

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

EP 1 813 440 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
01.08.2007 Bulletin 2007/31

(51) Int Cl.:
B42D 15/00 (2006.01)

(21) Application number: **06001669.8**

(22) Date of filing: **27.01.2006**

(84) Designated Contracting States:
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI
SK TR**
Designated Extension States:
AL BA HR MK YU

(71) Applicant: **European Central Bank
60311 Frankfurt am Main (DE)**

(72) Inventors:

- Gore, Jonathan G.**
QinetiQ Cody Technology Park
Hampshire, GU14 0LX (GB)
- Eaton, Stuart J.**
QinetiQ Cody Technology Park
Hampshire, GU14 0LX (GB)

(74) Representative: **Luderschmidt, Schüler & Partner
Patentanwälte,
John-F.-Kennedy-Strasse 4
65189 Wiesbaden (DE)**

(54) **Electronic security means for security documents using a linear dynamo for power generation**

(57) Security document comprising substrate means and at least one electronic security means (2), characterized in that said security document also comprises at least one coil (3) electrically connected to said electronic security means and at least one magnetic means (4). The security document can be manufactured by providing said coil, said magnetic means and said electronic

security means on said substrate means. It is particularly useful for checking its authenticity, wherein said magnetic means is moved across the surface of said coil and a status change of said electronic security means is observed.

Description

BACKGROUND OF THE INVENTION

1. Field of the invention

[0001] The present invention relates to electronic security means for security documents such as banknotes, passports, chequebooks, etc, and more preferably to electronic security means comprising display means (such as liquid crystals, or microencapsulated electronic ink) to provide a visible display change when a voltage is generated in a coil located on said security document by electromagnetic induction.

2. Description of the Related Art

[0002] The use of self-authenticating security features for producing documents serves for protecting them against unauthorized reproduction by forgers. This is necessary, in particular, for securities such as banknotes, checks, traveller's checks, stocks, etc. There is also a need for securing papers which do not have a direct monetary value, such as identification papers, passports etc., against unauthorized copying.

[0003] In particular, in the case of securities, which are circulated daily, for example, banknotes, a forger may succeed in copying the optically recorded document contents, for example, the optical printed image of the banknotes, in a deceptively precise way. A protection against this is the authenticity feature contained in the safety paper, used for producing the documents, as a result of the structure imparted to the safety paper during manufacture which authenticity feature supposedly practically cannot be copied by a forger with the means available to him. Moreover, the application of watermarks or the introduction of a safety thread into the paper is known. These conventional measures, however, can no longer be considered satisfactory in view of the advances of the working means employed by forgers. In particular, in the case of global political crisis regions the war-conducting groups or even entire countries employ forgery as warfare. Accordingly, the resources employed for forgery are correspondingly great.

[0004] EP 1 431 062 suggests security documents comprising substrate means, on board-electrical power supply means, such as photovoltaic cells, and electronic security means using said on-board power supply means. However the security feature cannot be activated by the user of the feature, if necessary. In addition a security feature of that kind is limited by the capacity of the power supply means and/or the availability of the corresponding power generating source.

[0005] CN 1 184 303 describes an anti-counterfeiting feature that consists of power source, controller and driver circuit and panel display. The display is produced by means of semiconductor technology and fine processing and is said to be difficult to counterfeit. However the use

of semiconductor technology and the necessity for a display controller and driver circuit will limit the size, flexibility and durability of this device.

[0006] WO 01/69523 A1 discloses a sheet or a strip that is made of paper or a support material similar to paper, e.g. a bank note, wherein an electronic circuit made of organic semiconductor material is printed thereon or laminated therein. The electronic circuit can have a flat spiral or can be connected to the metallic strip of a bank note by means of a printed conductor. Thereby said flat spiral or said strip should act as an antenna for receiving and/or transmitting signals. However, the use of a magnetic means in order generate a voltage in said coil is neither disclosed nor suggested in WO 01/69523 A1.

SUMMARY OF THE INVENTION

[0007] The main objective of the present invention is to provide a more flexible and reliable overt security feature for secured documents that can be authenticated by a member of the general public, and which has improved forgery-proof properties.

[0008] In addition the security feature shall be highly flexible, comparable small in thickness and highly durable.

[0009] In carrying out these and other objects of the present invention, there is provided a security document comprising substrate means and at least one electronic security means, wherein said security document also comprises at least one coil electrically connected to said electronic security means and at least one magnetic means. Thereby a highly flexible and reliable overt security feature for secured documents is made available that can be authenticated by a member of the general public in a very simple way, and which has improved forgery-proof properties.

[0010] In particular, the security feature of the document can be activated by the user in a comparatively simple way, e.g. by moving said magnetic means across the surface of said coil. This results in the generation of small amounts of electrical power that operate the electronic security means and display the security feature.

[0011] One particular advantage of the concept of the present invention is that no electrical circuitry, which will limit the thickness, robustness, durability and flexibility of the secure document, is required to interface between the coil and the display.

[0012] In addition, the present invention overcomes the size, flexibility and durability limitations of conventional electro-optic displays, electrical power sources and electrical interconnects. The security document of the present invention is extremely thin. Furthermore the security document of the present invention exhibits a very high flexibility, and a very high durability.

[0013] Especially suitable variations of the security document of the present invention are described in the dependent products claims.

[0014] The process claims describes particularly suitable methods for the manufacture of the security document of the present invention and the use claims refer to particularly favourable ways of using the security document of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015]

FIG. 1 is a plan view illustrating a preferred embodiment of the security document of the present invention.

FIG. 2 is a perspective view (with the thickness of the components greatly enhanced) illustrating a preferred way of using the security document of the present invention.

FIG. 3 is an example voltage profile as a magnetic means is swiped past the coil of the security document of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0016] The following is a detailed description of the present invention. It provides a security document comprising substrate means and at least one electronic security means. The term "security document", as used herein refers to all kind of documents that contain at least one feature that can be used to prevent counterfeiting by providing authentication, identification or classification of the document. In particular, they include banknotes, passports, chequebooks, identity cards, credit cards and/or debit cards.

[0017] According to the present invention the security document also comprises at least one coil. Thereby the term "coil" refers to a metallic or conductive wire wound circularly or spirally and comprising a series of at least two loops.

[0018] In principle, the coil can be made of any material known in the art. However, the use materials having a resistivity ρ of less than $10^6 \Omega \cdot \text{cm}$, very preferably of less than $10^2 \Omega \cdot \text{cm}$, when measured at 25°C , is particularly favourable. Especially suitable materials enclose copper, silver, gold, platinum, tin.

[0019] In a very preferred embodiment of the present invention, the coil has a planar coil pattern, preferably in the form of a spiral. A spiral is a curve which turns around some central point or axis, getting progressively closer to or farther from it, depending on which way one follows the curve. A two-dimensional spiral may be described using polar coordinates by saying that the radius r is a continuous monotonic function of θ .

[0020] The coil preferably comprises at least 10 turns, more preferably at least 100 turns, and most preferably at least 1000 turns.

[0021] According to one especially preferred embodiment of the invention the security document comprises at least two coils electrically connected in series to increase the voltage output.

[0022] In another especially preferred embodiment of the present invention the security document comprises at least two coils electrically connected in parallel.

[0023] In still another preferred embodiment the coil comprises a magnetic backing layer. Particularly suitable materials in that context include those mentioned with respect to the magnetic means.

[0024] According to the present invention the coil is electrically connected to said electronic security means. Thereby the term "electrical connection" refers to a connection of both ends of said coil via a material preferably having a resistivity ρ of less than $10^6 \Omega \cdot \text{cm}$, very preferably of less than $10^2 \Omega \cdot \text{cm}$, when measured at 25°C . By the way of contrast two articles will be "electrically isolated one from another" if there is no electrical connection between said articles, in particular via a material having a resistivity ρ of less than $10^6 \Omega \cdot \text{cm}$, when measured at 25°C .

[0025] The connection of the coil to the electronic security means is preferably achieved via one or more electrically conducting tracks. Thereby the electrically conducting tracks can be made of any electrically conducting material, but the use of copper tracks has proven of particular advantage.

[0026] The security document of the present invention also comprises at least one magnetic means. Magnetic means are well known in the art and refer to materials, which exert an attractive or repulsive (magnetic) force on other materials. Some well-known materials that exhibit easily detectable magnetic properties are iron, some steels, and the mineral lodestone.

[0027] Magnetic forces are fundamental forces that arise due to the movement of electrical charge. Maxwell's equations describe the origin and behaviour of the fields that govern these forces. Thus, magnetism is seen whenever electrically charged particles are in motion. This can arise either from movement of electrons in an electric current, resulting in "electromagnetism", or from the quantum-mechanical orbital motion and spin of electrons, resulting in what are known as "permanent magnets".

[0028] The physical cause of the magnetism of objects, as distinct from electrical currents, is the atomic magnetic dipole. Magnetic dipoles, or magnetic moments, result on the atomic scale from the two kinds of movement of electrons. The first is the orbital motion of the electron around the nucleus; this motion can be considered as a current loop, resulting in an orbital dipole magnetic moment along the axis of the nucleus. The second, much stronger, source of electronic magnetic moment is due to a quantum mechanical property called the spin dipole magnetic moment.

[0029] The overall magnetic moment of the atom is the net sum of all of the magnetic moments of the individual electrons. Because of the tendency of magnetic dipoles

to oppose each other to reduce the net energy, in an atom the opposing magnetic moments of some pairs of electrons cancel each other, both in orbital motion and in spin magnetic moments. Thus, in the case of an atom with a completely filled electron shell or sub shell, the magnetic moments normally completely cancel each other out and only atoms with partially-filled electron shells have a magnetic moment, whose strength depends on the number of unpaired electrons.

[0030] The differences in configuration of the electrons in various elements thus determine the nature and magnitude of the atomic magnetic moments, which in turn determine the differing magnetic properties of various materials. In the present invention, the magnetic behaviour preferably results from Diamagnetism, Paramagnetism, Molecular magnetism, Ferromagnetism, Antiferromagnetism, Ferrimagnetism, Metamagnetism, Spin glass and/or Superparamagnetism.

[0031] Particularly suitable magnetic means include

- Magnetic metallic elements, which, due to their unpaired electron spins, are magnetic when found in their natural states, as ores. Iron ore (magnetite or lodestone), cobalt, and nickel, as well the rare earth metals gadolinium and dysprosium (when at a very low temperature) are particularly preferred; and wherein the use of iron ore (magnetite or lodestone), cobalt, and/or nickel has proven best.
- Ceramic or ferrite magnetic means, which are made of a sintered composite of powdered iron oxide and barium/strontium carbonate ceramic.
- Alnico magnetic means, which are made by casting or sintering a combination of aluminium, nickel and cobalt with iron and small amounts of other elements added to enhance the properties of the magnetic means. Sintering offers superior mechanical characteristics, whereas casting delivers higher magnetic fields and allows for the design of intricate shapes.
- Injection moulded magnets, which are a composite of various types of resin and magnetic powders, allowing parts of complex shapes to be manufactured by injection moulding.
- Flexible magnets which are similar to injection moulded magnets, using a flexible resin or binder such as vinyl, and produced in flat strips or sheets.
- Rare earth (lanthanide) magnets, which have a partially occupied f electron shell (which can accommodate up to 14 electrons.)
- Samarium cobalt magnets, which are highly resistant to oxidation, with higher magnetic strength and temperature resistance than alnico or ceramic materials.
- Neodymium iron boron (NdFeB) magnets, which have the highest magnetic field strength. Use of protective surface treatments such as gold, nickel, zinc and tin plating and epoxy resin coating can provide corrosion and thermal protection where required. Nd₂Fe₁₄B is particularly favoured in that context.

[0032] In the present invention, ferromagnetic materials are especially preferred. Particularly suitable ferromagnetic materials include Co, Fe, FeOFe₂O₃, NiOFe₂O₃, CuOFe₂O₃, MgOFe₂O₃, MnBi, Ni, MnSb, MnOFe₂O₃, Y₃Fe₅O₁₂, CrO₂, MnAs, Gd, Dy and/or EuO, wherein materials having a Curie temperature, the temperature above which they cease to be ferromagnetic, above 20°C, more preferably above 100°C, most preferably above 250°C are particularly favoured.

[0033] In another preferred embodiment the magnetic means comprise at least one Heusler alloy, i. e. a ferromagnetic metal alloy whose constituents are not themselves ferromagnetic in their pure forms.

[0034] Furthermore the use of amorphous (non-crystalline) ferromagnetic metallic alloys has proven of particular advantage, that are preferably obtained by very rapid quenching (cooling) of a liquid alloy, such as a transition metal-metalloid alloy, made from about 80% transition metal (usually Fe, Co, or Ni) and a metalloid component (B, C, Si, P, or Al) that lowers the melting point. Another example of such an amorphous alloy is Fe80B20 (Metglas 2605), which has a Curie temperature of 647 K and a room-temperature (300 K) saturation magnetization of 125.7 milliteslas (1257 gauss), compared with

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 98

Holland, 1980;

- "Nanofoam makes magnetic debut" Physics World 17 (5), 3, May 2004;
- "Heusler alloy" Encyclopedia Britannica Online, retrieved Jan. 23, 2005;
- F. Heusler, W. Stark, and E. Haupt Verh. der Phys. Ges. 5, 219, 1903;
- Griffiths, David J. Introduction to Electrodynamics (3rd ed.), Prentice Hall, 1998;
- Tipler, Paul Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics (5th ed.), W. H. Freeman 2004; the content of which is incorporated herein by reference.

[0039] The coil and/or the magnetic means may be impregnated and over-coated with a soft, flexible polymer material to both enhance robustness and flexibility and provide a protective layer.

[0040] The size of the coil and the magnet and the coil are suitably selected in a way that when the magnetic means is moved across the surface of the coil (gap: 1 mm; velocity of the movement magnetic means/coil: 0.5 m/s) the voltage generated is preferably at least 0.1 V, more preferably at least 0.5 V, and in particular at least 1.0 V.

[0041] In one especially preferred embodiment of the present invention at least one coil and at least one magnetic means are provided on the same side of the security document.

[0042] In another preferred embodiment of the present invention the security document comprises one or more means for storing the energy generated by moving the magnetic means across the surface of the coil. In this way the magnetic means can be moved across the surface of the coil several times in order to build up enough electrical energy that can then be used to subsequently activate an electronic security means that may require higher voltage and power levels than can be achieved through a single pass.

[0043] In a further preferred embodiment of the present invention the security document comprises a transformer to step-up the voltage from low levels to higher levels.

[0044] However, the use of means for storing the energy and/or the use of transformers significantly add to the complexity of the concept and are therefore limited to particular fields of application.

[0045] The electronic security means of the security document is not particularly limited and can be any known in the art. However, it is particular advantageous that the security means is an overt security feature, when activated. The term "overt feature", as used herein refers to a feature can be simply verified by a member of the general public using just the feature itself, and with no requirement for additional apparatus. Features in which the feature can only be read by special machine apparatus are so-called "covert features" which are not preferred for the purposes of the present invention.

[0046] In addition, the electronic security means is

preferably a low power display means having an electric power consumption of preferably 1 mW or less, and in particular of 10^{-5} W or less.

[0047] Particularly suitable electronic security means for the purposes of the present invention include electrophoretic ink display means, liquid crystal display means and/or polymer light emitting diodes, wherein electrophoretic ink display means, and liquid crystal display means are especially favoured.

[0048] The kind of the substrate means used in the present invention is not critical. However the use of substrate means comprising paper, plastic, polymer, elemental metallic foils, metallic alloy foils and/or synthetic paper is preferred.

[0049] The security document of the present invention is comparatively thin and its thickness is preferably smaller than 100 μm . In one especially preferred embodiment, the overall thickness of the coil, not including the substrate thickness, is between approximately 10 to 50 μm .

[0050] The overall thickness of the magnetic means, not including the substrate thickness, is between preferably 10 to 50 μm . The thickness of the interconnects between the power source and the display is preferably within the range from approximately 1 to 30 μm . The thickness of

[0051] the electronic security means, not including the substrate means, depends on the kind of security means actually used, but is preferably in the range from 25 to 300 μm .

[0052] Methods for the production of a security document of the present invention are obvious to the skilled person. The substrate means is preferably provided with the coil, the magnetic means and the electronic security means, wherein all components, including the electronic security means, may be provided simultaneously onto a common substrate. Alternatively, for substrates that are

[0053] not compatible with the manufacturing techniques required for the electronic security means, the coil and the magnetic means and the interconnects may be provided onto the substrate before or after, preferably before the display assembly is attached to the substrate. In this latter case, electrical connection will be made by ensuring that exposed printed contact pads on the substrate align with contact pads on the electronic security means.

[0054] The coil and/or the magnet means may be deposited by a variety of methods including sol-gel, spray pyrolysis, hot wall pyrolysis, flash evaporation, vacuum sputtering, chemical vapour deposition, printing, laser scribing, electroless deposition technique, electroplating and electrochemical deposition. The deposition technique that is considered to be most suitable for the intended application is printing, wherein offset printing, flat bed screen printing, rotary screen printing, tampo, flexo printing, gravure and/or inkjet printing are particularly preferred.

[0055] The offset printing works by transferring an ink onto an imaged metal cylinder, which is then passed over a water roller. The ink repels the water, keeping the image on the cylinder sharp. This is then transferred onto an offset cylinder and then onto the substrate.

[0053] Particularly preferred cylinders are made by a lithographic process. The process is preferably reel-to-reel but can also be sheet fed.

[0054] Screen-printing is a process in which a high viscosity ink is squeezed by a squeegee blade through a patterned mesh onto a substrate to form an image.

[0055] Preferred screen printing meshes are made from PET or Nylon although steel is also usable. The screens are made by painting the entire mesh with a UV-curable polymer. The required artwork is then printed onto a film as an opaque image. This is placed over the mesh as a mask and the whole screen is exposed to UV light. Where the paint is exposed to the UV it cross-links and hardens, filling the holes in the mesh. The ink behind the mask, which has not been exposed, is then washed out, leaving the image on the screen.

[0056] The resolution of the image is governed by the cross-sectional area and profile of the mesh, the blade pressure and the particulate loading of the ink.

[0057] Screen printing inks can vary from those used for graphics, which have a nanometre-size pigment dispersion, to those containing 10 micron plus silver flake. To achieve a high resolution image a large pigment size must be avoided to prevent the mesh filtering the ink.

[0058] The profile of the mesh in conjunction with the blade pressure governs the thickness of deposit for a given ink. If too high a profile is used, the thickness of ink deposited can be too great, which can cause the ink to slump, thereby reducing the image quality.

[0059] Rotary screen-printing is essentially the reel-to-reel version of flatbed screen-printing with the image being produced on a patterned cylindrical mesh rather than a flat mesh.

[0060] In the tampo process, an image is produced on a rubber stamp onto which ink is transferred. The image is then printed onto the substrate. The material the stamp is made from dictates the resolution of the printed image. Engraved metal plates can be used but preferably a stamp is made from a photo-imageable rubber compound.

[0061] In the flexo printing the image is created in the same way as for the tampo process, but the difference is that it is wrapped around a metal cylinder to act as a roller. Ink is transferred to it by means of a second roller and then onto the substrate.

[0062] Like flexo printing, gravure is another high-speed reel-to-reel process. It is used instead of the flexo process when high volumes of high-resolution images are required. In the gravure process a steel cylinder is etched to produce the image roller.

[0063] The term inkjet printing is broadly used to describe any digitally-controlled printer, although it originated from the first piezo-electric driven inkjet heads.

[0064] In a piezo-electric head a voltage is applied to a piezoelectric material, which surrounds a compressible ink chamber, firing the ink out of the chamber nozzle. When the voltage is removed, the ink chamber relaxes, drawing more ink into the chamber from a reservoir to

refill it.

[0065] Bubble-jet technology is similar to the piezo-electric inkjet, the difference being that the bubble-jet uses heat to expand the ink and fire it out of nozzle.

[0066] In continuous inkjet printing the ink is pumped continuously through the printer under pressure. The ink is electrically charged and as it is fired, the flight of droplet is controlled electro-statically.

[0067] Laser scribing can be used for scribing extremely fine features. The process uses a laser to cut away copper to form an image, this is known as ablation. The cut produced by the laser leaves a jagged edge behind it as well as debris from the ablation process.

[0068] However, the use of other methods is also contemplated as falling within the scope of the present invention.

[0069] For checking authenticity of the security document of the present invention the magnetic means is preferably moved across the surface of the coil and a status change of the electronic security means is observed. Thereby a voltage is generated in the coil that operates the electronic security means.

[0070] The gap between the surface of the coil and the magnetic means is preferably as low as possible, particularly smaller than 5 mm, more preferably smaller than 2 mm, even more preferably smaller than 1 mm, and most preferably within the range of 0.01 mm to 0.5 mm.

[0071] The velocity of the movement of the magnetic means parallel to the surface of the coil is preferably at least 0.1 m/s, very preferably at least 0.5 m/s, most preferably at least 1 m/s.

[0072] Furthermore it has proven of particular advantage to repeatedly move the magnetic means across the surface of the coil.

[0073] The magnetic means that is passed over the coil will have a North pole and a South pole. As such, both a positive voltage and a negative voltage will be induced in the coil with a single swipe of the magnet past the coil. The exact nature of the voltage profile with position of the magnet will depend on the orientation of the magnet poles with respect to the coil axis. This is a useful feature of the present invention since the change from positive to negative voltage potential can also, if the display is configured appropriately, cause a change in the image state of the display.

[0074] In this invention only a very low voltage is required, since especially for electrophoretic-type displays, such as microencapsulated electrophoretic inks or electrophoretic liquid crystal-type displays, only a very low level of electrical current is required for operation of the display. However, the power induced in the coil may be sufficient for operation of display devices that require higher powers such as semi-conductor LEDs, electrochromic displays, thermochromic displays and electroluminescent displays. These possible variations are contemplated as falling within the scope of the present invention.

[0075] Referring now to the figures, a particular pre-

ferred embodiment of the invention will be discussed. Fig. 1 is a plan view of said particular preferred embodiment wherein the thickness of the elements is greatly exaggerated for clarity. The security document comprises a thin flexible substrate 1 and a thin flexible coil 3 deposited or printed onto said substrate 1. Both ends of the coil 3 is electrically connected, via flexible electrically conducting tracks 5, which may be printed or deposited on the substrate 1, to a thin and flexible low power display 2. The display 2 may be printed or deposited onto the substrate or adhered to the substrate before or after the printing and/or deposition of the other components of the feature. In any case, electrical connectivity is made between the display 2 and the coil 3. In addition the security document also comprise a magnetic means 4 also printed or deposited on the substrate 1. Thereby the coil 3 and the magnetic means 4 are located on the same side of the substrate. Furthermore the coil 3 is designed such that the movement of the magnetic means 4 over the surface of the coil 1 generates sufficient electric voltage and current to operate the display 2.

[0076] Alternatively two coils 1 could be utilised in which both coils are electrically connected to the display 2. These coils 1 could be printed on top of each other or adjacent to each other. The direction of the windings in the different coils 1 could be the same or reverse. The winding direction will determine the polarity (positive or negative) of the generated voltage for a given positive or negative rate of change of flux. A plurality of coils 1 with different winding directions may be used.

[0077] In fact it will be possible to design both the coils 1 and the magnetic means 4 in such a way, with features that may be hidden from normal detection (such as position and orientation of the North and South poles in the magnetic means 4 and direction of electrical winding in the coils 1) to give rise to a specific voltage profile when the magnetic means 4 is swiped past the coil 1, which in turn gives rise to a specific pre-determined changing optical image within the display 2.

[0078] Fig. 2 is a perspective view illustrating the use of security document for checking its authenticity. Thereby the substrate 1 is folded and the magnetic means 4 is moved across the surface of the coil 3 and a status change of the display 2, i. e. the electronic security means is observed.

[0079] Fig. 3 is an example voltage profile as a magnetic means 4 is swiped past the coil 3 of the security document of the present invention. The voltage is given in V and the time is given in s. The power generated by is sufficient to operate a low power display, such as a electrophoretic-type display.

Claims

1. Security document comprising substrate means and at least one electronic security means, **characterized in that** said security document also comprises

at least one coil electrically connected to said electronic security means and at least one magnetic means.

5. 2. Security document according to claim 1, **characterized in that** said security document is a banknote, a passport, a chequebook, an identity card, a credit card or a debit card.
10. 3. Security document according to claim 1 or 2, **characterized in that** said coil has a planar coil pattern.
15. 4. Security document according to at least one of the preceding claims, **characterized in that** said coil has at least 10 turns.
20. 5. Security document according to at least one of the preceding claims, **characterized in that** said coil comprises copper.
25. 6. Security document according to at least one of the preceding claims, **characterized in that** the exposed surface of said magnetic means comprises at least two areas having a different magnetisation.
30. 7. Security document according to at least one of the preceding claims, **characterized in that** said magnetic means comprises at least two areas of through plane magnetisation, wherein the field gradients of said areas have opposite directions.
35. 8. Security document according to at least one of the preceding claims, **characterized in that** said magnetic means comprises at least two areas of in plane magnetisation, wherein the field gradients of said areas have opposite directions.
40. 9. Security document according to at least one of the preceding claims, **characterized in that** said magnetic means comprises a ferromagnetic material.
45. 10. Security document according to claim 9, **characterized in that** said magnetic means comprises iron, cobalt, nickel, a Heusler alloy, europium oxide and/or chromium (IV) oxide.
50. 11. Security document according to claim 10, **characterized in that** said magnetic means comprises an alloy comprising iron, cobalt and/or nickel, and/or a ferrite.
55. 12. Security document according to claim 11, **characterized in that** said magnetic means comprises $Nd_2Fe_{14}B$.
13. Security document according to at least one of the preceding claims, **characterized in that** said coil and/or said magnetic means are coated with a pro-

tective layer.

14. Security document according to at least one of the preceding claims, **characterized in that** said security document comprises electrically conducting tracks electrically connecting said coil to said electronic security means.

15. Security document according to at least one of the preceding claims, **characterized in that** said electronic security means is an overt security feature.

16. Security document according to at least one of the preceding claims, **characterized in that** said electronic security means is a low power display means.

17. Security document according to claim 16, **characterized in that** the power needed by said lower power display is 1 mW or less.

18. Security document according to claim 16 or 17, **characterized in that** said low power display means are electrophoretic ink display means, liquid crystal display means and/or polymer light emitting diodes.

19. Security document according to at least one of the preceding claims, **characterized in that** said substrate means comprises paper, plastic, polymer, elemental metallic foils, metallic alloy foils and/or synthetic paper.

20. Security document according to at least one of the preceding claims, **characterized in that** its thickness is smaller than 100 µm.

21. Method for the production of a security document according to at least one of the preceding claims, wherein said coil, said magnetic means and said electronic security means are provided on said substrate means.

22. Method according to claim 21, **characterized in that** said magnetic means and/or said coil are provided onto said substrate means by the use of sol-gel, spray pyrolysis, hot wall pyrolysis, flash evaporation, vacuum sputtering, chemical vapour deposition, printing, laser scribing, electroless deposition technique, electroplating and/or electrochemical deposition.

23. Method according to claim 21 or 22, **characterized in that** electrical interconnections are provided on said substrate means and said magnetic means, said coil and said electronic security means are provided onto said electrical interconnections.

24. Method according to at least one of the claims 21 to 23, **characterized in that** said electronic security

means is provided before or after the provision of said magnetic means and said coil.

25. Method according to at least one of the claims 21 to 24, **characterized in that** said magnetic means and said coil are provided on the same side of said security document.

26. Use of a security document according to at least one of the claims 1 to 20 for checking its authenticity, wherein said magnetic means is moved across the surface of said coil and a status change of said electronic security means is observed.

27. Use according to claim 26, **characterized in that** the gap between the surface of said coil and the surface of said magnetic means is smaller than 5 mm.

28. Use according to claim 26 or 27, **characterized in that** the velocity of the movement of the magnetic means parallel to the surface of the coil is at least 0.1 m/s.

29. Use according to at least one of the claims 26 to 28, **characterized in that** said magnetic means is repeatedly moved across the surface of said coil.

Fig. 1

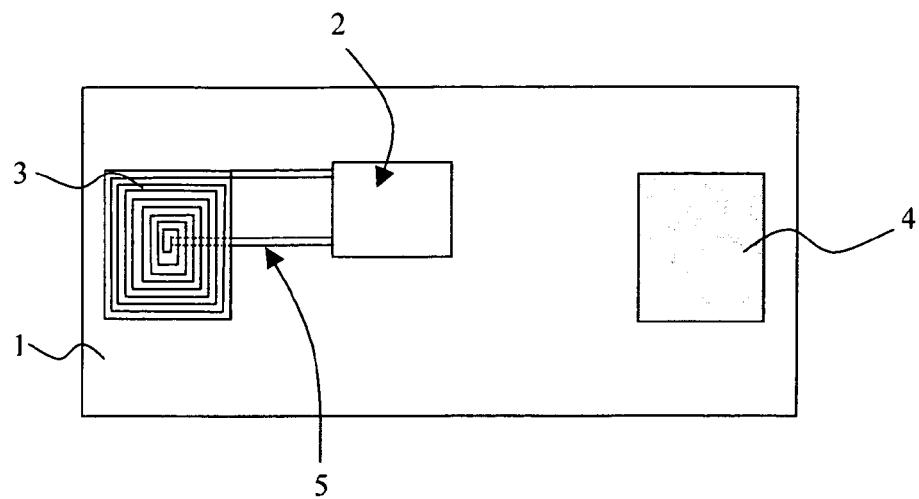


Fig. 2

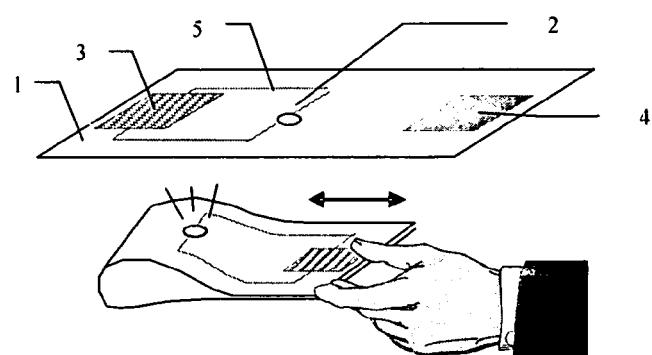
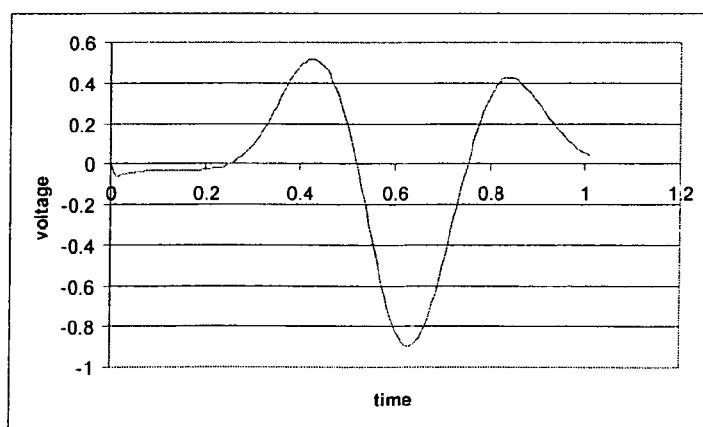



Fig. 3

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)						
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim							
Y,D	WO 01/69523 A (INFINEON TECHNOLOGIES AG; HOFMANN, HARALD) 20 September 2001 (2001-09-20) * abstract; figure 1 * -----	1-25	INV. B42D15/00						
Y	EP 0 310 707 A (MANTEGAZZA ANTONIO ARTI GRAFICHE S.R.L) 12 April 1989 (1989-04-12) * abstract; figure 1 * -----	1-25							
A	WO 03/057502 A (BUNDESDRUCKEREI GMBH; BAILLEU, ANETT; SAUTER, DIETER) 17 July 2003 (2003-07-17) * abstract; figure 1 * -----	15-18							
A	EP 1 148 440 A (HITACHI, LTD) 24 October 2001 (2001-10-24) * abstract; figure 26a * -----	1							
			TECHNICAL FIELDS SEARCHED (IPC)						
			B42D						
<p>2 The present search report has been drawn up for all claims</p> <table border="1"> <tr> <td>Place of search</td> <td>Date of completion of the search</td> <td>Examiner</td> </tr> <tr> <td>The Hague</td> <td>13 September 2006</td> <td>Evans, Andrew</td> </tr> </table>				Place of search	Date of completion of the search	Examiner	The Hague	13 September 2006	Evans, Andrew
Place of search	Date of completion of the search	Examiner							
The Hague	13 September 2006	Evans, Andrew							
<p>CATEGORY OF CITED DOCUMENTS</p> <p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p> <p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>									

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 06 00 1669

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

13-09-2006

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0169523	A	20-09-2001	EP TW	1134694 A1 497121 B	19-09-2001 01-08-2002
EP 0310707	A	12-04-1989	DE DE ES GR GR IT	3781894 D1 3781894 T2 2033789 T3 3005849 T3 3033780 T3 1222851 B	29-10-1992 07-01-1993 01-04-1993 07-06-1993 31-10-2000 12-09-1990
WO 03057502	A	17-07-2003	AU DE DE DE DE	2002352256 A1 10214369 A1 10214370 A1 10214371 A1 20200358 U1	24-07-2003 31-07-2003 31-07-2003 31-07-2003 22-05-2003
EP 1148440	A	24-10-2001	AU CN CN CN CN WO TW US	1683800 A 1330789 A 1529274 A 1529275 A 1591475 A 0036555 A1 484101 B 7061083 B1	03-07-2000 09-01-2002 15-09-2004 15-09-2004 09-03-2005 22-06-2000 21-04-2002 13-06-2006

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 1431062 A [0004]
- CN 1184303 [0005]
- WO 0169523 A1 [0006] [0006]

Non-patent literature cited in the description

- **CHARLES KITTEL.** Introduction to Solid State Physics. Wiley, 1996 [0038]
- **NEIL W. ASHCROFT ; N. DAVID MERMIN.** Solid State Physics. Harcourt, 1976 [0038]
- **JOHN DAVID JACKSON.** Classical Electrodynamics. Wiley, 1999 [0038]
- Ferromagnetic Materials. North-Holland, 1980 [0038]
- Nanofoam makes magnetic debut. *Physics World*, May 2004, vol. 17 (5), 3 [0038]
- Heusler alloy. Encyclopedia Britannica Online. 23 January 2005 [0038]
- **F. HEUSLER ; W. STARK ; E. HAUPT.** Verh. der Phys. Ges. 1903, vol. 5, 219 [0038]
- **GRIFFITHS, DAVID J.** Introduction to Electrodynamics. Prentice Hall, 1998 [0038]
- **TIPLER, PAUL.** Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics. W. H. Freeman, 2004 [0038]