EP 1 808 936 A1 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

18.07.2007 Bulletin 2007/29

(51) Int Cl.:

H01R 13/24 (2006.01)

H01R 12/16 (2006.01)

(21) Application number: 06100412.3

(22) Date of filing: 16.01.2006

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Designated Extension States:

AL BA HR MK YU

(71) Applicant: Lih Duo International Co., Ltd. Wu Gu Shiang, Taipei Hsien (TW)

(72) Inventor: Wang, Sung-Lai Wu Gu Shiang, Taipei Hsien (CN)

(74) Representative: Beck, Michael Rudolf et al

Beck & Rössig

European Patent Attorneys

Cuvilliésstrasse 14

81679 München (DE)

(54)Rubber spring connector

A rubber spring connector (20) can be extended and repeated use in electrical connection with electric components, which has an insulating flexible silicone rubber layer (21) embedded with a conductive spring matrix (25) composed of a group of conductive spring modules in longitudinal and latitudinal matrix arrangement.

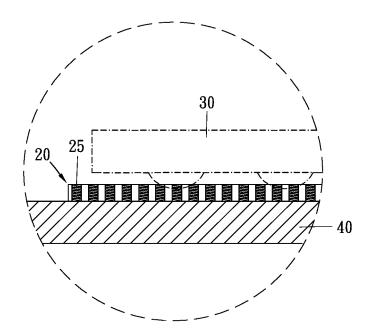


Fig.

10

20

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to a rubber spring connector, more particularly to a rubber connector having a conductive spring matrix.

1

2. Description of the Prior Art

[0002] As illustrated in Fig. 1, the prior used rubber connector 10 comprises a group of fine-interval gold-plated conductive wires arranged as a conductive wire matrix 15 and embedded in an insulating flexible silicone rubber layer 11. Each gold-plated conductive wire in the conductive wire matrix 15 projected a few micrometers out of the top and bottom of the flexible silicone rubber layer 11 of the rubber connector 10.

[0003] The rubber connector 10 has such distinguished functions as high conductivity, resistant to high and low heat, resistant to aging process and easy for machining, which industrial application is manufactured as a conductive contact pads capably applied in electrical connection for any keystroke of computer keyboards, telephone, remote control unit or mobile phone etc. or applied in IC test purposes.

[0004] Therefore, the prior used rubber connector 10 is actually an electrical connecting device for the purpose of enabling an isolated or obstructed circuit be electrically connected as an entire current circuit to have the circuit be capable of developing its anticipated performance only by current flowed into the circuit via the conductive wire matrix 15 of rubber connector 10.

[0005] For example, the rubber connector 10 as shown in Fig. 3 is used as a bridge for electrical connection which enables the electronic component 30 and the printed circuit board 40 become in electrical connection to develop anticipated performance or functions derived from in connection with the electronic component 30 and the printed circuit board 40.

[0006] However, each gold-plated conductive wire in the conductive wire matrix 15 of the prior used rubber connector 10 is quite delicate and sophisticated, but with its flexibility being not enough. Although the conductive wire matrix 15 is embedded in and protected by the insulating flexible silicone rubber layer 11, once the flexible silicone rubber layer 11 is subjected to impact or collision pressure, each gold-plated conductive wire in the conductive wire matrix 15 could easily be dislocated or bent, resulting in poor flexibility.

[0007] Therefore, the shortcoming of such prior used rubber connector 10 is the vulnerability of gold-plated conductive wire which, even protected by the insulating flexible silicone rubber layer 11, could easily be dislocated and bent. For avoiding deformation to the gold-plated copper wires, the user should be very careful to ensure

consistent pressure forced on the flexible silicone rubber layer 11 of the rubber connector 10. After extended and repeated use of such prior used rubber connector 10, the electrical connection provided from the rubber connectors shall be inconsistent or distorted due to the gold-plated conductive wires of the rubber connector being deformed in use.

SUMMARY OF THE INVENTION

[0008] The primary objective of this invention is to provide a rubber spring connector having an insulating flexible silicone rubber layer embedded with a conductive spring matrix composed of conductive spring modules in longitudinal and latitudinal matrix arrangement. When the insulating flexible silicone rubber layer of the rubber spring connector is subjected to impact or colliding pressure, the flexible buffer effect of the conductive spring module shall prevent dislocation or bending.

[0009] Due to conductive spring module provided with better flexibility, the rubber spring connector of the present invention has the characteristic of extended and repeated use.

[0010] Particularly, when in actual use, even when the flexible silicone rubber layer of rubber spring connector of the invention is subjected to inconsistent pressure, the conductive spring module of the rubber spring connector by itself flexibility and resiliency will perform compensation and enable the rubber spring connector of the invention provide with a reliable and consistent electrical connection.

BRIEF DESCRIPTION OF THE DRAWINGS

³⁵ [0011]

40

45

50

55

Fig. 1 is an enlarged view of a prior used rubber connector.

Fig. 2 is an enlarged view of a rubber spring connector of the present invention showing the rubber spring connector installed with conductive spring matrix.

Fig. 3 is a schematic view of the prior used rubber connector shown in Fig. 1 in practical operation status.

Fig. 4 is a schematic view of the rubber spring connector of the present invention shown in Fig. 2 in practical operation status.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0012] As shown in Fig. 2, a rubber spring connector 20 of the present invention has an insulating flexible silicone rubber layer 21 already embedded with a conductive spring matrix 25 composed of a group of conductive spring modules arranged in longitudinal and latitudinal matrix arrangement, and each conductive spring module in the conductive spring matrix 25 is slightly projected about a few micrometers from the top and bottom of the

20

40

45

flexible silicone rubber layer 21.

[0013] The rubber spring connector 20 of the present invention serves as a functional connector which enables an isolated or obstructed circuit be connected as an entire current circuit to have current flowed into the circuit via the conductive spring matrix 25 of the rubber spring connector 20.

[0014] In particular, when the insulating flexible silicone rubber layer 21 of the rubber spring connector 20 is impacted by an outside force or collision, each conductive spring module in the conductive spring matrix 25 of the rubber spring connector 20 provide a buffer effect to absorb the outside force or collision by compressed distortion and to resume their original position by elastic extension once the outside impact or collision has disappeared.

[0015] Therefore, each conductive spring module in the conductive spring matrix 25 of the rubber spring connector 20 will not be dislocated or bent by an outside force or collision, and will be capable of maintaining their original performance after extended and repeated use. [0016] As shown in Fig. 4, when the rubber spring connector 20 of the invention is used as a connector between an electronic component 30 and a printed circuit board 40, and if it exists inconsistent pressure being applied on different parts of the flexible silicone rubber layer 21 of the rubber spring connector 20, even resulting in the flexible silicone rubber layer 21 of rubber spring connector 20 is in failure of completely close contact between the electronic component 30 or the printed circuit board 40, some minute extension or compression effect derived from the related conductive spring modules of the rubber connector 20 is capable of performing compensation, particularly enabling a firm contact between the conductive spring matrix 25 of the rubber spring connector 20 and the circuit contact points of the electronic component 30 or the printed circuit board 40, thereby achieving proper and consistent electrical connection, and enabling anticipated performance in connection with the electronic component 30 and the printed circuit board 40.

[0017] The contents disclosed above relate to a preferred embodiment of the present invention. It is to be understood that all equivalent modifications, variations, improvement or changes that are easily made by skillful people in the trade and without departing from the spirit of the above contents and drawings should be included in the subject claim.

Claims 50

 A rubber spring connector (20) comprising an insulating flexible silicone rubber layer (21) embedded with a conductive spring matrix (25) composed of a group of conductive spring modules in longitudinal and latitudinal matrix arrangement.

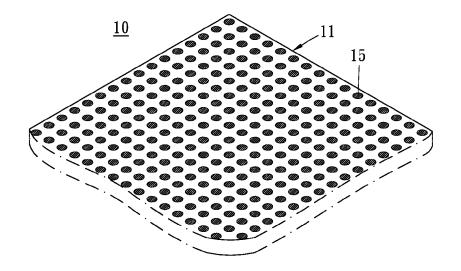


Fig. 1

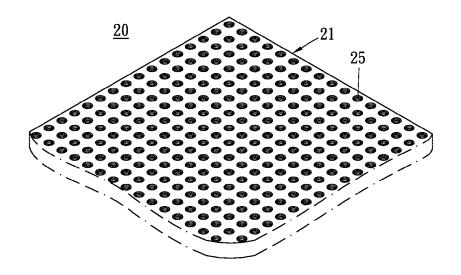


Fig. 2

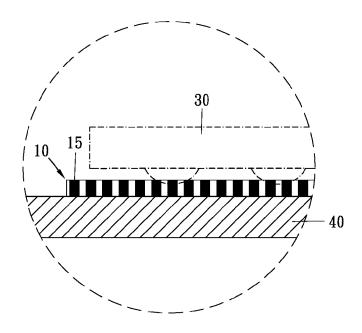


Fig. 3

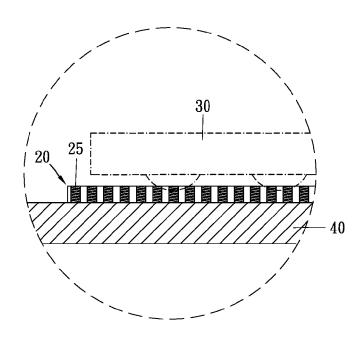


Fig. 4

EUROPEAN SEARCH REPORT

Application Number EP 06 10 0412

	DOCUMENTS CONSID	ERED TO BE RELEVANT]	
Category	Citation of document with in	ndication, where appropriate,	Relevant	CLASSIFICATION OF THE	
X	CO., LTD) 28 Septem	'AMAICHI ELECTRONICS nber 1994 (1994-09-28) n 2 - page 8, paragraph	to claim	INV. H01R13/24 H01R12/16	
Х	AGILENT TECHNOLOGIE 7 January 1999 (199		1		
А	US 6 247 938 B1 (RA 19 June 2001 (2001- * abstract; figure	06-19)	1		
A	US 6 854 985 B1 (WE 15 February 2005 (2 * paragraph [0060];	2005-02-15)	1		
A	US 2005/101167 A1 (12 May 2005 (2005-6) * paragraph [0024];	WEISS ROGER E ET AL) 05-12) 15 figure 1 *	1	TECHNICAL FIELDS SEARCHED (IPC)	
	The present search report has	been drawn up for all claims	-		
	Place of search	Date of completion of the search		Examiner	
	The Hague	15 June 2006	Jin	nénez, J	
X : parti Y : parti docu A : tech O : non	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with anotiment of the same category nological background written disclosure mediate document	T : theory or principle E : earlier patent doc after the filing dat her D : document cited in L : document cited fo	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons &: member of the same patent family, corresponding		

EPO FORM 1503 03.82 (P04C01) **N**

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 06 10 0412

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15-06-2006

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB 2276502 A	28-09-1994	JP 6260234 A JP 7123057 B	16-09-1994 25-12-1995
EP 0889678 A	07-01-1999	JP 3111054 B2 JP 11040227 A US 6183272 B1	20-11-2000 12-02-1999 06-02-2001
US 6247938 B1	19-06-2001	AU 7281698 A DE 69807463 D1 DE 69807463 T2 EP 0980594 A1 JP 2001524256 T WO 9850985 A1	27-11-1998 02-10-2002 15-05-2003 23-02-2000 27-11-2001 12-11-1998
US 6854985 B1	15-02-2005	NONE	
US 2005101167 A1	12-05-2005	US 2004127071 A1	01-07-2004

FORM P0459

© For more details about this annex : see Official Journal of the European Patent Office, No. 12/82