucleotides such as DNA.
[0070] The use of compositions comprising cationic amphiphilic compounds for gene delivery
is described, for example, in United States Patent
5,049,386;
US 5,279,833;
US 5,650,096;
US 5,747,471;
US 5,767,099;
US 5,910,487;
US 5,719,131;
US 5,840,710;
US 5,783,565;
US 5,925,628;
US 5,912,239;
US 5,942,634;
US 5,948,925;
US 6,022,874;
U.S. 5,994,317;
U.S. 5,861,397;
U.S. 5,952,916;
U.S. 5,948,767;
U.S. 5,939,401; and
U.S. 5,935,936.
[0071] In addition, nucleic acid of the present disclosure, e.g. nucleic acid of the present
invention, can be delivered using "naked DNA". Methods for delivering a non-infectious,
non-integrating DNA sequence encoding a desired polypeptide or peptide operably linked
to a promoter, free from association with transfection-facilitating proteins, viral
particles, liposomal formulations, charged lipids and calcium phosphate precipitating
agents are described in
U.S. Patent 5,580,859;
U.S. 5,963,622;
U.S. 5,910,488.
[0073] For delivery of DNA and protein to the eye, administration will typically be local.
This has the advantage of limiting the amount of DNA that needs to be administered
and limiting systemic side-effects. Many possible modes of delivery can be used, including,
but not limited to: topical administration on the cornea by a gene gun; subconjunctival
injection, intracameral injection, via eye drops to the cornea, injection into the
anterior chamber via the temporal limbus, intrastromal injection, corneal application
combined with electrical pulses, intracorneal injection, subretinal injection, intravitreal
injection, and intraocular injection. Alternatively cells can be transfected or transduced
ex vivo and delivered by intraocular implantation. See,
Auricchio, Mol. Ther. 6: 490-494, 2002;
Bennett, Nature Med. 2: 649-654, 1996;
Borrás, Experimental Eye Research 76: 643-652, 2003;
Chaum, Survey of Ophthalmology 47: 449-469, 2002;
Campochiaro. Expert Opinions in Biological Therapy 2: 537-544 (2002);
Lai, Gene Therapy 9. 804 813, 2002;
Pleyer, Progress in Retinal and Eye Research, 22: 277-293, 2003.
[0074] The effects of various proposed therapeutic agents and administrations can be tested
in suitable animal models for particular diseases. For example, retinopathy of prematurity
can be tested in an oxygen-induced retinopathy model in the mouse as described in
Smith, Investigative Ophthalmology & Visual Science, 35: 101-111, 1994. Laser-induced choroidal neovascularization in a mouse can be used as a model for
human choroidal neovascularization (CNV), which occurs in diseases such as age-related
macular degeneration.
Tobe, American Journal of Pathology 153: 1641-1646, 1998. Other models of CNV have been developed in primates, rats, minipigs, and rabbits.
Mouse models of age-related macular degeneration have been developed in genetically-deficient
mice. Mice deficient in either monocyte chemoattractant protein-1 or C-C chemokine
receptor-2 develop features of age-related macular degeneration.
Ambati, Nature Med. 9: 1390-1397, 2003.
[0075] While the invention has been described with respect to specific examples including
presently preferred modes of carrying out the invention, those skilled in the art
will appreciate that there are numerous variations and permutations of the above described
systems and techniques that fall within the scope of the appended claims.
EXAMPLES
Example 1
[0076] Two constructs were generated: the first, D2-9Gly-Fc, containing a polyglycine 9-mer
(9Gly) linker and the second, D2-Fc, with the same sequence except the 9Gly linker
(Fig. 1).
[0077] We analyzed the amino acid sequences of D2-9Gly-Fc and D2-Fc proteins using the Protein
Analysis Toolbox of the sequence analysis program Mac Vector 6.5.1. (IBI, New Haven,
CT). The polyglycine 9-mer linker in the D2-9Gly-Fc sequence was identified as a region
with higher than average flexibility by the flexibility prediction method of
Karpus and Schultz (1985) Naturwiss, 72: 212-213. No such region was detected in the D2-Fc sequence (Fig. 1).
Example 2
[0078] We tested an isolated Flt-1 Ig-like domain 2 connected to the IgG1 Fc region by a
flexible polyglycine 9-mer linker (D2-9Gly-Fc). The D2-9Gly-Fc fusion protein is capable
of efficiently binding VEGF and of inhibiting VEGF-dependent human umbilical vein
endothelial cell (HUVEC) proliferation. See Fig. 2. In contrast, when Flt-1 Ig-like
domain 2 is linked directly to the IgG1 heavy chain (Fc) to form D2-Fc, only minimal
VEGF binding was observed. See Fig. 2. Both the dimerization via IgG1 Fc and the insertion
of a flexible linker appear to facilitate VEGF binding to Flt 1 domain 2. The presence
of dimeric forms in both D2-9Gly-Fc and D2-Fc were confirmed by the Western blot analysis.
See Fig. 3.
Example 3
[0080] Cohorts of animals treated with the AAV vectors coding for the anti-angiogenic agents
are compared to cohorts treated with vectors coding for irrelevant transgenes or with
vectors that do not code for a transgene. The average number of endothelial cell nuclei
in each treated eye is compared to each animal's untreated fellow eye.
Example 4
Generation of D2-9Gly-Ex3/CH3
[0081] Domain 2 of Flt-1 has been shown to be essential for VEGF
165 binding. However, it was demonstrated that Flit-1 domain 2 alone was incapable of
binding VEGF A. (Davis-Smyth et al., 1996.) VEGF A, when present as a dimer, binds
to Flt-1 through acidic residues (amino acids 63-67 of the mature protein) that allows
a possible mechanism for ligand-induced dimerization of receptor (Keyt et al., 1996).
[0082] Therefore, a dimerization of domain 2 of Flt-1 was used as a strategy to restore
the binding of domain 2 of Flt-1 to VEGF A. Fusion with a fragment of IgG heavy chain
can be used for dimerization of proteins (Davis-Smyth et al., 1996). Here we demonstrate
that amino acids 75-88 (
i.e., PSCVPLMRCGGCCN; SEQ ID NO: 13) of VEGF A (SEQ ID NO: 12) increase the biological
activity of sFlt-1 hybrid proteins.
[0083] Initially, three hybrid proteins were engineered: D2-9Gly-Fc, D2-Fc and D2-9Gly-Ex3/CH3
(Fig. 4). All three hybrid proteins contain the same Flt-1 domain D2 as D2-9Gly-Fc.
No VEGF binding was observed with D2-Fc, which does not contain the polyglycine 9-mer
(9Gly) linker. The third protein, D2-9Gly-Ex3/CH3, contains the polyglycine 9-mer
(9Gly) linker and the multimerization domain of VEGF (aa PSCVPLMRCGGCCN; SEQ ID NO:
13; VEGF Ex3), but it also contains the CH3 region of human IgG1 heavy chain Fc (aa
371-477 of the SEQ ID NO: 10).
[0084] The protein D2-Fc did not show efficient inhibitory activity in the HUVEC proliferation
assay (Fig. 5) and by implication did not bind to VEGF
165 efficiently. However, the third hybrid protein, D2-9Gly-Ex3/CH3, which comprises
domain 2 of Flt-1 fused to the CH3 region via both the 9Gly linker and the dimerization
region of VEGF165 (Ex 3), did demonstrate inhibitory activity in a VEGF-dependent
HUVECs proliferation assay (Fig. 5). This implies that this hybrid protein binds to
VEGF
165 efficiently.
Example 5
Using linker (Gly4Ser)3 in Flt-1 D2 construct
[0085] The use of several polyglycine linkers has been previously described for improvement
of protein features (Mouz et al., 1996; Qiu et aL, 1998). For the next construct we
have used another type of linker, the 15-mer (Gly-Gly-Gly-Gly-Ser)3 (Huston et aL,
1988). D2-(Gly
4Ser)
3-Fc protein was generated and it contains Flt-1 domain 2, (Gly
4Ser)
3 linker and the Fc region of human IgG1 heavy chain..
[0086] D2-(Gly
4Ser)
3 was further characterized in HUVECs proliferation assay. Biological activity of D2-(Gly
4Ser)
3-Fc as measured by inhibition of HUVEC proliferation was similar to that of D2-9Gly-Fc
and D2-9Gly-Ex3/CH3 (Fig. 6).
[0087] The D2-(Gly
4Ser)
3-Fc construct was further characterized by Western blot and compared to D2-9Gly-Fc
(Fig.9). Both constructs are present mostly in a dimer form and the monomer forms
were detected after separation of reduced samples.
Example 6
Role of 9Gly or VEGF Ex3 in Flt-1 (D2) constructs
[0088] In order to investigate the role of 9Gly linker or VEGF dimerizing sequence Ex3 on
soluble receptor VEGF binding, three other constructs were generated: D2-9Gly-CH3,
D2-CH3 and D2-Ex3/CH3 (Fig. 8). All three constructs were generated and like all the
previous constructs were also put under control of CMV promoter. Their VEGF blocking
activity was assessed in HUVECs proliferation assay (Fig. 9).
[0089] The HUVEC proliferation assay of proteins containg the CH3 region of IgG1 has shown
that D2-9Gly-CH3 (without Ex3) and protein D2-Ex3/CH3 (without 9Gly linker) had similar
VEGF blocking potency as compared to the parental D2-9Gly-Ex3/CH3 protein. However,
protein D2-CH3 appeared to be the weakest VEGF inhibitor from all of them (Fig. 9).
[0090] The Flt-1 ELISA data of conditioned media from transfected 293 cells has shown similar
Flt 1 levels for D2-9Gly-Ex3/CH3, D2-9Gly-CH3 and D2-Ex3/CH3 and D2-CH3 (70-90 ng/ml)
and a little higher (∼150 ng/ml) for the least active form of D2-CH3. Western blot
of D2-9Gly-CH3 and D2-CH3 constructs (Fig.10) is showing a prevalence of dimer forms
in non-reduced conditions.
Example 7
D2-9Gly-Fc binds VEGF better than all constructs
[0091] VEGF binding assay allows us to compare the relative VEGF binding affinities of our
soluble VEGF receptors in a cell free system.
[0092] Briefly, conditioned media containing known concentrations of soluble receptor (ranging
in concentrations from 0.29 - 150 pM) were serially diluted and mixed with 10 pM VEGF.
The amount of unbound VEGF was then measured by ELISA. D2-9Gly-Fc binds VEGF with
higher affinity at receptor concentrations from 0.001 to ∼ 0.2 pM than all other constructs.
D2-CH3 has the lowest affinity to bind VEGF (Fig. 11).
References
[0093]
Davis-Smyth, et al., EMBO J., 15, 1996, 4919
Huston, J. S., et al. (1991) Methods Enzymol. 203, 46-88
Huston, J. S., et al. (1988) Proc. Natl. Acad. Sci. USA, 85, 5879-5883.
Johnson, S., et al. (1991) Methods Enzymol. 203, 88-98
Karpus, P. A., et al. (1985) Naturwiss., 72, 212-213.
Keyt, B. A., et al. (1996) J. BioL Chem. 271: 5638 - 5646.
Kortt, A. A., et al. (1997) Protein Engng, 10, 423-433.
Lee, Y-L., et al. (1998) Human Gene Therapy, 9, 457-465
Mouz N., et al. (1996) Proc. Natl Acad Sci. USA, 93, 9414-9419.
Nielsen, et al. (1997) Protein Eng., 10, 1
Qiu, H., et al. (1998) J. BioL Chem. 273: 11173 -11176.
Table of sequences
| SEQ ID NO |
Clone Name |
Length |
Type |
| 1 |
FLT1D29GLYFC |
1077 |
DNA |
| 2 |
FLT1D29GLYFC |
358 |
Protein |
| 3 |
FLT1D2DEL9GLYFC |
1050 |
DNA |
| 4 |
FLT1D2DEL9GLYFC |
349 |
Protein |
| 5 |
FLT1D29GLYEX3 |
426 |
DNA |
| 6 |
FLT1D29GLYEX3 |
141 |
Protein |
| 7 |
FLTlD29GLYEX3CH3 |
744 |
DNA |
| 8 |
FLT1D29GLYEX3CH3 |
247 |
Protein |
| 9 |
IGg1 HEAVY |
1434 |
DNA |
| 10 |
IgG1 HEAVY |
477 |
Protein |
| 11 |
VEGF |
648 |
DNA |
| 12 |
VEGF |
215 |
Protein |
| 13 |
VEGF exon 3 (EX3) |
14 |
Protein |
| 14 |
FLT-1 |
5777 |
DNA |
| 15 |
FLT-1 |
1338 |
Protein |
| 16 |
KDR |
5830 |
DNA |
| 17 |
KDR |
1356 |
Protein |
| 18 |
D2-CH3 |
675 |
DNA |
| 19 |
D2-CH3 |
224 |
Protein |
| 20 |
D2-EX3-CH3 |
717 |
DNA |
| 21 |
D2-EX3-CH3 |
238 |
Protein |
| 22 |
D2-9GLY-CH3 |
702 |
DNA |
| 23 |
D2-9GLY-CH3 |
233 |
Protein |
| 24 |
D2(G4S)3-FC |
1095 |
DNA |
| 25 |
D2(G4S)3-FC |
364 |
Protein |
| 26 |
random linker |
9 |
Protein |
| 27 |
linker |
9 |
Protein |
| 28 |
linker |
9 |
Protein |
| 29 |
linker |
9 |
Protein |
| 30 |
linker |
9 |
Protein |
| 31 |
linker |
7 |
Protein |
| |
linker |
13 |
Protein |
| |
linker |
9 |
Protein |
| |
linker |
23 |
Protein |
SEQUENCE LISTING
[0094]
<110> Scaria, Abraham
Pechan, Peter
Wadsworth, Samuel
<120> MULTIMERIC CONSTRUCTS
<130> 003482.00025
<150> 60/658209
<151> 2005-03-04
<150> 60/608887
<151> 2004-09-13
<160> 34
<170> FastSEQ for Windows version 4.0
<210> 1
<211> 1077
<212> DNA
<213> Artificial sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 1

<210> 2
<211> 358
<212> PRT
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 2


<210> 3
<211> 1050
<212> DNA
<213> Artificial sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 3


<210> 4
<211> 349
<212> PRT
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 4


<210> 5
<211> 426
<212> DNA
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 5

<210> 6
<211> 141
<212> PRT
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 6

<210> 7
<211> 744
<212> DNA
<213> Artificial Sequence
<220> .
<223> Recombinant fusion protein or sequence encoding same
<400> 7


<210> 8
<211> 247
<212> PRT
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 8

<210> 9
<211> 1434
<212> DNA
<213> Homo sapiens
<400> 9


<210> 10
<211> 477
<212> PRT
<213> Homo sapiens
<400> 10


<210> 11
<211> 648
<212> DNA
<213> Homo sapiens
<400> 11

<210> 12
<211> 215
<212> PRT
<213> Homo sapiens
<400> 12


<210> 13
<211> 14
<212> PRT
<213> Homo sapiens
<400> 13

<210> 14
<211> 5777
<212> DNA
<213> Homo sapiens
<400> 14



<210> 15
<211> 1338
<212> PRT
<213> Homo sapiens
<220>
<221> DOMAIN
<222> (235)...(336)
<223> domain 3
<400> 15



<210> 16
<211> 5830
<212> DNA
<213> Homo sapiens
<400> 16


<210> 17
<211> 1356
<212> PRT
<213> Homo sapiens
<400> 17




<210> 18
<211> 675
<212> DNA
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 18

<210> 19
<211> 224
<212> PRT
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 19

<210> 20
<211> 717
<212> DNA
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 20

<210> 21
<211> 238
<212> PRT
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 21


<210> 22
<211> 702
<212> DNA
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 22

<210> 23
<211> 233
<212> PRT
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 23

<210> 24
<211> 1095
<212> DNA
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 24

<210> 25
<211> 364
<212> PRT
<213> Artificial Sequence
<220>
<223> Recombinant fusion protein or sequence encoding same
<400> 25

<210> 26
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> linker of fusion protein
<400> 26

<210> 27
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> linker moiety for fusion proteins
<400> 27

<210> 28
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> linker moiety for fusion proteins
<400> 28

<210> 29
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> linker moiety for fusion proteins
<400> 29

<210> 30
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> linker moiety for fusion proteins
<400> 30

<210> 31
<211> 7
<212> PRT
<213> Artificial sequence
<220>
<223> linker moiety for fusion proteins
<400> 31

<210> 32
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> linker moiety for fusion proteins
<400> 32

<210> 33
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> linker moiety for fusion proteins
<400> 33

<210> 34
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> linker moiety for fusion proteins
<400> 34

1. A fusion protein of the formula X-Y-Z, wherein:
X comprises the Ig-like domain 2 of VEGF-R1 but lacks the Ig-like domains 1 and 3 of VEGF-R1,
with said Ig-like domain 2 of VEGF-R1 being covalently linked to moiety Z via moiety
Y; and
Y consists of a 5 - 25 amino acid residue polypeptide; and
Z is a CH3 region of an IgG heavy chain molecule or an Fc portion of an antibody molecule.
2. The fusion protein of claim 1, wherein X is the Ig-like domain 2 of VEGF-R1 (FLT-1).
3. The fusion protein of claim 1, wherein the polypeptide Y is flexible.
4. The fusion protein of claim 1, wherein the polypeptide Y is selected from the group
consisting of gly9 (SEQ ID NO: 27), glu9 (SEQ ID NO: 28), ser9 (SEQ ID NO: 29), gly5cyspro2cys (SEQ ID NO: 30), (gly4ser)3 (SEQ ID NO: 31), SerCysValProLeuMetArgCysGlyGlyCysCysAsn (SEQ ID NO: 32), Pro Ser
Cys Val Pro Leu Met Arg Cys Gly Gly Cys Cys Asn (SEQ ID NO: 13), Gly-Asp-Leu-Ile-Tyr-Arg-Asn-Gln-Lys(SEQ
ID NO:26), and Gly9ProSerCysValProLeuMetArgCysGlyGlyCysCysAsn (SEQ ID NO: 34).
5. The fusion protein of claim 1, wherein Z is an IgG1 CH3 region.
6. The fusion protein of claim 1, wherein Z is an IgG2 CH3 region.
7. The fusion protein of claim 1, wherein the Fc is an IgG Fc.
8. The fusion protein of claim 7, wherein the IgG Fc is IgG1 Fc.
9. A composition comprising the fusion protein of any preceding claim which further comprises
one or more pharmaceutically acceptable excipients or carriers.
10. The composition of claim 9, wherein said composition is a liquid formulation.
11. The composition of claim 9, wherein said composition is a lyophilized formulation.
12. A composition comprising one or more fusion proteins of any one of claims 1 - 8, wherein
said composition comprises multimers of said fusion proteins.
13. The composition of claim 12, wherein said composition consists essentially of a single
species of fusion protein which forms homomultimers.
14. The composition of claim 12, wherein said composition consists essentially of fusion
proteins, wherein the X moiety in said fusion proteins in the composition are heterogeneous.
15. The composition of claim 12, which further comprises one or more pharmaceutically
acceptable excipients or carriers.
16. The compositions of claim 15, wherein said composition is a liquid formulation.
17. The composition of claim 15, wherein said composition is a lyophilized formulation.
18. A method of multimerizing a polypeptide X, the method comprising:
linking a polypeptide X to a polypeptide Z via a polypeptide Y to form polypeptide
XYZ, wherein:
X comprises the Ig-like domain 2 of VEGF-R1 but lacks the Ig-like domains 1 and 3 of VEGF-R1,
with said Ig-like domain 2 of VEGF-R1 being covalently linked to polypeptide Z via
polypeptide Y;
Y consists of a 5 - 25 amino acid residue polypeptide; and
Z is a CH3 region of an IgG heavy chain molecule or an Fc portion of an antibody molecule;
whereby polypeptide XYZ multimerizes.
19. The method of claim 18, wherein the step of linking comprises constructing a nucleic
acid molecule which encodes each of X, Y, and Z as a single open reading frame, wherein
said polypeptide XYZ is expressed from the nucleic acid construct in a host cell.
20. The method of claim 18, wherein X is the Ig-like domain 2 of VEGF-R1 (FIt-1).
21. A nucleic acid molecule which encodes a fusion protein according to claim 1.
22. A nucleic acid molecule according to claim 21, wherein Z is an Fc portion of an antibody
molecule.
23. The nucleic acid of claim 21 or 22, wherein X is the Ig-like domain 2 of VEGF-R1 (FIt-1).
24. The nucleic acid of claim 23, wherein the fusion protein comprises a sequence selected
from the group consisting of SEQ ID NO: 8, 21, and 23.
25. The nucleic acid of claim 23, wherein the fusion protein comprises a sequence selected
from the group consisting of SEQ ID NO: 2 and 25.
26. The fusion protein of claim 1, wherein X is the Ig-like domain 2 of VEGF-R1 (Flt1)
and the fusion protein comprises a sequence selected from the group consisting of
SEQ ID NO: 8, 21, and 23.
27. The fusion protein of claim 1, wherein X is the Ig-like domain 2 of VEGF-R1 (Flt-1)
and the fusion protein comprises a sequence selected from the group consisting of
SEQ ID NO: 2 and 25.
28. A mammalian cell which comprises the nucleic acid of any one of claims 21 - 25.
29. The mammalian cell of claim 28 which is a human cell.
30. The mammalian cell of claim 29 which is selected from the group consisting of a fibroblast,
a hepatocyte, an endothelial cell, a keratinocyte, a hematopoietic cell, a synoviocyte,
an epithelial cell, a retinal cell and a stem cell.
31. An
in vitro method comprising:
delivering the nucleic acid of any one of claims 21 - 25 to an isolated mammalian
cell to form a cell which expresses said fusion protein.
32. The method of claim 31, wherein the fusion protein comprises a sequence selected from
the group consisting of SEQ ID NO: 2, 8, 21, 23, and 25.
33. The method of claim 31 or 32 further comprising:
using the cell which expresses said fusion protein for the manufacture of a composition
for delivery to a mammal.
34. The mammalian cell of any one of claims 28-30, for use in treating a mammal
35. The nucleic acid of any one of claims 21-25, for use in treating a mammal, whereby
said fusion protein is expressed in the mammal.
36. The nucleic acid of claim 35 wherein the fusion protein comprises a sequence selected
from the group consisting of SEQ ID NO: 2, 8, 21, 23, and 25.
37. The mammalian cell of claim 34, or the nucleic acid of claim 35, wherein the mammal
has wet age-related macular degeneration or proliferative diabetic retinopathy.
38. The mammalian cell of claim 34, or the nucleic acid of claim 35, wherein the mammal
has cancer.
39. The mammalian cell of claim 34, or the nucleic acid of claim 35, wherein the mammal
has rheumatoid arthritis.
40. The mammalian cell of claim 34, or the nucleic acid of claim 35, wherein the mammal
has asthma.
41. The mammalian cell of claim 34, or the nucleic acid of claim 35, wherein the mammal
has osteoarthritis.
42. The fusion protein of any one of claims 1 - 8, for use in treating a mammal.
43. The fusion protein of claim 42, wherein the mammal has wet age-related macular degeneration
or proliferative diabetic retinopathy.
44. The fusion protein of claim 42, wherein the mammal has cancer.
45. The fusion protein of claim 42, wherein the mammal has rheumatoid arthritis.
46. The fusion protein of claim 42, wherein the mammal has asthma.
47. The fusion protein of claim 42, wherein the mammal has osteoarthritis.
48. The fusion protein of claim 42, wherein the the fusion protein comprises a sequence
selected from the group consisting of SEQ ID NO: 2, 8, 21, 23, and 25.
49. A vector which comprises the nucleic acid of any one of claims 21-25.
50. The vector of claim 49, wherein the vector is a viral vector that is selected from
the group consisting of an adenovirus vector, an adeno-associated virus vector, a
retrovirus vector, and a lentivirus vector.
51. The vector of claim 50, wherein the vector is an adeno-associated virus vector.
52. The vector of any one of claims 49-51, for use in treating a mammal.
53. The vector of claim 52, wherein the mammal has wet age-related macular degeneration
or proliferative diabetic retinopathy.
54. The vector of claim 52, wherein the mammal has cancer.
55. The vector of claim 52, wherein the mammal has rheumatoid arthritis.
56. The vector of claim 52, wherein the mammal has asthma.
57. The vector of claim 52, wherein the mammal has osteoarthritis.
1. Fusionsprotein der Formel X-Y-Z, wobei:
X die Ig-ähnliche Domäne 2 von VEGF-R1 umfasst, aber nicht die Ig-ähnlichen Domänen
1 und 3 von VEGF-R1 enthält, wobei die Ig-ähnliche Domäne 2 von VEGF-R1 kovalent an
die Einheit Z über die Einheit Y gebunden ist; und
Y aus einem 5 bis 25 Aminosäurerest-Polypeptid besteht; und
Z eine CH3-Region eines IgG-Schwere-Kette-Moleküls oder ein Fc-Teil eines Antikörpermoleküls
ist.
2. Fusionsprotein nach Anspruch 1, wobei X die Ig-ähnliche Domäne 2 von VEGF-R1 (FLT-1)
ist.
3. Fusionsprotein nach Anspruch 1, wobei das Polypeptid Y flexibel ist.
4. Fusionsprotein nach Anspruch 1, wobei das Polypeptid Y aus der Gruppe ausgewählt ist,
welche aus gly9 (SEQ ID Nr.: 27), glu9 (SEQ ID Nr.: 28), ser9 (SEQ ID Nr.: 29), gly5scyspro2cys (SEQ ID Nr.: 30), (gly4ser)3 (SEQ ID Nr.: 31), SerCysValProLeuMetArgCysGlyGlyCysCysAsn (SEQ ID Nr.: 32), Pro Ser
Cys Val Pro Leu Met Arg Cys Gly Gly Cys Cys Asn (SEQ ID Nr.: 13), Gly-Asp-Leu-Ile-Tyr-Arg-Asn-Gln-Lys
(SEQ ID Nr.: 26) und Gly9ProSerCysValProLeuMetArgCysGlyGlyCysCysAsn (SEQ ID Nr.: 34) besteht.
5. Fusionsprotein nach Anspruch 1, wobei Z eine IgG1-CH3-Region ist.
6. Fusionsprotein nach Anspruch 1, wobei Z eine IgG2-CH3-Region ist.
7. Fusionsprotein nach Anspruch 1, wobei das Fc ein IgG-Fc ist.
8. Fusionsprotein nach Anspruch 7, wobei das IgG-Fc IgG1-Fc ist.
9. Zusammensetzung, umfassend das Fusionsprotein nach einem vorhergehenden Anspruch,
welche ferner einen oder mehrere pharmazeutisch verträgliche Exzipienten oder Träger
umfasst.
10. Zusammensetzung nach Anspruch 9, wobei die Zusammensetzung eine flüssige Formulierung
ist.
11. Zusammensetzung nach Anspruch 9, wobei die Zusammensetzung eine lyophilisierte Formulierung
ist.
12. Zusammensetzung, umfassend ein oder mehrere Fusionsproteine nach einem der Ansprüche
1 bis 8, wobei die Zusammensetzung Multimere der Fusionsproteine umfasst.
13. Die Zusammensetzung nach Anspruch 12, wobei die Zusammensetzung im Wesentlichen aus
einer einzigen Spezies von Fusionsprotein, welche Homomultimere bildet, besteht.
14. Zusammensetzung nach Anspruch 12, wobei die Zusammensetzung im Wesentlichen aus Fusionsproteinen
besteht, wobei die Einheit X in den Fusionsproteinen in der Zusammensetzung heterogen
ist.
15. Zusammensetzung nach Anspruch 12, welche ferner einen oder mehrere pharmazeutisch
verträgliche Exzipienten oder Träger umfasst.
16. Zusammensetzung nach Anspruch 15, wobei die Zusammensetzung eine flüssige Formulierung
ist.
17. Zusammensetzung nach Anspruch 15, wobei die Zusammensetzung eine lyophilisierte Formulierung
ist.
18. Verfahren zur Multimerisierung eines Polypeptids X, wobei das Verfahren umfasst:
das Binden eines Polypeptids X an ein Polypeptid Z über ein Polypeptid Y, um ein Polypeptid
XYZ zu bilden, wobei:
X die Ig-ähnliche Domäne 2 von VEGF-R1 umfasst, aber nicht die Ig-ähnlichen Domänen
1 und 3 von VEGF-R1 enthält, wobei die Ig-ähnliche Domäne 2 von VEGF-R1 kovalent an
das Polypeptid Z über das Polypeptid Y gebunden ist;
Y aus einem 5 bis 25 Aminosäurerest-Polypeptid besteht; und
Z eine CH3-Region eines IgG-Schwere-Kette-Moleküls oder ein Fc-Teil eines Antikörpermoleküls
ist;
wobei das Polypeptid XYZ multimerisiert.
19. Verfahren nach Anspruch 18, wobei der Schritt des Bindens das Aufbauen eines Nukleinsäuremoleküls
umfasst, das jedes von X, Y und Z als einen einzelnen offenen Leserahmen kodiert,
wobei das Polypeptid XYZ von dem Nukleinsäurekonstrukt in einer Wirtzelle exprimiert
wird.
20. Verfahren nach Anspruch 18, wobei X die Ig-ähnliche Domäne 2 von VEGF-R1 (Flt-1) ist.
21. Nukleinsäuremolekül, welches ein Fusionsprotein gemäß Anspruch 1 kodiert.
22. Nukleinsäuremolekül gemäß Anspruch 21, wobei Z ein Fc-Teil eines Antikörpermoleküls
ist.
23. Nukleinsäure nach Anspruch 21 oder 22, wobei X die Ig-ähnliche Domäne 2 von VEGF-R1
(Flt-1) ist.
24. Nukleinsäure nach Anspruch 23, wobei das Fusionsprotein eine Sequenz umfasst, welche
aus der Gruppe ausgewählt ist, die aus SEQ ID Nr.: 8, 21 und 23 besteht.
25. Nukleinsäure nach Anspruch 23, wobei das Fusionsprotein eine Sequenz umfasst, welche
aus der Gruppe ausgewählt ist, die aus SEQ ID Nr.: 2 und 25 besteht.
26. Fusionsprotein nach Anspruch 1, wobei X die Ig-ähnliche Domäne 2 von VEGF-R1 (Flt-1)
ist und das Fusionsprotein eine Sequenz umfasst, welche aus der Gruppe ausgewählt
ist, die aus SEQ ID Nr.: 8, 21 und 23 besteht.
27. Fusionsprotein nach Anspruch 1, wobei X die Ig-ähnliche Domäne 2 von VEGF-R1 (Flt-1)
ist und das Fusionsprotein eine Sequenz umfasst, welche aus der Gruppe ausgewählt
ist, die aus SEQ ID Nr.: 2 und 25 besteht.
28. Säugerzelle, welche die Nukleinsäure nach einem der Ansprüche 21 bis 25 umfasst.
29. Säugerzelle nach Anspruch 28, welche eine humane Zelle ist.
30. Säugerzelle nach Anspruch 29, welche aus der Gruppe ausgewählt ist, die aus einem
Fibroblast, einem Hepatozyten, einer Endothelzelle, einem Keratinozyten, einer hämopoetischen
Zelle, einem Synoviozyten, einer Epithelzelle, einer Retinazelle und einer Stammzelle
besteht.
31. In vitro-Verfahren, umfassend:
Zuführen der Nukleinsäure nach einem der Ansprüche 21 bis 25 zu einer isolierten Säugerzelle,
um eine Zelle zu bilden, welche das Fusionsprotein exprimiert.
32. Verfahren nach Anspruch 31, wobei das Fusionsprotein eine Sequenz umfasst, welche
aus der Gruppe ausgewählt ist, die aus SEQ ID Nr.: 2, 8, 21, 23 und 25 besteht.
33. Verfahren nach Anspruch 31 oder 32, ferner umfassend:
das Verwenden der Zelle, welche das Fusionsprotein exprimiert, zur Herstellung einer
Zusammensetzung zum Zuführen zu einem Säuger.
34. Säugerzelle nach einem der Ansprüche 28 bis 30 zur Verwendung in der Behandlung eines
Säugers.
35. Nukleinsäure nach einem der Ansprüche 21 bis 25 zur Verwendung in der Behandlung eines
Säugers, wobei das Fusionsprotein in dem Säuger exprimiert wird.
36. Nukleinsäure nach Anspruch 35, wobei das Fusionsprotein eine Sequenz umfasst, welche
aus der Gruppe ausgewählt ist, die aus SEQ ID Nr.: 2, 8, 21, 23 und 25 besteht.
37. Säugerzelle nach Anspruch 34 oder Nukleinsäure nach Anspruch 35, wobei der Säuger
eine mit dem Alter in Zusammenhang stehende feuchte Makuladegeneration oder Retinopathia
diabetica haemorrhagica proliferans aufweist.
38. Säugerzelle nach Anspruch 34 oder Nukleinsäure nach Anspruch 35, wobei der Säuger
Krebs hat.
39. Säugerzelle nach Anspruch 34 oder Nukleinsäure nach Anspruch 35, wobei der Säuger
rheumatoide Arthritis aufweist.
40. Säugerzelle nach Anspruch 34 oder Nukleinsäure nach Anspruch 35, wobei der Säuger
Asthma hat.
41. Säugerzelle nach Anspruch 34 oder Nukleinsäure nach Anspruch 35, wobei der Säuger
Osteoarthritis aufweist.
42. Fusionsprotein nach einem der Ansprüche 1 bis 8 zur Verwendung in der Behandlung eines
Säugers.
43. Fusionsprotein nach Anspruch 42, wobei der Säuger eine mit dem Alter in Zusammenhang
stehende feuchte Makuladegeneration oder Retinopathia diabetica haemorrhagica proliferans
aufweist.
44. Fusionsprotein nach Anspruch 42, wobei der Säuger Krebs hat.
45. Fusionsprotein nach Anspruch 42, wobei der Säuger rheumatoide Arthritis aufweist.
46. Fusionsprotein nach Anspruch 42, wobei der Säuger Asthma hat.
47. Fusionsprotein nach Anspruch 42, wobei der Säuger Osteoarthritis aufweist.
48. Fusionsprotein nach Anspruch 42, wobei das Fusionsprotein eine Sequenz umfasst, welche
aus der Gruppe ausgewählt ist, die aus SEQ ID Nr.: 2, 8, 21, 23 und 25 besteht.
49. Vektor, welcher die Nukleinsäure nach einem der Ansprüche 21 bis 25 umfasst.
50. Vektor nach Anspruch 49, wobei der Vektor ein viraler Vektor ist, welcher aus der
Gruppe ausgewählt ist, die aus einem Adenovirusvektor, einem Adeno-assoziierten Virusvektor,
einem Retrovirusvektor und einem Lentivirusvektor besteht.
51. Vektor nach Anspruch 50, wobei der Vektor ein Adeno-assoziierter Virusvektor ist.
52. Vektor nach einem der Ansprüche 49 bis 51 zur Verwendung in der Behandlung eines Säugers.
53. Vektor nach Anspruch 52, wobei der Säuger eine mit dem Alter in Zusammenhang stehende
feuchte Makuladegeneration oder Retinopathia diabetica haemorrhagica proliferans aufweist.
54. Vektor nach Anspruch 52, wobei der Säuger Krebs hat.
55. Vektor nach Anspruch 52, wobei der Säuger rheumatoide Arthritis aufweist.
56. Vektor nach Anspruch 52, wobei der Säuger Asthma hat.
57. Der Vektor nach Anspruch 52, wobei der Säuger Osteoarthritis aufweist.
1. Protéine de fusion de formule X-Y-Z, dans laquelle :
X comprend le domaine 2 de type Ig du VEGF-R1 mais ne possède pas les domaines 1 et
3 de type Ig du VEGF-R1, avec ledit domaine 2 de type Ig du VEGF-R1 étant lié de manière
covalente à la fraction Z via la fraction Y ;
et
Y est constitué par un polypeptide de 5 à 25 résidus d'acides aminés ; et
Z est une région CH3 d'une molécule de chaîne lourde d'IgG ou une partie Fc d'une
molécule d'anticorps.
2. Protéine de fusion selon la revendication 1, dans laquelle X est le domaine 2 de type
Ig du VEGF-R1 (FLT-1).
3. Protéine de fusion selon la revendication 1, dans laquelle le polypeptide Y est flexible.
4. Protéine de fusion selon la revendication 1, dans laquelle le polypeptide Y est choisi
dans le groupe constitué par gly9 (SEQ ID NO : 27), glu9 (SEQ ID NO : 28), ser9 (SEQ ID NO : 29), gly5cyspro2cys (SEQ ID NO : 30), (gly4ser)3 (SEQ ID NO : 31), SerCysValProLeuMetArgCysGlyGlyCysCysAsn (SEQ ID NO : 32), Pro Ser
Cys Val Pro Leu Met Arg Cys Gly Gly Cys Cys Asn (SEQ ID NO : 13), Gly-Asp-Leu-Ile-Tyr-Arg-Asn-Gln-Lys
(SEQ ID NO : 26), et Gly9ProSerCysValProLeuMetArgCysGlyGlyCysCysAsn (SEQ ID NO : 34).
5. Protéine de fusion selon la revendication 1, dans laquelle Z est une région CH3 d'une
IgG1.
6. Protéine de fusion selon la revendication 1, dans laquelle Z est une région CH3 d'une
IgG2.
7. Protéine de fusion selon la revendication 1, dans laquelle le Fc est un Fc d'une IgG.
8. Protéine de fusion selon la revendication 7, dans laquelle le Fc de l'IgG est un Fc
d'IgG1.
9. Composition comprenant la protéine de fusion selon l'une quelconque des revendications
précédentes, qui comprend en outre un ou plusieurs excipients ou vecteurs pharmaceutiquement
acceptables.
10. Composition selon la revendication 9, ladite composition étant une formulation liquide.
11. Composition selon la revendication 9, ladite composition étant une formulation lyophilisée.
12. Composition comprenant une ou plusieurs protéines de fusion selon l'une quelconque
des revendications 1 à 8, ladite composition comprenant des multimères desdites protéines
de fusion.
13. Composition selon la revendication 12, ladite composition étant essentiellement constituée
par une espèce unique de protéine de fusion qui forme des homomultimères.
14. Composition selon la revendication 12, ladite composition étant essentiellement constituée
par des protéines de fusion, la fraction X dans lesdites protéines de fusion dans
la composition étant hétérogène.
15. Composition selon la revendication 12, qui comprend en outre un ou plusieurs excipients
ou vecteurs pharmaceutiquement acceptables.
16. Composition selon la revendication 15, ladite composition étant une formulation liquide.
17. Composition selon la revendication 15, ladite composition étant une formulation lyophilisée.
18. Procédé de multimérisation d'un polypeptide X, le procédé comprenant :
la liaison d'un polypeptide X à un polypeptide Z via un polypeptide Y pour former
un polypeptide XYZ, dans lequel :
X comprend le domaine 2 de type Ig du VEGF-R1 mais ne possède pas les domaines 1 et
3 de type Ig du VEGF-R1, avec ledit domaine 2 de type Ig du VEGF-R1 étant lié de manière
covalente à la fraction Z via la fraction Y ;
Y est constitué par un polypeptide de 5 à 25 résidus d'acides aminés ; et
Z est une région CH3 d'une molécule de chaîne lourde d'IgG ou une partie Fc d'une
molécule d'anticorps,
moyennant quoi le polypeptide XYZ se multimérise.
19. Procédé selon la revendication 18, dans lequel l'étape de liaison comprend la construction
d'une molécule d'acide nucléique qui code pour chacun de X, Y et Z comme un cadre
de lecture ouvert unique, ledit polypeptide XYZ étant exprimé par la construction
d'acide nucléique dans une cellule hôte.
20. Procédé selon la revendication 18, dans lequel X est le domaine 2 de type Ig du VEGF-1
(Flt-1).
21. Molécule d'acide nucléique qui code pour une protéine de fusion selon la revendication
1.
22. Molécule d'acide nucléique selon la revendication 21, dans laquelle Z est une partie
Fc d'une molécule d'anticorps.
23. Acide nucléique selon la revendication 21 ou 22, dans lequel X est le domaine 2 de
type Ig du VEGF-R1 (Flt-1).
24. Acide nucléique selon la revendication 23, dans lequel la protéine de fusion comprend
une séquence choisie dans le groupe constitué par SEQ ID NO : 8, 21 et 23.
25. Acide nucléique selon la revendication 23, dans lequel la protéine de fusion comprend
une séquence choisie dans le groupe constitué par SEQ ID NO : 2 et 25.
26. Protéine de fusion selon la revendication 1, dans laquelle X est le domaine 2 de type
Ig du VEGF-R1 (Flt-1) et la protéine de fusion comprend une séquence choisie dans
le groupe constitué par SEQ ID NO 8, 21 et 23.
27. Protéine de fusion selon la revendication 1, dans laquelle X est le domaine 2 de type
Ig du VEGF-R1 (Flt-1) et la protéine de fusion comprend une séquence choisie dans
le groupe constitué par SEQ ID NO : 2 et 25.
28. Cellule de mammifère qui comprend l'acide nucléique selon l'une quelconque des revendications
21 à 25.
29. Cellule de mammifère selon la revendication 28, qui est une cellule humaine.
30. Cellule de mammifère selon la revendication 29, qui est choisie dans le groupe constitué
par un fibroblaste, un hépatocyte, une cellule endothéliale, un kératinocyte, une
cellule hématopoïétique, un synoviocyte, une cellule épithéliale, une cellule rétinienne
et une cellule souche.
31. Procédé
in vitro qui comprend :
la délivrance de l'acide nucléique selon l'une quelconque des revendications 21 à
25 à une cellule de mammifère isolée pour former une cellule qui exprime ladite protéine
de fusion.
32. Procédé selon la revendication 31, dans lequel la protéine de fusion comprend une
séquence choisie dans le groupe constitué par SEQ ID NO : 2, 8, 21, 23 et 25.
33. Procédé selon la revendication 31 ou 32, qui comprend en outre :
l'utilisation de la cellule qui exprime ladite protéine de fusion pour la fabrication
d'une composition destinée à être délivrée à un mammifère.
34. Cellule de mammifère selon l'une quelconque des revendications 28 à 30, destinée à
être utilisée pour traiter un mammifère.
35. Acide nucléique selon l'une quelconque des revendications 21 à 25, destiné à être
utilisé pour traiter un mammifère, moyennant quoi ladite protéine de fusion est exprimée
chez ledit mammifère.
36. Acide nucléique selon la revendication 35, dans lequel la protéine de fusion comprend
une séquence choisie dans le groupe constitué par SEQ ID NO : 2, 8, 21, 23 et 25.
37. Cellule de mammifère selon la revendication 34 ou acide nucléique selon la revendication
35, le mammifère présentant une dégénérescence maculaire liée à l'âge humide ou une
rétinopathie diabétique proliférative.
38. Cellule de mammifère selon la revendication 34 ou acide nucléique selon la revendication
35, le mammifère ayant le cancer.
39. Cellule de mammifère selon la revendication 34 ou acide nucléique selon la revendication
35, le mammifère souffrant de polyarthrite rhumatoïde.
40. Cellule de mammifère selon la revendication 34 ou acide nucléique selon la revendication
35, le mammifère souffrant d'asthme.
41. Cellule de mammifère selon la revendication 34 ou acide nucléique selon la revendication
35, le mammifère souffrant d'ostéoarthrite.
42. Protéine de fusion selon l'une quelconque des revendications 1 à 8, destinée à être
utilisée dans le traitement d'un mammifère.
43. Protéine de fusion selon la revendication 42, le mammifère présentant une dégénérescence
maculaire liée à l'âge humide ou une rétinopathie diabétique proliférative.
44. Protéine de fusion selon la revendication 42, le mammifère ayant le cancer.
45. Protéine de fusion selon la revendication 42, le mammifère souffrant de polyarthrite
rhumatoïde.
46. Protéine de fusion selon la revendication 42, le mammifère souffrant d'asthme.
47. Protéine de fusion selon la revendication 42, le mammifère souffrant d'ostéoarthrite.
48. Protéine de fusion selon la revendication 42, la protéine de fusion comprenant une
séquence choisie dans le groupe constitué par SEQ ID NO : 2, 8, 21, 23 et 25.
49. Vecteur qui comprend l'acide nucléique selon l'une quelconque des revendications 21
à 25.
50. Vecteur selon la revendication 49, dans lequel le vecteur est un vecteur viral qui
est choisi dans le groupe constitué par un vecteur adénoviral, un vecteur de virus
adéno-associé, un vecteur rétroviral, et un vecteur lentiviral.
51. Vecteur selon la revendication 50, dans lequel le vecteur est un vecteur de virus
adéno-associé.
52. Vecteur selon l'une quelconque des revendications 49 à 51, destiné à être utilisé
pour traiter un mammifère.
53. Vecteur selon la revendication 52, le mammifère présentant une dégénérescence maculaire
liée à l'âge humide ou une rétinopathie diabétique proliférative.
54. Vecteur selon la revendication 52, le mammifère ayant le cancer.
55. Vecteur selon la revendication 52, le mammifère souffrant de polyarthrite rhumatoïde.
56. Vecteur selon la revendication 52, le mammifère souffrant d'asthme.
57. Vecteur selon la revendication 52, le mammifère souffrant d'ostéoarthrite.