# (11) EP 1 818 904 A2

(12)

## **EUROPÄISCHE PATENTANMELDUNG**

(43) Veröffentlichungstag:

15.08.2007 Patentblatt 2007/33

(51) Int Cl.: **G09G 3/36** (2006.01)

(21) Anmeldenummer: 07000092.2

(22) Anmeldetag: 03.01.2007

(84) Benannte Vertragsstaaten:

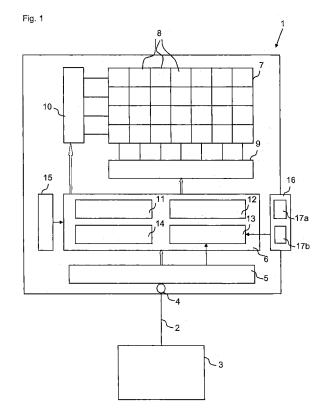
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

(30) Priorität: 14.02.2006 DE 102006006801

(71) Anmelder: Fujitsu Siemens Computers GmbH 80807 München (DE)


(72) Erfinder:

- Bässler, Erwin 86343 Königsbrunn (DE)
- Petz, Peter 86853 Langerringen (DE)
- Polczynski, Bert-Ingo 86316 Friedberg (DE)
- (74) Vertreter: Epping Hermann Fischer Patentanwaltsgesellschaft mbH Ridlerstrasse 55 80339 München (DE)

## (54) Flüssigkristallbildschirm und Verfahren zur Anzeige eines Bildsignals

(57)Die Erfindung betrifft einen Flüssigkristallbildschirm (1), aufweisend einen Signaleingang (4) zum Empfangen eines Bildsignals von einer Bildsignalquelle (3), eine Flüssigkristallanzeige (7) mit einer Vielzahl von Bildpunkten (8), eine mit dem Signaleingang (4) und der Flüssigkristallanzeige (7) verbundene Ansteuervorrichtung (6) zum Ansteuern der Vielzahl von Bildpunkten (8) in Abhängigkeit des empfangenen Bildsignals und eine mit der Ansteuervorrichtung (6) verbundene Übersteuerungsvorrichtung (11), die dazu eingerichtet ist, wenigstens einige der Vielzahl von Bildpunkten (8) zu übersteuern. Der Flüssigkristallbildschirm (1) ist gekennzeichnet durch eine mit der Ansteuervorrichtung (6) verbundene Farbtemperaturwahlvorrichtung (12), die dazu eingerichtet ist, eine Farbtemperatur (33) für den Flüssigkristallbildschirm (1) festzulegen, und eine mit der Übersteuerungsvorrichtung (11) und der Farbtemperaturwahlvorrichtung (12) verbundene Betriebsartwahlvorrichtung (13), die dazu eingerichtet ist, eine Betriebsart (31) des Flüssigkristallbildschirms (1) auszuwählen und in Abhängigkeit der ausgewählten Betriebsart (31) die Übersteuerungsvorrichtung (11) und die Farbtemperaturwahlvorrichtung (12) anzusteuern.

Die Erfindung betrifft außerdem ein Verfahren zur Anzeige eines Bildsignals durch einen Flüssigkristallbildschirm (1).



EP 1 818 904 A2

#### Beschreibung

[0001] Die Erfindung betrifft einen Flüssigkristallbildschirm aufweisend einen Signaleingang zum Empfangen eines Bildsignals von einer Bildsignalquelle, eine Flüssigkristallanzeige mit einer Vielzahl von Bildpunkten, eine mit dem Signaleingang und der Flüssigkristallanzeige verbundene Ansteuervorrichtung zum Ansteuern der Vielzahl von Bildpunkten in Abhängigkeit des empfangenen Bildsignals und eine mit der Ansteuervorrichtung verbundene Übersteuerungsvorrichtung, die dazu eingerichtet ist, wenigstens einige der Vielzahl von Bildpunkten zu übersteuern. Die Erfindung betrifft außerdem ein Verfahren zur Anzeige eines Bildsignals durch einen Flüssigkristallbildschirm.

[0002] Flüssigkristallbildschirme mit einer Übersteuerungsvorrichtung sind vielfach bekannt. Dabei versteht man unter einer Übersteuerungsvorrichtung, auch genannt Overdrive, eine Schaltung bzw. ein auf einem Mikroprozessor ablaufendes Programm, mit deren Hilfe einzelne Bildpunkte einer Flüssigkristallanzeige gezielt mit einem übersteuerten Signal angesteuert werden.

[0003] Die Bildpunkte von Flüssigkristallanzeigen enthalten Kristalle, deren Ausrichtung und damit auch deren Polarisationsrichtung in Abhängigkeit eines angelegten elektrischen Feldes eingestellt werden kann. In Zusammenhang mit polarisiertem Licht kann dadurch die Leuchtintensität eines jeden einzelnen Bildpunktes bzw. einer jeden Grundfarbe für jeden einzelnen Bildpunkt einzeln eingestellt werden. Aufgrund mechanischer Trägheit dauert das Ausrichten der Kristalle einer Flüssigkristallanzeige zum Einstellen einer neuen Polarisationsrichtung jedoch verhältnismäßig lange, insbesondere bei Bildfolgen mit sehr schnelle Farb- bzw. Helligkeitswechseln. Beispielsweise müssen bei einem Wechsel von einem schwarzen Bildpunkt zu einem weißen Bildpunkt sämtliche Kristalle um 90° gedreht werden.

[0004] Um die so genannte Latenzzeit von Flüssigkristallbildschirmen zu verringern, also die Zeit, die von einem Bildpunkt benötigt wird um einen neuen Polarisationszustand einzunehmen, wurden deshalb die so genannte Overdrive-Technik entwickelt, die bei großen Signalunterschieden zwischen einem vorhergehenden Bildsignal und einem aktuellen Bildsignal einen Bildpunkt gezielt mit einem übersteuerten Signal, beispielsweise einer überhöhten Spannung ansteuern, damit sich die Kristalle des Bildpunktes schneller ausrichten und die Latenzzeit verringert wird.

[0005] Figur 2 zeigt einen zeitlichen Signalverlauf für Flüssigkristallbildschirme nach dem Stand der Technik. [0006] Ein Bildpunkt, dessen Leuchtintensität einen von 255 diskreten Werten einnehmen kann, leuchtet zu einem ersten Zeitpunkt, der einen ersten Einzelbild eines Bildsignals entspricht, mit einer Intensität von 100. Ab dem zweiten Einzelbild soll die Leuchtintensität 200 betragen, wie dies durch die gestrichelte Linie angedeutet

[0007] Die obere Kurve zeigt die tatsächliche Leucht-

intensität ohne Übersteuerungsvorrichtung 21. Die tatsächliche Intensität nähert sich der gewünschten Intensität langsam von unten her an. Dabei ist der Anstieg zunächst größer, solange auch die Differenz zwischen Ist- und Sollintensität groß ist, und flacht dann ab, so dass der eigentliche Sollwert erst nach einem Zeitraum T<sub>1</sub> zum Ende des vierten Einzelbildes erreicht wird.

[0008] Die untere Kurve zeit die tatsächliche Leuchtintensität eines Flüssigkristallbildschirms mit Übersteuerungsvorrichtung 22. Er erreicht die vorgegeben Intensität nach einem Zeitraum T2 deutlich früher als der Flüssigkristallbildschirm ohne Übersteuerungsvorrichtung. Dazu wird der Bildpunkt zunächst mit einem überhöhten Intensitätssignal angesteuert, beispielsweise dem maximal möglichen Wert 255, um eine schnellere Neuausrichtung der Kristalle zu bewirken. Erst in nachfolgenden Einzelbildern wird der eigentliche Zielwert als Ansteuersignal verwendet. Als Resultat erreicht der Bildpunkt im dargestellten Fall bereits zu Beginn des dritte Einzelbildes die gewünschte Intensität.

[0009] Die Verwendung von Übersteuerungsvorrichtüngen birgt jedoch auch Nachteile. Beispielsweise leuchtet ein Bildpunkt kurzfristig heller auf, als dies dem eigentlich darzustellenden Bildsignal entspricht. Außerdem begünstigt die Verwendung von Übersteuerungsschaltungen das so genannte Bildrauschen, in dem normalerweise unterhalb der Wahrnehmungsschwelle liegende Unterschiede in der Lichtintensität benachbarter Bildpunkte bis in den wahrnehmbaren Bereich verstärkt werden.

[0010] Insbesondere bei Büroanwendungen wie beispielsweise Textverarbeitungsprogrammen ist dies nachteilhaft, weil die Augen eines Betrachters dadurch schneller ermüden. Gleichzeitig ist eine Übersteuerungsschaltung für einen überwiegend statischen Bildschirminhalt, wie er bei solchen Anwendungen auftritt, ohnehin unnötia.

[0011] Aus der Druckschrift US 2005/0225522 A1 ist ein Flüssigkristallbildschirm bekannt, bei dem eine Übersteuerungsvorrichtung in Abhängigkeit eines ermittelten Rauschpegels aktiviert oder deaktiviert wird.

[0012] Aufgabe der vorliegenden Erfindung ist es, einen weiter verbesserten Flüssigkristallbildschirm zu beschreiben, dessen Bildschirmanzeige noch besser an eine aktuelle Anzeigesituation angepasst ist. Darüber hinaus soll ein Verfahren beschrieben werden, das zur Anzeige eines Bildsignals durch einen solchen Flüssigkristallbildschirm geeignet ist.

[0013] Erfindungsgemäß wird die Aufgabe durch einen Flüssigkristallbildschirm der eingangs genannten Art gelöst, der dadurch gekennzeichnet ist, dass er eine mit der Ansteuervorrichtung verbundene Farbtemperaturwahlvorrichtung, die dazu eingerichtet ist, eine Farbtemperatur für den Flüssigkristallbildschirm festzulegen, und eine mit der Übersteuerungsvorrichtung und der Farbtemperaturvorrichtung verbundene Betriebsartwahlvorrichtung, die dazu eingerichtet ist, eine Betriebsart des Flüssigkristallbildschirms auszuwählen und in Abhängig-

20

keit der ausgewählten Betriebsart die Übersteuerungsvorrichtung und die Farbtemperaturwahlvorrichtung anzusteuern, aufweist.

[0014] Erfindungsgemäß umfasst der Flüssigkristallbildschirm eine Betriebsartwahlvorrichtung, durch die sowohl die Farbtemperatur als auch die Übersteuerungsvorrichtung des Flüssigkristallbildschirms in Abhängigkeit einer ausgewählten Betriebsart ansteuerbar sind. Damit kann zusätzlich zu einer geeigneten Einstellung für die Übersteuerungsvorrichtung auch eine daran angepasste, geeignete Farbtemperatur für die Anzeige eines Bildsignals gewählt werden. Durch Wahl von aufeinander abgestimmten Einstellungen wird eine optimierte Anzeige des Bildsignals bewirkt, ohne dass dazu verschiedene Einstellungen durch einen Benutzer vorgenommen werden müssen.

[0015] In einer vorteilhaften Ausgestaltung ist die Betriebsartwahlvorrichtung dazu eingerichtet, die Betriebsart in Abhängigkeit des empfangenen Bildsignals auszuwählen. Durch die Auswahl einer Betriebsart in Abhängigkeit des empfangenen Bildsignals kann eine automatische Anpassung des Flüssigkristallbildschirms an ein anzuzeigendes Bildsignal vorgenommen werden.

[0016] Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung weist der Flüssigkristallbildschirm eine Benutzerschnittstelle auf, durch die die Betriebsartwahlvorrichtung ansteuerbar ist. Durch Verwendung einer derartigen Benutzerschnittstelle, beispielsweise einem Bildschirmmenü oder einer Auswahltaste, kann ein Benutzer durch Auswahl einer Betriebsart gleichzeitig die Übersteuerungsvorrichtung und die Farbtemperaturwahlvorrichtung mittelbar ansteuern.

[0017] Gemäß einer weiteren vorteilhaften Ausgestaltung weist der Flüssigkristallbildschirm eine Steuerschnittstelle zum Übermitteln von Steuersignalen von der Bildsignalquelle an den Flüssigkristallbildschirm auf, wobei die Betriebsartwahlvorrichtung durch eine Übermittlung geeigneter Steuersignale ansteuerbar ist. Durch die Bereitstellung und Auswertung von Steuersignalen kann eine geeignete Betriebsart auch von der Signalquelle gewählt werden, beispielsweise einem an den Flüssigkristallbildschirm angeschlossenen Computer.

**[0018]** Die Aufgabe wird ebenso gelöst durch ein Verfahren zur Anzeige eines Bildsignals durch einen Flüssigkristallbildschirm, das die folgenden Schritte aufweist:

- Empfangen eines Bildsignals,
- Auswählen einer Betriebsart des Flüssigkristallbildschirms.
- Festlegen einer Farbtemperatur in Abhängigkeit der ausgewählten Betriebsart,
- Festlegen eines Übersteuerungsparameters in Abhängigkeit der ausgewählten Betriebsart,
- Ansteuern einer Vielzahl von Bildpunkten in Abhängigkeit des empfangenen Bildsignals sowie der festgelegten Farbtemperatur und dem Übersteuerungsparameter.

**[0019]** Durch das Auswählen einer Betriebsart für den Flüssigkristallbildschirm können Parameter zur Festlegung der Farbtemperatur und der Übersteuerung durch den Flüssigkristallbildschirm bestimmt werden.

[0020] Weitere Einzelheiten und Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.

**[0021]** Die Erfindung wird nachfolgend an einem Ausführungsbeispiel anhand der Zeichnungen näher erläutert. In den Zeichnungen zeigen:

- Figur 1 ein Flüssigkristallbildschirm gemäß einer Ausgestaltung der Erfindung,
- Figur 2 ein zeitlicher Signalverlauf für Flüssigkristallbildschirme mit und ohne Übersteuerungsvorrichtung,
- Figur 3 eine Tabelle mit geeigneten Ansteuerparametern für unterschiedliche Betriebsarten.

**[0022]** Figur 1 zeigt einen Flüssigkristallbildschirm 1. Der Flüssigkristallbildschirm 1 ist über eine Anschlussleitung 2 mit einer Bildsignalquelle 3 verbunden.

[0023] Die Anschlussleitung 2 ist mit einem Signaleingang 4 des Flüssigkristallbildschirms 1 verbunden, über den empfangene Bildsignale an einen Bilddecoder 5 weitergeleitet werden. Der Bilddecoder 5 decodiert das empfangene Bildsignal in eine Folge von Einzelbildern und stellt die decodierten Einzelbilder einer Ansteuervorrichtung 6 zur Verfügung. Die Ansteuervorrichtung 6 verarbeitet die empfangenen Einzelbilder weiter und steuert eine Flüssigkristallanzeige 7 mit einer Vielzahl von Bildpunkten 8 an. Dazu wird ein anzuzeigendes Bild in Spalten- und Zeileninformationen aufgeteilt, die über eine Spaltenansteuerung 9 und eine Zeilenansteuerung 10 verarbeitet werden.

**[0024]** Die Ansteuervorrichtung 6 umfasst eine Übersteuerungsvorrichtung 11, eine Farbtemperaturwahlvorrichtung 12, eine Betriebsartwahlvorrichtung 13 und einen Bildspeicher 14.

[0025] Die Ansteuervorrichtung 6 ist über ein Bildschirmmenü 15 ansteuerbar. Des Weiteren ist die Betriebsartwahlvorrichtung 13 über zwei Auswahltasten 17a und 17b einer Benutzerschnittstelle 16 ansteuerbar. [0026] In dem Ausführungsbeispiel stellt die Bildsignalquelle 3 ein Bildsignal mit einer Folge von Einzelbildern dem Signaleingang 4 des Flüssigkristallbildschirms 1 zur Verfügung. Der Bilddecoder 5 zerlegt das empfangene Bildsignal in eine Folge von Einzelbildern und leitet diese Bilder zur weiteren Verarbeitung an die Ansteuervorrichtung 6 weiter. Dabei ist es im Computerbereich üblich, dass 60 Einzelbilder je Sekunde in einem Bildsignal enthalten sind. Jedoch können auch davon abweichende Bildwiederholraten auftreten, insbesondere bei der Anzeige von Videos.

**[0027]** In dem gezeigten Ausführungsbeispiel ist der Bildspeicher 14 der Ansteuervorrichtung 6 dazu eingerichtet, mindestens ein Bild zu speichern. Dadurch ist es

40

möglich, ein neu von dem Bilddecoder 5 empfangenes Bild mit einem zuvor empfangenen Bild des Bildspeichers 14 zu vergleichen. Ein Vergleich von Einzelbildern ermöglicht beispielsweise die Bestimmung von Bewegungen, bei denen sich eine Vielzahl von Bildpunkten eines aktuellen Bildes von den Bildpunkten eines vorhergehenden Bildes unterscheidet.

**[0028]** Aber auch durch die Analyse eines einzelnen Bildes können charakteristische Merkmale eines Bildsignales bestimmt werden. Beispielsweise erlaubt eine statistische Analyse von benachbarten Bildpunkten eine Berechnung des Bildrauschens.

**[0029]** Alternativ zur Verwendung eines Bildspeichers 14 können auch Vorhersagealgorithmen durch die Ansteuervorrichtung 6 verwendet werden, um Bewegungen und andere Veränderungen eines Bildsignales festzustellen.

[0030] In dem Ausführungsbeispiel kann die Betriebsartwahlvorrichtung 13 zwischen vier verschiedenen Betriebsarten 31 auswählen. Die Betriebsarten 31 sind in der Tabelle 30 dargestellt und umfassen Betriebsarten für eine Textanzeige 31a, eine Fotoanzeige 31b, eine Videoanzeige 31c und eine Spielanzeige 31d.

[0031] Für jede der Betriebsarten 31 ist ein Wert für einen Übersteuerungsparameter 32 festgelegt. Der Übersteuerungsparameter 32 gibt die relative Stärke der zu verwendenden Übersteuerung für eine Betriebsart 31 an. In dem Ausführungsbeispiel wird in den Betriebsarten Textanzeige 31a und Fotoanzeige 31b keine Übersteuerung verwendet. In der Videoanzeige 31c wird die Übersteuerungsvorrichtung 11 mit 80 % der möglichen Übersteuerung betrieben und in der Spielanzeige 31d wird die Übersteuerungsvorrichtung 11 mit 100 % der möglichen Übersteuerung betrieben.

[0032] In einer weiteren Spalte der Tabelle 30 wird eine Farbtemperatur 33 für jede der Betriebsarten 31 festgelegt. In dem Ausführungsbeispiel wird zur Textanzeige 31a eine Farbtemperatur 33 von 9.300 K, also eine besonders hohe Farbtemperatur verwendet. Dieselbe Farbtemperatur wird auch zur Spielanzeige 31d verwendet. Für die Fotoanzeige 31b und Videoanzeige 31c wird eine niedrigere Farbtemperatur verwendet, in dem Ausführungsbeispiel eine Farbtemperatur von 7.500 bzw. 6.500 K.

[0033] In Abhängigkeit der gewählten Betriebsart 31 steuert die Betriebsartwahlvorrichtung 13 die Übersteuerungsvorrichtung 11 und die Farbtemperaturwahlvorrichtung 12 der Ansteuervorrichtung 6 an. Durch die Übersteuerungsvorrichtung 11 und die Farbtemperaturwahlvorrichtung 12 wird ein von dem Bilddecoder 5 zur Verfügung gestelltes Einzelbild so angepasst, dass es durch die Flüssigkristallanzeige 7 in einer für die gewählte Betriebsart 31 optimierten Darstellung angezeigt wird.

[0034] Befindet sich die Betriebsartwahlvorrichtung 13 beispielsweise in der Betriebsart 31 zur Spielanzeige 31d, reagiert die Übersteuerungsanzeige 11 bei schnellen Signalwechseln mit einer Übersteuerung des anzuzeigenden Bildsignals, wie es im oberen Teil der Figur 2

dargestellt ist. Gleichzeitig wird die Farbtemperatur 33 durch die Farbtemperaturwahlvorrichtung 12 auf einen hohen Wert eingestellt. Um die Farbtemperatur zu erhöhen, wird beispielsweise ein Blauanteil eines Bildsignals im Verhältnis zu Rotanteilen eines Bildsignals verstärkt. [0035] Gemäß dem Ausführungsbeispiel kann eine Betriebsart 31 durch die Betriebsartwahlvorrichtung 13 auf verschiedene Weisen festgelegt werden.

[0036] Zum einen ist es möglich, eine Betriebsart 31 mit Hilfe des Bildschirmmenüs 15 auszuwählen. Beispielsweise kann ein bestehendes Bildschirmmenü um ein zusätzliches Untermenü zur Auswahl von Betriebsarten 31 ergänzt werden. Dabei ist es auch möglich, in dem Bildschirmmenü 15 Einstellungen der Tabelle 30 zu verändern. Beispielsweise können neue Betriebsarten 31 mit eigenen Einstellungen für den Übersteuerungsparameter 32 und die Farbtemperatur 33 der Tabelle 30 hinzugefügt werden. Alternativ ist es auch möglich, vorhandene Einstellungen der Betriebsarten 31a bis 31d zu verändern.

[0037] Um eine besonders schnelle und sichere Auswahl von Betriebsarten 31 durch einen Benutzer des Flüssigkristallbildschirm 1 zu ermöglichen, können vorbestimmte Betriebsarten 31 wie beispielsweise eine Textanzeige 31a und eine Videoanzeige 31c Auswahltasten 17a bzw. 17b einer Benutzerschnittstelle 16 zugeordnet werden. Durch Drücken einer einzelnen Auswahltaste 17 lassen sich somit alle relevanten Parameter für eine Betriebsart 31 des Flüssigkristallbildschirms 1 einstellen. Ein verhältnismäßig umständliches Auswählen von Menüanträgen eines Bildschirmmenüs 15 entfällt.

[0038] Eine weitere Alternative besteht in der Fernsteuerung des Flüssigkristallbildschirm 1 durch die Bildsignalquelle 3. Insbesondere bei digitalen Signaleingängen 4, beispielsweise nach dem Display Data Channel Command Interface (DDC/CI) Standard können Steuerparameter von der Bildsignalquelle 3 an die Ansteuervorrichtung 6 übertragen werden.

[0039] Beispielsweise kann ein als Bildsignalquelle 3 dienender Computer ein Steuersignal zur Auswahl der Videoanzeige 31c übermitteln, wenn auf dem Computer ein Videoabspielprogramm abläuft, und Steuerparameter zum Auswählen einer Textanzeige 31a übermitteln, wenn auf dem Computer eine Textverarbeitung abläuft. [0040] In einer vorteilhaften Ausgestaltung wird eine automatische Auswahl der Betriebsart 31 vorgenommen. Eine automatische Betriebsartwahl kann durch die Betriebsartwahlvorrichtung 13 beispielsweise durch Analyse des empfangenen Bildsignales bzw. der Folge der decodierten Einzelbilder durchgeführt werden.

[0041] Durch Analyse charakteristischer Merkmale 34, die für jede der Betriebsarten 31 in der Tabelle 30 dargestellt sind, kann die Betriebsartwahlvorrichtung 13 eine geeignete Betriebsart 31 auswählen. Beispielsweise weisen Einzelbilder in einer Textanzeige typischerweise hohe Kontrastwerte zwischen benachbarten Bildbereichen auf, beispielsweise schwarze Schriftzeichen auf weißem Hintergrund. Eine Abfolge von Einzelbildern

15

20

25

30

35

40

45

ist dabei überwiegend statisch, da sich der Bildinhalt nur verhältnismäßig selten ändert.

[0042] Im Gegensatz dazu weisen Videoanzeigen 31c niedrigere Kontrastwerte auf, deren Folge von Bildern sich dynamisch ändert. Eine Erkennung von wechselnden Bildinhalten ist beispielsweise durch Anwendung von Kompressions- bzw. Dekompressionsalgorithmen möglich, in denen nur Veränderungen eines bestehenden Bildsignales verarbeitet werden.

#### Bezugszeichenliste

Elücciakrietallhildechirm

#### [0043]

|     | i idəsigki istalibildəci ili ili               |  |  |  |  |
|-----|------------------------------------------------|--|--|--|--|
| 2   | Anschlussleitung                               |  |  |  |  |
| 3   | Bildsignalquelle                               |  |  |  |  |
| 4   | Signaleingang                                  |  |  |  |  |
| 5   | Bilddecoder                                    |  |  |  |  |
| 6   | Ansteuervorrichtung                            |  |  |  |  |
| 7   | Flüssigkristallanzeige                         |  |  |  |  |
| 8   | Bildpunkt                                      |  |  |  |  |
| 9   | Spaltenansteuerung                             |  |  |  |  |
| 10  | Zeilenansteuerung                              |  |  |  |  |
| 11  | Übersteuerungsvorrichtung                      |  |  |  |  |
| 12  | Farbtemperaturwahlvorrichtung                  |  |  |  |  |
| 13  | Betriebsartwahlvorrichtung                     |  |  |  |  |
| 14  | Bildspeicher                                   |  |  |  |  |
| 15  | Bildschirmmenü                                 |  |  |  |  |
| 16  | Benutzerschnittstelle                          |  |  |  |  |
| 17  | Auswahltaste                                   |  |  |  |  |
| 21  | Leuchtintensität ohne Übersteuerungsvorrich-   |  |  |  |  |
|     | tung                                           |  |  |  |  |
| 22  | Leuchtintensität mit Übersteuerungsvorrichtung |  |  |  |  |
| 30  | Tabelle mit Betriebsarten                      |  |  |  |  |
| 31  | Betriebsart                                    |  |  |  |  |
| 31a | Textanzeige                                    |  |  |  |  |
| 31b | Fotoanzeige                                    |  |  |  |  |

## Patentansprüche

Videoanzeige

Spielanzeige

Farbtemperatur

Übersteuerungsparameter

charakteristisches Merkmal

Latenzzeit ohne Übersteuerungsvorrichtung

Latenzzeit ohne Übersteuerungsvorrichtung

31c

31d

32

33

34

T1

T2

- 1. Flüssigkristallbildschirm (1), aufweisend
  - einen Signaleingang (4) zum Empfangen eines Bildsignals von einer Bildsignalquelle (3),
  - eine Flüssigkristallanzeige (7) mit einer Vielzahl von Bildpunkten (8),
  - eine mit dem Signaleingang (4) und der Flüssigkristallanzeige (7) verbundene Ansteuervor-

richtung (6) zum Ansteuern der Vielzahl von Bildpunkten (8) in Abhängigkeit des empfangenen Bildsignals und

- eine mit der Ansteuervorrichtung (6) verbundene Übersteuerungsvorrichtung (11), die dazu eingerichtet ist, wenigstens einige der Vielzahl von Bildpunkten (8) zu übersteuern,

#### gekennzeichnet durch

- eine mit der Ansteuervorrichtung (6) verbundene Farbtemperaturwahlvorrichtung (12), die dazu eingerichtet ist, eine Farbtemperatur (33) für den Flüssigkristallbildschirm (1) festzulegen, und
- eine mit der Übersteuerungsvorrichtung (11) und der Farbtemperaturwahlvorrichtung (12) verbundene Betriebsartwahlvorrichtung (13), die dazu eingerichtet ist, eine Betriebsart (31) des Flüssigkristallbildschirms (1) auszuwählen und in Abhängigkeit der ausgewählten Betriebsart (31) die Übersteuerungsvorrichtung (11) und die Farbtemperaturwahlvorrichtung (12) anzusteuern.
- 2. Flüssigkristallbildschirm (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Betriebsartwahlvorrichtung (13) dazu eingerichtet ist, die Betriebsart (31) in Abhängigkeit des empfangenen Bildsignals auszuwählen.
- Flüssigkristallbildschirm (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Betriebsartwahlvorrichtung (13) durch eine Benutzerschnittstelle (16) des Flüssigkristallbildschirms (1), insbesondere ein Bildschirmmenü (15) oder eine Auswahltaste (17) ansteuerbar ist.
- Flüssigkristallbildschirm (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
  - der Flüssigkristallbildschirm (1) eine Steuerschnittstelle (4) zum Übermitteln von Steuersignalen von der Bildsignalquelle (3) an den Flüssigkristallbildschirm (1) aufweist und
  - die Betriebsartwahlvorrichtung (13) durch eine Übermittlung geeigneter Steuersignale ansteuerbar ist.
- 5. Flüssigkristallbildschirm (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Betriebsartwahlvorrichtung (13) zur Auswahl zwischen wenigstens zwei der folgenden Betriebsarten (31) eingerichtet ist: Textanzeige (31a), Fotoanzeige (31b), Videoanzeige (31c), Spielanzeige (31d).
- 6. Verfahren zur Anzeige eines Bildsignals durch einen

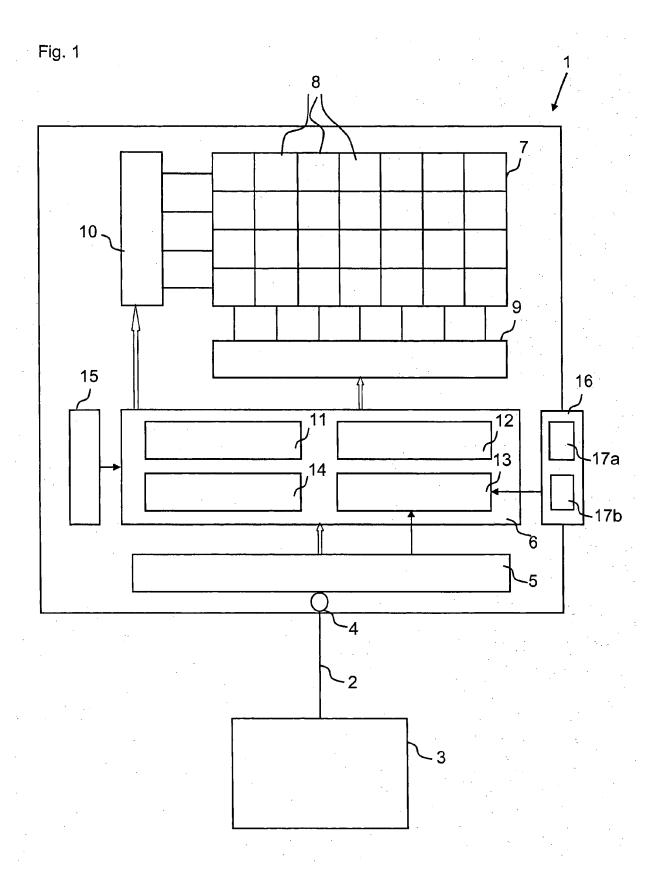
Flüssigkristallbildschirm (1), aufweisend die Schritte:

- Empfangen eines Bildsignals,
- Auswählen einer Betriebsart (31) des Flüssigkristallbildschirms (1),
- Festlegen einer Farbtemperatur (33) in Abhängigkeit der ausgewählten Betriebsart (31),
- Festlegen eines Übersteuerungsparameters (32) in Abhängigkeit der ausgewählten Betriebsart (31) und
- Ansteuern einer Vielzahl von Bildpunkten (8) in Abhängigkeit des empfangenen Bildsignals sowie der festgelegten Farbtemperatur (33) und des Übersteuerungsparameters (32).
- Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass im Schritt des Auswählens der Betriebsart (31) eine automatische Betriebsartenerkennung in Abhängigkeit des empfangenen Bildsignals durchgeführt wird.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die automatische Betriebsartenerkennung auf Grundlage eines Vergleichs zwischen einem gespeicherten, vorhergehenden Bildsignal und dem empfangenen, aktuellen Bildsignal durchgeführt wird.

15

20

30


35

40

45

50

55





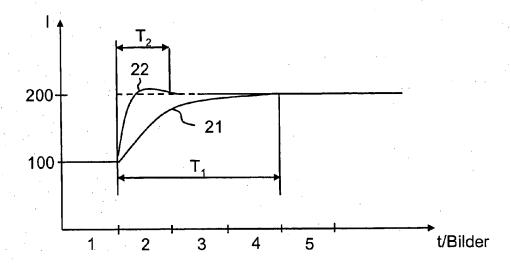



Fig. 3

|      |       | 32<br>}       | 33<br>/        | 34<br>                          |
|------|-------|---------------|----------------|---------------------------------|
| 30~  |       | Übersteuerung | Farbtemperatur | Charakteristik                  |
| 31a  | Text  | 0%            | 9300 K         | Hoher Kontrast statisch         |
| 31b~ | Foto  | 0%            | 7500 K         | Niedriger Kontrast<br>statisch  |
| 310~ | Video | 80%           | 6500 K         | Niedriger Kontrast<br>dynamisch |
| 31d  | Spiel | 100%          | 9300 K         | Hoher Kontrast<br>dynamisch     |

### EP 1 818 904 A2

### IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

## In der Beschreibung aufgeführte Patentdokumente

• US 20050225522 A1 [0011]