(11) **EP 1 813 870 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

01.08.2007 Patentblatt 2007/31

(51) Int Cl.: F24C 14/00 (2006.01)

(21) Anmeldenummer: 07002781.8

(22) Anmeldetag: 05.11.2004

(84) Benannte Vertragsstaaten:

DE FR GB IT

(30) Priorität: 13.11.2003 DE 10353193 15.03.2004 DE 102004012824

(62) Dokumentnummer(n) der früheren Anmeldung(en) nach Art. 76 EPÜ:

04818377.6 / 1 682 822

(71) Anmelder: Rational AG 86899 Landsberg/Lech (DE)

(72) Erfinder:

- Breunig, Manfred 86956 Schongau (DE)
- Maas, Bruno 86916 Kaufering (DE)
- Hegmann, Roland 86853 Langerringen (DE)

- König, Rudolf 86947 Weil/Geretshausen (DE)
- Macenka, Ralph 86899 Landsberg/Lech (DE)
- Altenburger, Klaus 76337 Waldbronn (DE)
- Imgram, Judith 63456 Hanau (DE)
- (74) Vertreter: Weber-Bruls, Dorothée Forrester & Boehmert, Pettenkoferstrasse 20-22 80336 München (DE)

Bemerkungen:

Diese Anmeldung ist am 09 - 02 - 2007 als Teilanmeldung zu der unter INID-Kode 62 erwähnten Anmeldung eingereicht worden.

(54) Gargerät mit Befüllungs- und/oder Füllmengenüberwachung

(57) Die Erfindung betrifft ein Gargerät (1) mit einem Innenkasten (2), umfassend einen Garraum mit einem Fluideingang und einem Fluidausgang,

einer Gebläseeinrichtung, umfassend ein Lüfterrad (3) in dem Innenkasten (2), eine Antriebswelle (4) für das Lüfterrad (3) und einen Motor (5) für die Antriebswelle (4) zum Zirkulieren eines Fluids (19) in dem Innenkasten (2).

einem Reservoir (10) zum zumindest zeitweisen Aufnehmen zumindest des Fluids (19) einer Befüllungs- und/ oder Füllmengenüberwachungseinrichtung (5,8) für das Reservoir (10) und

einer Steuer- oder Regeleinrichtung (8) in Wirkverbindung mit der Gebläseeinrichtung (5) und/oder der Befüllungs- und/oder Füllmengenüberwachungseinrichtung (5,8).

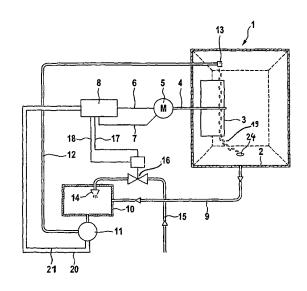


Fig.

EP 1 813 870 A2

20

Beschreibung

[0001] Die Erfindung betrifft ein Gargerät mit einem Innenkasten, umfassend einen Garraum mit zumindest einem Fluideingang und zumindest einem Fluidausgang, einer Gebläseeinrichtung, umfassend zumindest ein Lüfterrad in dem Innenkasten, zumindest eine Antriebswelle für das Lüfterrad und zumindest einen Motor für die Antriebswelle zum Zirkulieren zumindest eines Teils zumindest eines Fluids zumindest in dem Innenkasten, zumindest einem Reservoir zum zumindest zeitweisen Aufnehmen zumindest des Fluids mit zumindest einem Fluideingang und zumindest einem Fluidausgang, einer Befüllungs- und/oder Füllmengenüberwachungseinrichtung für das Reservoir und einer Steuer- oder Regeleinrichtung in Wirkverbindung mit der Gebläseeinrichtung und/oder der Befüllungs- und/oder Füllmengenüberwachungseinrichtung. Ferner wird ein Befüllungs- und/oder Füllmengenüberwachungsverfahren für zumindest ein Reservoir zum zumindest zeitweisen Aufnehmen zumindest eines Fluids in einem Gargerät mit einem Innenkasten, umfassend einen Garraum mit zumindest einem Fluideingang und zumindest einem Fluidausgang, einer Gebläseeinrichtung, umfassend zumindest ein Lüfterrad in dem Innenkasten, zumindest eine Antriebswelle für das Lüfterrad und zumindest einen Motor für die Antriebswelle, zum Zirkulieren zumindest eines Teils des Fluids zumindest in dem Innenkasten und einer Steueroder Regeleinrichtung in Wirkverbindung mit der Gebläseeinrichtung und/oder einer Befüllungs- und/oder Füllmengenüberwachungseinrichtung offenbart.

1

[0002] Solche Gargeräte sind aus dem Stand der Technik gut bekannt, siehe beispielsweise die WO 02/068876 A1. Aus dieser Druckschrift sind ein Verfahren und eine Vorrichtung zum Reinigen eines Gargerätes unter Zuführung von Frischwasser bekannt, welches insbesondere aus dem Wasserkessel eines Dampfgenerators, sei es durch Überfüllen des Wasserkessels, Abzweigen von mindestens einmal erhitzen, selbst gekochten Wasser oder Auskondensieren von Dämpfen, in ein Waschflottenreservoir einfüllbar ist, eventuell gleichzeitig mit zumindest einem Reinigungsmittel. Die Waschflotte wird anschließend zum Reinigen zirkuliert, nämlich von dem Waschflottenreservoir, das vorzugsweise durch einen Dampflcondensierer, insbesondere bereitgestellt in Form eines Ablöschkastens, gebildet wird, zur Ansaugseite eines Lüfterrads, durch den Garraum und einen Garraumablauf zurück in das Waschflottenreservoir. Dabei können die Zirkulierung und Zusammensetzung der Waschflotte, einschließlich Zeitdauer, Temperatur, Durchflußrate und dergleichen gesteuert und/oder geregelt werden. Bei dem aus der WO 02/068876 A1 bekannten Gargerät kommt eine Füllstandselektrode im Wasserkessel als Realisation einer Befüllungs- und/oder Füllmengenüberwachungseinrichtung zum Einsatz.

[0003] Die DE 197 30 610 C1 offenbart ein Reinigungsverfahren für ein Gargerät mittels einer Reinigungsflüssigkeit, die in einen nach außen abgedichteten Innenkasten des Gargeräts bis zu einer solchen Füllhöhe eingefüllt wird, daß der Boden des Innenkastens zumindest vollständig bedeckt ist, also als Reservoir für die Reinigungsflüssigkeit dient. Die Reinigungsflüssigkeit wird anschließend mit einer Umwälzeinrichtung derart umgewälzt, daß die Innenflächen des Innenkastens zumindest teilweise mit Reinigungsflüssigkeit bespült werden. Zur Erfassung der Füllhöhe des Innenkastens ist dabei eine Füllstandselektrode vorgesehen.

[0004] Füllstandselektroden weisen den Nachteil auf, daß sie beim Einsatz in Gargeräten leicht verschmutzen und dadurch störanfällig werden. Zudem stellen solche Füllstandselektroden zusätzlich Bauteile dar, für die ein extra Bauraum von Nöten ist und für die Kosten entste-15

[0005] Als Alternative zu Füllstandselektroden kommen bei Gargeräten auch Flüssigkeitsdurchflußmesser, wie in Form von Impulszählern und dergleichen, zum Einsatz, siehe beispielsweise die DE 199 12 444 C2. Flüssigkeitsdurchflußmesser sind ebenfalls störanfällig, benötigen Bauraum und sind kostenaufwendig.

[0006] Es sind beispielsweise aus der DT 25 55 052 A1 Geschirrspülmaschinen, die auf einem gänzlich anderen technischen Gebiet als Gargeräte liegen, bekannt, bei denen eine Steuereinrichtung für eine programmgesteuerte Wasserzufuhr vorgesehen ist, wobei der Zulauf von Frischwasser in Abhängigkeit vom Motorstrom einer Umwälzpumpe gesteuert wird.

[0007] Für Waschmaschinen, die sich genauso wie Geschirrspülmaschinen grundsätzlich von Gargeräten unterscheiden, ist es bekannt, den Programmablauf in Abhängigkeit der Drehzahl der Wäschetrommel zu regeln, siehe beispielsweise DE 41 17 292 C2.

[0008] Aufgabe der vorliegenden Erfindung ist es, das gattungsgemäße Gargerät derart weiterzuentwickeln, daß die Nachteile des Stands der Technik überwunden werden.

[0009] Für das Verfahren wird vorgeschlagen, daß zumindest eine sich auf Grund der Krafteinwirkung der auf das Lüfterrad auftreffenden Menge an dem Fluid ändernde charakteristische Größe der Gebläseeinrichtung von der Befüllungs- und/oder Füllmengenüberwachungseinrichtung ausgewertet wird.

[0010] Dabei kann vorgesehen sein, daß zur Befüllungs- und/oder Füllmengenüberwachung die Drehzahl, die Drehzahlschwankung, die Leistungsaufnahme, die Leistungsaufnahmeschwankung, die Stromaufnahme und/oder die Stromaufnahmeschwankung der Gebläseeinrichtung zumindest zeitweise als charakteristische Größe erfaßt wird bzw. werden.

[0011] Erfindungsgemäß bevorzugt ist, daß zumindest ein Teil des Fluids zumindest in dem Innenkasten über zumindest eine Pumpeinrichtung umgewälzt wird, wobei die Pumpeinrichtung vorzugsweise getaktet wird. [0012] Dabei kann vorgesehen sein, daß zu einem Zeitpunkt to die Pumpeinrichtung eingeschaltet wird, zu einem Zeitpunkt t₁ eine Erniedrigung der Drehzahl des Lüfterrades aufgrund der auf das Lüfterrad auftreffenden Menge an dem Fluid erfaßt wird, wobei vorzugsweise diese Drehzahlerniedrigung anschließend von dem Motor zumindest zum Teil durch steigende Leistungsaufnahme kompensiert wird, zu einem Zeitpunkt t_2 die Pumpeinrichtung ausgeschaltet wird, zu einem Zeitpunkt t_3 eine Erhöhung der Drehzahl, insbesondere aufgrund besagter Kompensation des Motors, erfaßt wird, und aus der Zeitdifferenz t_3 - t_1 die Befüllungs- und/oder Füllmengen und/oder eine Änderung derselben bestimmt wird bzw. werden.

[0013] Ferner wird mit der Erfindung vorgeschlagen, das ein oberer Grenzwert der Drehzahl und/oder ein unterer Grenzwert der Drehzahl bestimmt wird bzw. werden, vorzugsweise in Abhängigkeit von der Taktung der Pumpeinrichtung, der dem Innenraum zugeführten Menge an dem Fluid, der aus dem Innenraum abgeführten Menge an dem Fluid, der Bemassung des Gargerätes, der Bestückung des Gargerätes und/oder der Beschikkung des Innenraums mit Gargut.

[0014] Dabei kann vorgesehen sein, daß eine Zeitdifferenz bestimmt wird aus der Zeitspanne zwischen einem Unterschreiten des unteren Grenzwertes und einem Überschreiten des oberen Grenzwertes, vorzugsweise in Abhängigkeit von der Taktung der Pumpeinrichtung, zur Befüllungs- und/oder Füllmengenüberwachung.

[0015] Ferner kann erfindungsgemäß vorgesehen sein, daß in Abhängigkeit von einer erfaßten Befüllungsund/oder Füllmenge zumindest eine Einrichtung zum Zuführen des Fluids in den Innenkasten und/oder zumindest eine Einrichtung zum Abführen von Fluid aus dem
Innenkasten eingestellt, vorzugsweise gesteuert oder
geregelt, wird bzw. werden.

[0016] Die das Gargerät betreffende Aufgabe der Erfindung wird dadurch gelöst, daß die Befüllungs- und/ oder Füllmengenüberwachungseinrichtung mit der Gebläseeinrichtung zur Erfassung zumindest einer für die auf das Lüfterrad auftreffende Menge an Fluid charakteristischen Größe in Wirkverbindung steht.

[0017] Dabei kann vorgesehen sein, daß der Motor, vorzugsweise in Form eines elektrisch kommutierten Motors, in Wirkverbindung mit der Steuer- oder Regeleinrichtung steht.

[0018] Bevorzugte Gargeräte der Erfindung umfassen zumindest eine Pumpeinrichtung zum Umwälzen zumindest eines Teils des Fluids zumindest in dem Innenkasten, vorzugsweise in Wirkverbindung mit der Steueroder Regeleinrichtung zum Einstellen der Pumpleistung und/oder der Taktung der Pumpeinrichtung.

[0019] Mit der Erfindung wird vorgeschlagen, daß die charakteristische Größe durch Auswertung der Drehzahl, der Drehzahlschwankung, der Leistungsaufnahme, der Leistungsaufnahmeschwankung, der Stromaufnahme und/oder der Stromaufnahmeschwankung bestimmbar ist.

[0020] Bevorzugt ist erfindungsgemäß, daß bei der Bestimmung der charakteristischen Größe die Taktung der Pumpeinrichtung berücksichtigbar ist, vorzugsweise die Zeitspanne zwischen einer ersten Drehzahlerniedri-

gung nach Einschalten der Pumpeinrichtung und einen ersten Drehzahlerhöhung nach Ausschalten der Pumpeinrichtung, insbesondere während eines Taktes, auswertbar ist.

[0021] Ferner wird mit der Erfindung vorgeschlagen, daß das Fluid Wasser in flüssiger und/oder Dampfform und/oder Waschflotte umfaßt.

[0022] Erfindungsgemäß kann vorgeschlagen sein, daß das Reservoir bereitgestellt ist in dem Innenkasten, einem Ablöschkasten und/oder einem Wasserkessel eines Dampfgenerators.

[0023] Dabei kann vorgesehen sein, daß der Innenkasten befüllbar ist über einen ersten Fluideingang in Wirkverbindung mit dem Ablöschkasten, einen zweiten Fluideingang in Wirkverbindung mit dem Wasserkessel und/oder einen dritten Fluideingang in Wirkverbindung mit einer Wasserleitung.

[0024] Mit der Erfindung wird auch vorgeschlagen, daß der Ablöschkasten befüllbar ist über einen vierten Fluideingang in Wirkverbindung mit dem Innenkasten, einen fünften Fluideingang in Wirkverbindung mit dem Wasserkessel und/oder einen sechsten Fluideingang in Wirkverbindung mit einer Wasserleitung.

[0025] Weiterhin sieht die Erfindung vor, daß der Wasserkessel befüllbar ist über einen siebten Fluideingang in Wirkverbindung mit dem Innenkasten, einen achten Fluideingang in Wirkverbindung mit dem Ablöschkasten und/oder einen neunten Fluideingang in Wirkverbindung mit einer Wasserleitung.

[0026] Auch kann vorgesehen sein, daß der erste Fluideingang mit einer ersten Absperreinrichtung und/ oder Pumpeinrichtung, der zweite Fluideingang mit einer zweiten Absperreinrichtung und/oder Pumpeinrichtung, der dritte Fluideingang mit einer dritten Absperreinrichtung und/oder Pumpeinrichtung, der vierte Fluideingang mit einer vierten Absperreinrichtung und/oder Pumpeinrichtung, der fünfte Fluideingang mit einer fünften Absperreinrichtung und/oder Pumpeinrichtung, der sechste Fluideingang mit einer sechsten Absperreinrichtung und/ oder Pumpeinrichtung, der siebte Fluideingang mit einer siebten Absperreinrichtung und/oder Pumpeinrichtung, der achte Fluideingang mit einer achten Absperreinrichtung und/oder Pumpeinrichtung und/oder der neunte Fluideingang mit einer neunten Absperreinrichtung und/ oder Pumpeinrichtung in Wirkverbindung steht bzw. ste-

[0027] Erfindungsgemäß wird vorgeschlagen, daß der Innenkasten entleerbar ist über einen ersten Fluidausgang in Wirkverbindung mit dem Ablöschkasten, einen zweiten Fluidausgang in Wirkverbindung mit dem Wasserkessel und/oder einen dritten Fluidausgang in Wirkverbindung mit einem Wasserabfluß.

[0028] Ferner kann vorgesehen sein, daß der Ablöschkasten entleerbar ist über einen vierten Fluidausgang in Wirkverbindung mit dem Innenkasten, einen fünften Fluidausgang in Wirkverbindung mit dem Wasserkessel und/oder einem sechsten Fluidausgang in Wirkverbindung mit einem Wasserabfluß.

15

[0029] Erfindungsgemäße Ausführungsformen können dadurch gekennzeichnet sein, daß der Wasserkessel entleerbar ist über einen siebten Fluidausgang in Wirkverbindung mit dem Innenkasten, einen achten Fluidausgang in Wirkverbindung mit dem Ablöschkasten und/oder einem neunten Fluidausgang in Wirkverbindung mit einem Wasserabfluß.

[0030] Es kann vorgesehen sein, daß der erste Fluidausgang mit einer zehnten Absperreinrichtung und/oder Pumpeinrichtung, der zweite Fluidausgang mit einer elften Absperreinrichtung und/oder Pumpeinrichtung, der dritte Fluidausgang mit einer zwölften Absperreinrichtung und/oder Pumpeinrichtung, der vierte Fluidausgang mit einer dreizehnten Absperreinrichtung und/oder Pumpeinrichtung, der fünfte Fluidausgang mit einer vierzehnten Absperreinrichtung und/oder Pumpeinrichtung, der sechste Fluidausgang mit einer fünfzehnten Absperreinrichtung und/oder Pumpeinrichtung, der siebte Fluidausgang mit einer sechzehnten Absperreinrichtung und/ oder Pumpeinrichtung, der achte Fluidausgang mit einer siebzehnten Absperreinrichtung und/oder Pumpeinrichtung und/oder der neunte Fluidausgang mit einer achtzehnten Absperreinrichtung und/oder Pumpeinrichtung in Wirkverbindung steht bzw. stehen.

[0031] Es wird erfindungsgemäß vorgeschlagen, daß die erste, zweite, dritte, vierte, fünfte, sechste, siebte, achte, neunte, zehnte, elfte, zwölfte, dreizehnte, vierzehnte, fünfzehnte, sechzehnte, siebzehnte und/oder achtzehnte Absperreinrichtung zumindest ein Ventil umfaßt bzw. umfassen.

[0032] Ferner kann vorgesehen sein, daß die erste, zweite, dritte, vierte, fünfte, sechste, siebte, achte, neunte, zehnte, elfte, zwölfte, dreizehnte, vierzehnte, fünfzehnte, sechzehnte, siebzehnte und/oder achtzehnte Absperreinrichtung und/oder Pumpeinrichtung über die Steuer- oder Regeleinrichtung betätigbar ist bzw. sind, insbesondere jeweils in Abhängigkeit von einem Vergleich des Ist-Wertes der charakteristischen Größe mit zumindest einem Soll-Wert für die charakteristische Größe.

[0033] Dabei kann vorgesehen sein, daß das Taktverhältnis der ersten, zweiten, dritten, vierten, fünften, sechsten, siebten, achten, neunten, zehnten, elften, zwölften, dreizehnten, vierzehnten, fünfzehnten, sechzehnten, siebzehnten und/oder achtzehnten Absperreinrichtung und/oder Pumpeinrichtung über die Steuer- oder Regeleinrichtung einstellbar, insbesondere steuerbar oder regelbar, ist bzw. sind.

[0034] Schließlich wird erfindungsgemäß vorgeschlagen, daß die Befüllungs- und/oder Füllmengenüberwachungseinrichtung die Gebläseeinrichtung und die Steuer- und/oder Regeleinrichtung zumindest teilweise umfaßt, wobei die Befüllungs- und/oder Füllmengenüberwachungseinrichtung vorzugsweise auch die erste, zweite, dritte, vierte, fünfte, sechste, siebte, achte, neunte, zehnte, elfte, zwölfte, dreizehnte, vierzehnte, fünfzehnte, sechzehnte, siebzehnte und/oder achtzehnte Absperreinrichtung und/oder Pumpeinrichtung umfaßt.

[0035] Der Erfindung liegt somit die überraschende Erkenntnis zu Grunde, daß durch die Auswertung beispielsweise von Drehzahlschwankungen eines Lüfterrads in einem Gargerät, sei es betreffend die Amplituden, Frequenzen, Phasen oder zeitlichen Abstände zueinander, in dem Fall, in dem über ein Lüfterrad und gegebenenfalls eine Pumpeinrichtung in einem Innenkasten des Gargeräts beispielsweise eine Waschflotte zirkuliert wird, die aus einem Ablöschkasten in den Innenkasten getaktet gepumpt und aus dem Innenkasten zurück in den Ablöschkasten fließt, dadurch hinreichend genaue Aussagen über den Befüllungszustand bzw. die Füllmenge des Waschflottenumwälzkreislaufes getroffen werden können, daß das Lüfterrad durch darauf auftreffende Waschflotte abgebremst wird, so daß es zu einem Lastwechsel kommt, der sich unter anderem in Drehzahlschwankungen niederschlägt. Andererseits kann auch die Stromaufnahme oder Leistungsaufnahme beim Lastwechsel durch auf das Lüfterrad auftreffende Waschflotte erfindungsgemäß ausgewertet werden, insbesondere in Form der Auswertung von Abweichungen von einem Soll-Wert, wobei bei kleinen Abweichungen die zirkulierende Waschflottenmenge gering und bei großen Abweichungen die zirkulierende Waschflottenmenge groß ist. [0036] Es hat sich als besonders vorteilhaft erfindungsgemäß erwiesen, eine Zeitdifferenz als Maß für eine Befüllungs- und/oder Füllmengen und/oder einer Änderung derselben heranzuziehen, die bestimmt wird aus der Zeitspanne zwischen einem Unterschreiten eines unteren Grenzwertes und einem Überschreiten eines oberen Grenzwertes der Drehzahl des Lüfterrads innerhalb eines Pumptaktes. Bei einer vorgegebenen Taktung einer Pumpeinrichtung ist nämlich zu beobachten, daß zu einem Zeitpunkt t nach Einschalten der Pumpeinrichtung zum Zeitpunkt to eine Drehzahlerniedrigung aufgrund der Abbremsung des Lüfterrads durch auftreffende Waschflotte stattfindet. Diese Erniedrigung wird vorteilhafterweise durch eine steigende Leistungsaufnahme über den Motor, bei dem es sich vorzugsweise um einen elektrisch kommutierten Motor handelt, der eine schnelle Nachregelung bei anliegender Last liefert, derart kompensiert, daß nach einer bestimmten Zeitspanne nach Ausschalten der Pumpeinrichtung zum t₂, nämlich zum Zeitpunkt t₃, eine Erhöhung der Drehzahl beobachtbar ist. Also stellt die Zeitdifferenz t₃-t₁ eine charakteristische Größe des Lüfterrads in einem erfindungsgemäßen Gargerät dar, die zur Auswertung einer Befüllungs- und/oder Füllmenge herangezogen werden kann. Diese Zeitdifferenz ist zudem unabhängig von veränderlichen Einbauten im Gargerät, wie in Form unterschiedlichen Zubehörs, oder auch von einer unterschiedlichen Beschickung des Gargerätes.

[0037] Mit der Erfindung wird somit erstmals berücksichtigt, daß der Fluidumwälzkreislauf insbesondere beim Reinigen in einem Gargerät ausschlaggebend für ein zufriedenstellendes Reinigungsergebnis ist, und die Füllung, also der Befüllungszustand bzw. die Füllmenge, des Umwälzkreislaufes mit Fluid über die Folgen der Be-

40

aufschlagung des Lüfterrads mit Fluid zwecks Regelung des Fluidumwälzkreislaufs zu bestimmen ist.

[0038] Die bei einem erfindungsgemäßen Gargerät zwecks Überwachung einer Befüllung oder einer Füllmenge auszuwertenden Daten, also beispielsweise Drehzahlschwankungen, können selbstverständlich zwecks Auswertung noch weiter verarbeitet werden, insbesondere einer Filterung unterzogen werden. Zudem ist erfindungsgemäß vorgesehen, in einer Steuer- und/ oder Regeleinrichtung einen Soll/Ist-Wert-Vergleich durchzuführen, um in Abhängigkeit des Ergebnisses besagten Vergleiches insbesondere eine Frischwasserzufuhr, beispielsweise in den Ablöschkasten durch Öffnen eines Ventils zu einer Wasserleitung, zu regeln.

[0039] Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachstehenden Beschreibung eines Ausführungsbeispiels der Erfindung. Dabei zeigt die aus einer einzigen Figur bestehende Zeichnung eine schematische Darstellung eines Gargeräts.

[0040] Wie der Figur zu entnehmen ist, umfaßt ein erfindungsgemäßes Gargerät 1 einen Innenkasten 2, in dem ein Lüfterrad 3 angeordnet ist. Das Lüfterrad 3 ist über eine Antriebswelle 4 mit einem Motor 5 verbunden. Der Motor 5 ist seinerseits sowohl über eine Steuerleitung 6 als auch eine Meßleitung 7 mit einer Steuereinrichtung 8 verbunden. Zudem ist der Innenkasten 2 über eine Ablaufleitung 9 mit einem Ablöschkasten 10 verbunden, der seinerseits unter Zwischenschaltung einer Pumpe 11 und einer Waschflottenleitung 12 über ein Austrittsglied 13 wieder mit dem Innenkasten 2 verbunden ist. Des Weiteren ist der Ablöschkasten 10 über eine Ablöschdüse 14 mit Frischwasser aus einer Wasserleitung 15 bei geöffnetem Ventil 16 befüllbar, wobei das Ventil 16 einerseits über eine Steuerleitung 17 andererseits über eine Meßleitung 18 mit der Steuereinrichtung 8 in Verbindung steht. Das Frischwasser ist Bestandteil eines Fluids 19, das unter Einsatz der Pumpe 11, die ebenfalls über eine Steuerleitung 20 und eine Meßleitung 21 mit der Steuereinrichtung 8 verbunden ist, im Gargerät 1 insbesondere bei einem Reinigungsprozeß umgewälzt wird. Im Falle eines Reinigungsprozesses wird das Fluid als Waschflotte 19 bezeichnet. Schließlich kann über einen Abfluß 24 Waschflotte 19 aus dem Zirkulationskreislauf des Gargerätes 1, insbesondere über den Ablöschkasten 10, unter Zwischenschaltung eines Ventils 21 entsorgt werden. Die Wasserleitung 15 sowie den Abfluß 24 können Bestandteil eines Hauswassernetzes sein. Das Ventil 21 ist sowohl über eine Meßleitung 22 als auch eine Steuerleitung 23 mit der Steuereinrichtung 8 verbunden.

[0041] Das soeben im Aufbau beschriebene Gargerät 1 kann zur Überwachung der Befüllung und der Füllmenge des Ablöschkastens 10 nach einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens wie folgt arbeiten:

Mit Beginn einer Reinigungsphase wird der anfänglich leere Ablöschkasten 10 mit Frischwasser über

die Ablöschdüse 14 befüllt. Das in den Ablöschkasten 10 eingeführte Frischwasser wird sogleich über die Pumpe 11 zum Austrittsglied 13 gefördert, um von dort auf das Lüfterrad 3 aufzutreffen. Die Pumpe 11 arbeitet dabei in einem einstellbaren Taktverhältnis, wie beispielsweise 10 Sekunden an und 5 Sekunden aus. Das Taktverhältnis ist über die Steuereinrichtung 8 wahlweise veränderbar.

[0042] Das Ventil 16 wird erst dann über die Steuereinrichtung 8 geschlossen, wenn ein Vergleich eines ersten Soll-Wertes für die Lastaufnahme des Lüfterrads 3 aufgrund einer Abbremsung durch die darauf auftreffende Waschflotte 19, der einer gewünschten Füllmenge des Umwälzkreislaufes der Waschflotte 19 entspricht, mit dem über die Meßleitung 7 erfaßten Ist-Wert der Lastaufnahme übereinstimmt. Dann ist die Befüllungsüberwachung abgeschlossen. Im Anschluß findet eine Füllmengenüberwachung der vom Innenkasten 2 in den Ablöschkasten 10 und zurück in den Innenkasten zirkulierten Waschflotte 19, also des Fluidumwälzkreislaufs, durch eine Auswertung der Varianz der Drehzahl, also der Drehzahlschwankungen, genauer gesagt der Höhe der Drehzahlschwankungen, des Lüfterrads 3 statt. Die Höhe der Schwankungen erlaubt, Aussagen über die Umwälzleistung in dem erfindungsgemäßen Gargerät zu treffen. Während ein homogene Drehzahl des Lüfterrads 3 auf keine oder nur eine geringe Beeinflussung des Lüfterrads 3 durch die Waschflotte 19 hindeuten würde, ist eine inhomogene Drehzahl, die über Drehzahlschwankungen auswertbar ist, ein Indiz für eine intakte Umwälzung. Bei der Auswertung der Drehzahlschwankungen wird ein Soll-Wert der Drehzahl als Referenzpunkt berücksichtigt und eine Filterung durchgeführt. Ferner wird bei der Auswertung über die Steuereinrichtung 8 auch das Taktverhältnis der Pumpe 11 berücksichtigt, wobei darauf hinzuweisen ist, daß ohne Taktung der Pumpe 11 der Motor 5 sich auf eine gegebene Last einstellen und somit die Drehzahl des Lüfterrads 3 auf einen Soll-Wert hochregeln würde, was die Bestimmung der Fluidmenge im Umwälzkreislauf nicht ermöglichen würde.

[0043] Ergibt nun die Auswertung der Drehzahlschwankungen des Lüfterrads 3, daß die für die Reinigung notwendige Füllmenge an Waschflotte 19 im Umwälzkreislauf des erfindungsgemä-βen Gargerätes 1 nicht vorliegt, so wird das Ventil 16 solange geöffnet, bis die optimale Füllung vorliegt.

[0044] Ferner kann in unterschiedlichen Reinigungsschritten eine unterschiedliche Menge an Waschflotte 19 benötigt werden, so daß unterschiedliche Soll-Werte vorliegen, mit denen ein Vergleich im Laufe des Reinigungsverfahrens durchgeführt wird.

[0045] Um unabhängig von insbesondere Zubehör sowie Gargut (beides nicht dargestellt) im Innenkasten 2 eine Überwachung der Befüllungs- und/oder Füllmengen mit beispielsweise Waschflotte 19 durchführen zu können, ist es nach einem weiteren Ausführungsbeispiel des erfindungsgemäßen Verfahrens bevorzugt, Zeitdifferen-

40

zen auszuwerten. Soll beispielsweise die Füllmenge an Waschflotte 19 während einer Reinigungsphase konstant gehalten werden, so kann bei einer vorgegebenen Taktung der Pumpe 11 folgendes Verfahren, vorzugsweise mehrfach, durchfahren werden:

Zu einem Zeitpunkt to wird die Pumpe 11 eingeschaltet. Sobald eine Erniedrigung der Drehzahl, insbesondere in Form einer Unterschreitung eines ersten Soll-Wertes, beobachtet wird, wird der Zeitpunkt t₁ festgehalten. Wird dann aufgrund einer steigenden Leistungsaufnahme des Motors 5 diese Erniedrigung der Drehzahl kompensiert, so ist der Zeitpunkt zu notieren, zu dem nach Ausschalten der Pumpe 11 zum Zeitpunkt t2 eine Erhöhung der Drehzahl, insbesondere in Form einer Überschreitung eines zweiten Soll-Wertes, beobachtbar ist, wobei dieser Zeitpunkt mit t₃ zu bezeichnen ist. Die Differenz t₃ t₁ liefert dann ein Maß für die Füllmenge, wobei für eine gewünschte Füllmenge ein dritter Soll-Wert oder aber ein Soll-Wertebereich vorliegt. Unterschreitet nun die Differenz t3 - t1 beispielsweise diesen dritten Soll-Wert, so liegt ein Mangel an Waschflotte 19 vor. Dieser Mangel an Waschflotte 19 ist beispielsweise durch Einführen von weiterem Frischwasser durch Ansteuerung des Ventils 16 der Ablöschdüse 14 über die Steuereinrichtung 8 möglich. Sollte jedoch die Differenz t₃ - t₁ beispielsweise größer als der dritte Soll-Wert sein, insbesondere keine Erhöhung der Drehzahl nach Ausschalten der Pumpe 11 beobachtet werden, so kann über die Steuereinrichtung 8 beispielsweise das Ventil 16 zur Ablöschdüse 14 angesteuert werden. In letzterem Fall ist nämlich davon auszugehen, daß ebenfalls ein Mangel an Waschflotte 19 vorliegt, also sich die Menge an Waschflotte 19 während des Reinigungsverfahrens im Zeitraum von to bis to langsam reduziert hat. Von einer Überfüllung an Waschflotte 19 ist insbesondere auf Grund eines nicht dargestellten Notüberlaufs nicht auszugehen.

[0046] Die in der vorstehenden Beschreibung, in den Ansprüchen sowie in der Zeichnung offenbarten Merkmale der Erfindung können sowohl einzeln als auch in jeder beliebigen Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.

Bezugszeichenliste

[0047]

- 1 Gargerät
- 2 Innenkasten
- 3 Lüfterrad
- 4 Antriebswelle
- 5 Motor
- 6 Steuerleitung

- 7 Messleitung
- 8 Steuereinrichtung
- 9 Ablaufleitung
- 10 Ablöschkasten
- 5 11 Pumpe
 - 12 Waschflottenleitung
 - 13 Austrittsglied
 - 14 Ablöschdüse
 - 15 Wasserleitung
- 0 16 Ventil
 - 17 Steuerleitung
 - 18 Messleitung
 - 19 Fluid
 - 20 Steuerleitung
- 21 Ventil

20

25

30

35

40

45

50

55

- 22 Steuerleitung
- 23 Messleitung
- 24 Abfluß

Patentansprüche

1. Gargerät (1) mit

einem Innenkasten (2), umfassend einen Garraum mit zumindest einem Fluideingang und zumindest einem Fluidausgang,

einer Gebläseeinrichtung, umfassend zumindest ein Lüfterrad (3) in dem Innenkasten (2), zumindest eine Antriebswelle (4) für das Lüfterrad (3) und zumindest einen Motor (5) für die Antriebswelle (4) zum Zirkulieren zumindest eines Teils zumindest eines Fluids (19) zumindest in dem Innenkasten (2),

zumindest einem Reservoir (10) zum zumindest zeitweisen Aufnehmen zumindest des Fluids (19) mit zumindest einem Fluideingang und zumindest einem Fluidausgang, einer Befüllungs- und/oder Füllmengenüberwachungseinrichtung (5, 8) für das Reservoir (10) und

einer Steuer- oder Regeleinrichtung (8) in Wirkverbindung mit der Gebläseeinrichtung (5) und/oder der Befüllungs- und/oder Füllmengenüberwachungseinrichtung (5, 8),

dadurch gekennzeichnet, daß

die Befüllungs- und/oder Füllmengenüberwachungseinrichtung (5, 8) mit der Gebläseeinrichtung (3, 4, 5) zur Erfassung zumindest einer für die auf das Lüfterrad (3) auftreffende Menge an Fluid charakteristischen Größe in Wirkverbindung steht, und das Reservoir (10) bereitgestellt ist in dem Innenkasten, einem Ablöschkasten (10) und/oder einem Wasserkessel eines Dampfgenerators, wobei

der Innenkasten (2) befüllbar ist über einen ersten Fluideingang in Wirkverbindung mit dem Ablöschkasten (10), einen zweiten Fluideingang in Wirkverbindung mit dem Wasserkessel und/oder einen dritten Fluideingang in Wirkverbindung mit einer Wasserleitung.

der Ablöschkasten (10) befüllbar ist über einen vier-

5

10

15

20

25

30

35

40

45

50

ten Fluideingang in Wirkverbindung mit dem Innenkasten (2), einen fünften Fluideingang in Wirkverbindung mit dem Wasserkessel und/oder einen sechsten Fluideingang in Wirkverbindung mit einer Wasserleitung (15),

der Wasserkessel befüllbar ist über einen siebten Fluideingang in Wirkverbindung mit dem Innenkasten, einen achten Fluideingang in Wirkverbindung mit dem Ablöschkasten und/oder einen neunten Fluideingang in Wirkverbindung mit einer Wasserleitung, der Innenkasten (2) entleerbar ist über einen ersten Fluidausgang in Wirkverbindung mit dem Ablöschkasten (10), einen zweiten Fluidausgang in Wirkverbindung mit dem Wasserkessel und/oder einen dritten Fluidausgang in Wirkverbindung mit einem Wasserabfluß,

der Ablöschkasten (10) entleerbar ist über einen vierten Fluidausgang in Wirkverbindung mit dem Innenkasten, einen fünften Fluidausgang in Wirkverbindung mit dem Wasserkessel und/oder einem sechsten Fluidausgang in Wirkverbindung mit einem Wasserabfluß (24) und/oder

der Wasserkessel entleerbar ist über einen siebten Fluidausgang in Wirkverbindung mit dem Innenkasten, einen achten Fluidausgang in Wirkverbindung mit dem Ablöschkasten und/oder einem neunten Fluidausgang in Wirkverbindung mit einem Wasserahfluß

2. Gargerät nach Anspruch 1, dadurch gekennzeichnet, daß

der Motor (5), vorzugsweise in Form eines elektrisch kommutierten Motors, in Wirkverbindung mit der Steuer- oder Regeleinrichtung (8) steht.

Gargerät nach Anspruch 1 oder 2, gekennzeichnet, durch

zumindest eine Pumpeinrichtung (11) zum Umwälzen zumindest eines Teils des Fluids zumindest in dem Innenkasten (2), vorzugsweise in Wirkverbindung mit der Steuer- oder Regeleinrichtung (8) zum Einstellen der Pumpleistung und/oder der Taktung der Pumpeinrichtung (11).

 Gargerät nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß

der erste Fluideingang mit einer ersten Absperreinrichtung und/oder Pumpeinrichtung (11), der zweite Fluideingang mit einer zweiten Absperreinrichtung und/oder Pumpeinrichtung, der dritte Fluideingang mit einer dritten Absperreinrichtung und/oder Pumpeinrichtung, der vierte Fluideingang mit einer vierten Absperreinrichtung und/oder Pumpeinrichtung, der fünfte Fluideingang mit einer fünften Absperreinrichtung und/oder Pumpeinrichtung, der sechste Fluideingang mit einer sechsten Absperreinrichtung (16) und/oder Pumpeinrichtung, der siebte Fluideingang mit einer siebten Absperreinrichtung und/oder

Pumpeinrichtung, der achte Fluideingang mit einer achten Absperreinrichtung und/oder Pumpeinrichtung und/oder der neunte Fluideingang mit einer neunten Absperreinrichtung und/oder Pumpeinrichtung in Wirkverbindung steht bzw. stehen.

5. Gargerät nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß

der erste Fluidausgang mit einer zehnten Absperreinrichtung und/oder Pumpeinrichtung, der zweite Fluidausgang mit einer elften Absperreinrichtung und/oder Pumpeinrichtung, der dritte Fluidausgang mit einer zwölften Absperreinrichtung und/oder Pumpeinrichtung, der vierte Fluidausgang mit einer dreizehnten Absperreinrichtung und/oder Pumpeinrichtung, der fünfte Fluidausgang mit einer vierzehnten Absperreinrichtung und/oder Pumpeinrichtung, der sechste Fluidausgang mit einer fünfzehnten Absperreinrichtung (21) und/oder Pumpeinrichtung, der siebte Fluidausgang mit einer sechzehnten Absperreinrichtung und/oder Pumpeinrichtung, der achte Fluidausgang mit einer siebzehnten Absperreinrichtung und/oder Pumpeinrichtung und/oder der neunte Fluidausgang mit einer achtzehnten Absperreinrichtung und/oder Pumpeinrichtung in Wirkverbindung steht bzw. stehen.

6. Gargerät nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß

die erste, zweite, dritte, vierte, fünfte, sechste, siebte, achte, neunte, zehnte, elfte, zwölfte, dreizehnte, vierzehnte, fünfzehnte, sechzehnte, siebzehnte und/oder achtzehnte Absperreinrichtung (16, 21) zumindest ein Ventil (16, 21) umfaßt bzw. umfassen.

7. Gargerät nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die charakteristische Größe durch Auswertung der

Drehzahl, der Drehzahlschwankung, der Leistungsaufnahme, der Leistungsaufnahmeschwankung, der Stromaufnahme und/oder der Stromaufnahmeschwankung bestimmbar ist.

8. Gargerät nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß

bei der Bestimmung der charakteristischen Größe die Taktung der Pumpeinrichtung (11) berücksichtigbar ist, vorzugsweise die Zeitspanne zwischen einer ersten Drehzahlerniedrigung nach Einschalten der Pumpeinrichtung (11) und einen ersten Drehzahlerhöhung nach Ausschalten der Pumpeinrichtung (11), insbesondere während eines Takts, auswertbar ist.

 Gargerät nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß

die erste, zweite, dritte, vierte, fünfte, sechste, siebte, achte, neunte, zehnte, elfte, zwölfte, dreizehnte,

vierzehnte, fünfzehnte, sechzehnte, siebzehnte und/oder achtzehnte Absperreinrichtung (16, 21) und/oder Pumpeinrichtung (11) über die Steueroder Regeleinrichtung (8) betätigbar ist bzw. sind, insbesondere jeweils in Abhängigkeit von einem Vergleich des Ist-Wertes der charakteristischen Größe mit zumindest einem Soll-Wert für die charakteristische Größe.

10. Gargerät nach Anspruch 9, **dadurch gekennzeichnet**, **daß**

das Taktverhältnis der ersten, zweiten, dritten, vierten, fünften, sechsten, siebten, achten, neunten, zehnten, elften, zwölften, dreizehnten, vierzehnten, fünfzehnten, sechzehnten, siebzehnten und/oder achtzehnten Absperreinrichtung (16, 21) und/oder Pumpeinrichtung (11) über die Steuer- oder Regeleinrichtung (8) einstellbar, insbesondere steuerbar oder regelbar, ist bzw. sind.

11. Gargerät nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet**, **daß**

die Befüllungs- und/oder Füllmengenüberwachungseinrichtung (5, 8) die Gebläseeinrichtung (5) und die Steuer- und/oder Regeleinrichtung (8) zumindest teilweise umfaßt, wobei die Befüllungs- und/oder Füllmengenüberwachungseinrichtung vorzugsweise auch die erste, zweite, dritte, vierte, fünfte, sechste, siebte, achte, neunte, zehnte, elfte, zwölfte, dreizehnte, vierzehnte, fünfzehnte, sechzehnte, siebzehnte und/oder achtzehnte Absperreinrichtung und/oder Pumpeinrichtung umfaßt.

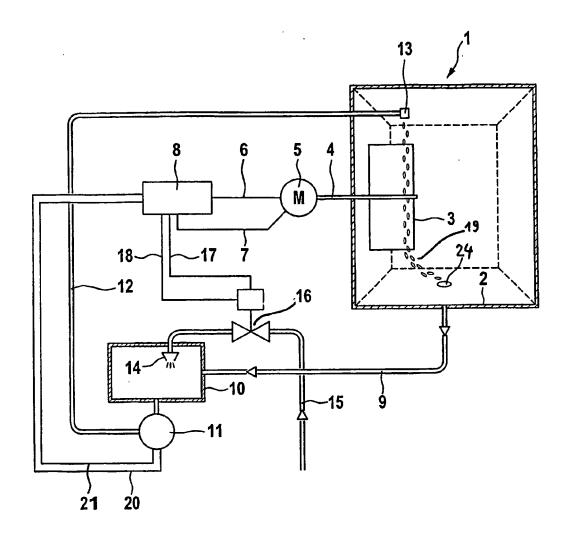


Fig.

EP 1 813 870 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- WO 02068876 A1 [0002] [0002]
- DE 19730610 C1 [0003]

- DE 19912444 C2 [0005]
- DE 4117292 C2 [0007]