(19)
(11) EP 1 826 413 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
02.11.2011 Bulletin 2011/44

(21) Application number: 07103096.9

(22) Date of filing: 27.02.2007
(51) International Patent Classification (IPC): 
F04D 29/32(2006.01)
F01D 5/16(2006.01)
F04D 29/66(2006.01)

(54)

Rotor blade for a ninth phase of a compressor

Rotorblatt für die neunte Phase eines Kompressors

Pale de rotor de la neuvième phase d'un compresseur


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30) Priority: 27.02.2006 IT MI20060341

(43) Date of publication of application:
29.08.2007 Bulletin 2007/35

(73) Proprietor: Nuovo Pignone S.p.A.
50127 Florence (IT)

(72) Inventors:
  • NOVORI, Alessio
    Florence (IT)
  • ARINCI, Paolo
    50032, Firenze (IT)
  • LORUSSO, Salvatore
    Florence (IT)

(74) Representative: Bedford, Grant Richard 
Global Patent Operation - Europe GE International Inc. 15 John Adam Street
London WC2N 6LU
London WC2N 6LU (GB)


(56) References cited: : 
EP-A1- 1 645 720
US-A1- 2002 064 458
EP-A2- 1 528 223
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates generally to a blade of a rotor of a ninth phase of a compressor.

    [0002] More specifically, the invention relates to a blade of a rotor having a high aerodynamic efficiency of a ninth phase of a compressor.

    [0003] Compressors normally pressurize in their interior air removed from the outside.

    [0004] The fluid penetrates the compressor through a series of inlet ducts.

    [0005] In these channels, the gas has low pressure and low temperature characteristics, whereas as it passes through the compressor, the gas is compressed and its temperature increases.

    [0006] In order to increase the efficiency, the compressor is normally divided into various phases, each of which has a rotor and a stator respectively equipped with a series of blades.

    [0007] In recent years, technologically advanced compressors have been further improved, obtaining an increased improvement in efficiency, operating in particular on the aerodynamic conditions.

    [0008] The geometric configuration of the blades in fact significantly influences the aerodynamic efficiency.

    [0009] This depends on the fact that the geometric characteristics of the blade cause a distribution of the relative velocities in the fluid, consequently influencing the distribution of the limit layers along the walls and, ultimately, losses due to friction.

    [0010] EP-A-1 528 223, which is considered to represent the closest prior art, discloses a method for designing vanes. A quantitative characteristic (modeshape) of a first design is determined then modified to give a second design by one or more of leaning, sweeping of twisting the blade design or by altering the local shape of the design or by altering the material of the design.

    [0011] US 2002/0064458 discloses an array of a plurality of alternating high frequency and low frequency flow directing elements for use in turbo machinery device.

    [0012] In particular in the case of rotor blades of a ninth phase of a compressor an extremely high efficiency is required, at the same time maintaining an appropriate aerodynamic and mechanical load.

    [0013] An objective of an embodiment of the present invention is to provide a blade of a rotor of a ninth phase of a compressor which avoids or in any case reduces resonance problems due to flexural vibrations which reduce the life of the component, and at the same time allow a high aerodynamic efficiency.

    [0014] A further objective of an embodiment of the present invention is to provide a rotor of a ninth phase of a compressor which allows a high aerodynamic efficiency and at the same time allows a high reliability of the compressor to be obtained with a consequent increase in the power of the turbine itself with the same compressor dimensions.

    [0015] The present invention provides a rotor blade of a ninth phase of a compressor as specified in claim 1.

    [0016] Further characteristics of the invention are indicated in the subsequent claims.

    [0017] The characteristics and advantages of a rotor blade of a ninth phase of a compressor according to various embodiments of the present invention will appear more evident from the following illustrative and non-limiting description, referring to the enclosed schematic drawings in which:

    Figure 1 is a raised view of a rotor blade of a compressor produced with an aerodynamic profile according to an embodiment of the present invention;

    Figure 2 is a raised view of the opposite side of the blade of figure 1: and

    Figure 3 is a diagram of the maximum thickness trend of a blade according to an embodiment of the present invention, with respect to its height.



    [0018] With reference to the figures, a blade 10 is provided of a rotor of a ninth phase of a compressor.

    [0019] Said blade 10 is defined by means of coordinates of a discreet combination of points, in a Cartesian reference system (X,Y,Z), wherein the axis (Z) is a radial axis intersecting the central axis of the compressor, not shown.

    [0020] The profile of the blade 10 is identified by means of a series of closed intersection curves between the profile itself and planes (X,Y) lying at distances (Z) from the central axis.

    [0021] The profile of said blade 10 comprises a first substantially concave surface 3. which is pressurized, and a second substantially convex surface 5 which is in depression and opposite the first.

    [0022] The two surfaces 3, 5 are continuous and joined to each other, and together form the profile of said blade 10.

    [0023] At a base portion 12, commonly called "foot" of the blade 10, according to the known art there is a connecting joint with the aerodynamic profile of the blade 10 itself, said base portion 12 being suitable for being fixed to said rotor of said compressor.

    [0024] Said blade 10 comprises a thickening 30, i.e. a prolonged portion having a greater thickness with respect to the adjacent portions, which is substantially parallel to said base portion 12 so as to shift the resonance frequencies of said blade 10 outside a functioning frequency range of the rotor itself, thus reducing or in any case avoiding problems of instability and vibrations of the blade 10 and rotor.

    [0025] This advantageously leads to an increase in both the useful life and reliability of the rotor and compressor itself.

    [0026] Said thickening 30 relates to at least one section or closed curve, and is also situated half-way up the blade 10.

    [0027] In other words, said thickening 30 confers a dynamic behaviour to said blade which is such as to have flexural frequencies which fall outside a functioning velocity range of the rotor of said compressor and consequently such that there is no intensification of the maximum flexural deformation of the blade during the functioning of the compressor.

    [0028] This consequently leads to a higher performance of the compressor, of the rotor and a longer useful life of its components, as problems of resonance such as those described above are avoided.

    [0029] The clearances and tolerances of the blade and stator can therefore be dimensioned so as to further increase the performances of the compressor itself.

    [0030] This is possible as the blade 10 is prevented, upon deforming, from causing a contact and relative friction against the relative stator.

    [0031] In particular, each closed curve has a maximum thickness determined by the maximum distance between said first surface 3 and said second surface 5.

    [0032] Said maximum surface of each closed curve, along the height of the blade 10, moving towards a free end 14 of the blade 10, has first a decreasing and then an increasing trend, followed again by a decreasing and finally increasing trend, with two different slopes, said blade 10 comprising a further thickening substantially parallel to said base portion 12 and situated in particular close to said free end 14.

    [0033] For example, the variation in the trend of the maximum thickness is shown in figure 3, in which it is compared with the maximum thickness trend of a blade according to the known art. In particular, in figure 3, the abscissa indicates the height of the blade 10, whereas the ordinate represents the maximum thickness of the blade 10, adimensionalized by putting the thickness in correspondence with the foot of the blade equal to 1. In the diagram shown in figure 3, the lower line represents the maximum thickness trend of a blade according to the known art, whereas the upper line shows the trend of the maximum thickness of the blade according to an embodiment of the present invention.

    [0034] Along the height of the blade 10 in the direction of a free end 14 of the blade 10, said maximum thickness preferably has a trend which can be described by four different mathematical functions, identifying four different regions of the blade.

    [0035] In the first region, that closest to the blade 10, up to a height equal to 45% of the height of the blade, the maximum thickness trend can be described by a polynomial function of the fourth degree (first decreasing and subsequently increasing) and in particular said polynomial function is:


    wherein h represents the percentage of the height of the blade 10, and wherein Tmax is the maximum adimensionalized thickness relating to that closed curve corresponding to that percentage of the height of the blade 10.

    [0036] In the subsequent region, ranging from 45% to 58% of the height of the blade 10, the thickness varies according to the linear function (decreasing):



    [0037] Therefore, between 58% and 86% of the height of the blade 10, the thickness trend is represented by the linear function (increasing):



    [0038] Finally, between 86% and the free end 14 of the blade, the maximum thickness varies according to the linear function (increasing):



    [0039] The profile of each blade 10 was also suitably shaped to be able to maintain the same efficiency at high levels.

    [0040] The aerodynamic profile of each blade 10 is preferably defined by means of a series of closed curves whose coordinates are defined with respect to a Cartesian reference system X, Y, Z, wherein the axis Z is a radial axis intersecting the central axis of the turbine, and said closed curves lying at distances Z from the central axis are defined according to Table I, whose values, expressed in millimeters, refer to an aerodynamic profile at room temperature, in particular 25°C.



























































































    [0041] At the same time, each blade 10 therefore has an aerodynamic profile which allows a high conversion efficiency and a high useful life to be maintained.

    [0042] Furthermore, the aerodynamic profile of the blade 10 according to an embodiment of the invention is obtained with the values of Table I by piling up the series of closed curves and grouping them so as to obtain a continuous aerodynamic profile.

    [0043] In order to take into account the dimensional variability of each blade 10, the profile of each blade 10 can have a tolerance of +/- 2 mm in a normal direction with respect to the profile of the blade 10 itself.

    [0044] The profile of each blade 10 can also comprise a coating, applied subsequently and which varies the profile itself.

    [0045] Said antiwear coating preferably has a thickness defined in a normal direction at each surface of the blade 10 and ranging from 0 to 0.5 mm.

    [0046] It is evident, moreover, that the values of the coordinates of Table I can be multiplied or divided by a corrective constant to obtain a profile in a greater or smaller scale, maintaining the same form.

    [0047] According to another aspect of the present invention, a rotor of a ninth phase of a compressor is provided, which comprises a series of blades 10 of the type described above, each of which having a shaped aerodynamic profile, which are fixed to an outer surface of said rotor so as to be uniformly distanced thereon, and also oriented so as to confer a high efficiency to the compressor in which said rotor is preferably inserted.

    [0048] According to another aspect of the present invention, a compressor is provided, comprising a rotor of the type described above.

    [0049] It can thus be seen that a blade of a rotor of a ninth phase of a compressor according to various embodiments of the present invention achieves the objectives specified above.

    [0050] The rotor blade of a ninth phase of a compressor of various embodiments of the present invention thus conceived can undergo numerous modifcations and variants.

    [0051] Furthermore, in practice, the materials used, as also the dimensions and components, can vary according to technical requirements.


    Claims

    1. A blade (10) of a rotor of a ninth phase of a compressor, which can be defined by coordinates of a discreet combination of points, in a Cartesian reference system (X, Y, Z), wherein the axis (Z) is a radial axis intersecting the central axis of the compressor, said blade (10) having a profile which can be identified by means of a series of closed intersection curves between the profile itself and planes (X, Y) lying at distances (Z) from the central axis, said blade (10) being characterized in that it comprises
    a first thickening (30), substantially parallel to a base portion (12) of the blade (10) itself, fixable to said rotor, said thickening (30) being substantially situated half-way up the blade (10):

    a further thickening, substantially parallel to said base portion (12) and situated close to a free end (14); and

    the first and further thickening being suitable for shifting the natural resonance frequencies of the blade (10) itself outside a functioning frequency range of said rotor.


     
    2. The blade (10) according to claim 1, wherein it comprises a profile which is identified by a first substantially concave surface (3), which is pressurized, and a second substantially convex surface (5) which is in depression and which is opposite to the first, said two surfaces (3, 5) being continuous and joined to each other to form the profile of said blade 10.
     
    3. The blade (10) according to claim 2, wherein each closed curve has a maximum thickness determined by the maximum distance between said first surface (3) and said second surface (5), said maximum thickness of each closed curve, along the height of the blade 10 in the direction of a free end (14) of the blade (10), first having a decreasing and then an increasing trend, followed again by a decreasing and finally increasing trend, with a discontinuity point of the slope.
     
    4. The blade (10) according to claim 3, wherein along the height of the blade (10) in the direction of its free end (14), said maximum thickness has a trend according to the following equations, wherein h represents the height of the blade (10), expressed as a percentage of the total height of the blade (10), and wherein Tmax is the maximum adimensionalized thickness relating to the closed curve corresponding to the height:


    for height values ranging from 0 to 45%;


    for a height ranging from 45% to 58%;


    for a height ranging from 58% to 86%;


    for a height ranging from 86% to 100%.
     
    5. The blade (10) according to any of the previous claims, wherein the profile of each blade (10) has a tolerance of +/- 2 mm in a normal direction with respect to the profile of the blade 10 itself.
     
    6. The blade (10) according to any of the previous claims, wherein the profile of each blade (10) comprises an antiwear coating.
     
    7. The blade (10) according to claim 6, wherein said coating has a thickness ranging from 0 to 0.5 mm.
     
    8. A rotor of a ninth phase of a compressor, comprising a series of blades (10) according to any of the claims 1-7.
     
    9. The rotor according to claim 8, wherein said series of blades (10) is constrained to an outer surface of said rotor and said series of blades (10) is also uniformly distributed thereon in order to maximize the efficiency of the rotor itself.
     
    10. A compressor characterized in that it comprises a rotor according to claim 8 or claim 9.
     


    Ansprüche

    1. Laufschaufel (10) eines Rotors einer neunten Stufe eines Verdichters, welche durch Koordinaten einer diskreten Kombination von Punkten in einem kartesischen Bezugssystem (X, Y, Z) definiert werden kann, wobei die Achse (Z) eine die Mittenachse des Verdichters schneidende radiale Achse ist, die Laufschaufel (10) ein Profil besitzt, welches mittels einer Serie von geschlossenen Schnittkurven zwischen dem Profil selbst und in Abständen (Z) von der Mittenachse liegenden Ebenen (X, Y) bestimmt werden kann, wobei die Laufschaufel (10) dadurch gekennzeichnet ist, dass sie aufweist:

    eine erste Verdickung (30) im Wesentlichen parallel zu einem Basisabschnitt (12) der Laufschaufel (10) selbst, die an dem Rotor befestigt werden kann, wobei die Verdickung (30) im Wesentlichen auf halber Höhe der Laufschaufel (10) angeordnet ist;

    eine weitere Verdickung im Wesentlichen parallel zu dem Basisabschnitt (12) und nahe an einem freien Ende (14) angeordnet; und

    wobei die erste und weitere Verdickung dafür geeignet sind, die Eigenresonanzfrequenzen der Laufschaufel (10) selbst aus einem Funktionsfrequenzbereich des Rotors zu verschieben.


     
    2. Laufschaufel (10) nach Anspruch 1, wobei sie ein Profil aufweist, welches durch eine erste im Wesentlichen konkave Oberfläche (3), welche unter Druck steht, und eine zweite im Wesentlichen konvexe Oberfläche (5), welche sich im Unterdruck befindet, und welche der Ersten gegenüberliegt, bestimmt ist, wobei die zwei Oberflächen (3, 5) zusammenhängen und miteinander zur Ausbildung des Profils der Laufschaufel (10) verbunden sind.
     
    3. Laufschaufel (10) nach Anspruch 2, wobei jede geschlossene Kurve eine durch den maximalen Abstand zwischen der ersten Oberfläche (3) und der zweiten Oberfläche (5) bestimmte maximale Dicke hat, wobei die maximale Dicke jeder geschlossenen Kurve entlang der Höhe der Laufschaufel (10) in der Richtung zu dem freien Ende (14) der Laufschaufel (10) zuerst einen abnehmenden und dann einen zunehmenden Trend hat, dem wiederum ein abnehmender und schließlich zunehmender Trend mit einem Unstetigkeitspunkt der Steigung folgt.
     
    4. Laufschaufel (10) nach Anspruch 3, wobei die maximale Dicke entlang der Höhe der Laufschaufel (10) in der Richtung zu dessen freiem Ende (14) hin, einen Trend gemäß den nachstehenden Gleichungen hat, wobei h die Höhe der Laufschaufel (10) ausgedrückt als ein Prozentsatz der Gesamthöhe der Laufschaufel (10) repräsentiert, und wobei Tmax die maximale nicht dimensionierte Dicke in Bezug auf die der Höhe entsprechenden geschlossenen Kurve ist:


    für Höhenwerte von 0 bis 45 %;


    für eine Höhe von 45 % bis 58 %;


    für eine Höhe von 58 % bis 86 %;


    für eine Höhe von 86 % bis 100 %.
     
    5. Laufschaufel (10) nach einem der vorstehenden Ansprüche, wobei das Profil jeder Laufschaufel (10) eine Toleranz von ± 2 mm in einer Richtung rechtwinklig in Bezug auf das Profil der Laufschaufel (10) selbst hat.
     
    6. Laufschaufel (10) nach einem der vorstehenden Ansprüche, wobei das Profil jeder Laufschaufel (10) eine Beschichtung gegen Verschleiß aufweist.
     
    7. Laufschaufel (10) nach Anspruch 6, wobei die Beschichtung eine Dicke in dem Bereich von 0 bis 0,5 mm hat.
     
    8. Rotor einer neunten Stufe eines Verdichters, mit einer Serie von Laufschaufeln (10) gemäß einem der Ansprüche 1 bis 7.
     
    9. Rotor nach Anspruch 8, wobei die Serie der Laufschaufeln (10) auf eine Außenoberfläche des Rotors beschränkt ist und die Serie der Laufschaufeln (10) auch gleichmäßig darauf verteilt ist, um den Wirkungsgrad des Rotors selbst zu maximieren.
     
    10. Verdichter, dadurch gekennzeichnet, dass er einen Rotor gemäß Anspruch 8 oder Anspruch 9 aufweist.
     


    Revendications

    1. Aube (10) de rotor d'un neuvième étage d'un compresseur, qui peut être définie par des coordonnées d'une combinaison discrète de points, dans un système de coordonnées cartésiennes (X, Y, Z), l'axe (Z) étant un axe radial coupant l'axe central du compresseur, ladite aube (10) ayant un profil identifiable à l'aide d'une série de courbes d'intersection fermées entre le profil proprement dit et des plans (X, Y) situés à certaines distances (Z) de l'axe central, ladite aube (10) étant caractérisée en ce qu'elle comprend
    un premier épaississement (30), sensiblement parallèle à une partie basale (12) de l'aube (10) proprement dite, pouvant se fixer audit rotor, ledit épaississement (30) étant situé sensiblement à mi-hauteur sur l'aube (10) ;
    un autre épaississement, sensiblement parallèle à ladite partie basale (12) et situé près d'une extrémité libre (14) ; et
    le premier et l'autre épaississements permettant aux fréquences naturelles de résonance de l'aube (10) proprement dite de sortir d'une gamme de fréquences de fonctionnement dudit rotor.
     
    2. Aube (10) selon la revendication 1, comprenant un profil identifié par une première surface sensiblement concave (3), qui est sous pression, et par une seconde surface sensiblement convexe (5) qui est en dépression et est opposée à la première, lesdites deux surfaces (3, 5) étant continues et réunies l'une à l'autre pour former le profil de ladite aube (10).
     
    3. Aube (10) selon la revendication 2, dans laquelle chaque courbe fermée a une épaisseur maximale déterminée par la distance maximale entre ladite première surface (3) et ladite seconde surface (5), ladite épaisseur maximale de chaque courbe fermée, dans le sens de la hauteur de l'aube (10) en direction d'une extrémité libre (14) de l'aube (10), ayant tout d'abord une tendance à augmenter puis tendance à diminuer, suivie à nouveau d'une tendance à diminuer et enfin à augmenter, avec un point de discontinuité de la pente.
     
    4. Aube (10) selon la revendication 3, dans laquelle, dans le sens de la hauteur de l'aube (10) en direction de son extrémité libre (14), ladite épaisseur maximale a une tendance conforme aux équations ci-après, où h représente la hauteur de l'aube (10), exprimée en pourcentage de la hauteur totale de l'aube (10), et où Tmax est l'épaisseur maximale adimensionnalisée relative à la courbe fermée correspondant à la hauteur :


    pour des valeurs de hauteur de 0 à 45 % ;


    pour une hauteur de 45 % à 58%;


    pour une hauteur de 48 % à 86 % ;


    pour une hauteur de 86 % à 100 %.
     
    5. Aube (10) selon l'une quelconque des revendications précédentes, le profil de chaque aube (10) ayant une tolérance de ± 2 mm dans une direction normale par rapport au profil de l'aube (10) proprement dite.
     
    6. Aube (10) selon l'une quelconque des revendications précédentes, le profil de chaque aube (10) comportant un revêtement anti-usure.
     
    7. Aube (10) selon la revendication 6, dans laquelle ledit revêtement à une épaisseur de 0 à 0,5 mm.
     
    8. Rotor d'un neuvième étage d'un compresseur, comprenant une série d'aubes (10) selon l'une quelconque des revendications 1 à 7.
     
    9. Rotor selon la revendication 8, dans lequel ladite série d'aubes (10) est limitée à une surface extérieure dudit rotor et ladite série d'aubes (10) est également répartie uniformément sur celle-ci afin de parvenir à un rendement maximal du rotor proprement dit.
     
    10. Compresseur caractérisé en ce qu'il comprend un rotor selon la revendication 8 ou la revendication 9.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description