[0001] The present invention relates generally to a blade of a rotor of a ninth phase of
a compressor.
[0002] More specifically, the invention relates to a blade of a rotor having a high aerodynamic
efficiency of a ninth phase of a compressor.
[0003] Compressors normally pressurize in their interior air removed from the outside.
[0004] The fluid penetrates the compressor through a series of inlet ducts.
[0005] In these channels, the gas has low pressure and low temperature characteristics,
whereas as it passes through the compressor, the gas is compressed and its temperature
increases.
[0006] In order to increase the efficiency, the compressor is normally divided into various
phases, each of which has a rotor and a stator respectively equipped with a series
of blades.
[0007] In recent years, technologically advanced compressors have been further improved,
obtaining an increased improvement in efficiency, operating in particular on the aerodynamic
conditions.
[0008] The geometric configuration of the blades in fact significantly influences the aerodynamic
efficiency.
[0009] This depends on the fact that the geometric characteristics of the blade cause a
distribution of the relative velocities in the fluid, consequently influencing the
distribution of the limit layers along the walls and, ultimately, losses due to friction.
[0010] EP-A-1 528 223, which is considered to represent the closest prior art, discloses a method for designing
vanes. A quantitative characteristic (modeshape) of a first design is determined then
modified to give a second design by one or more of leaning, sweeping of twisting the
blade design or by altering the local shape of the design or by altering the material
of the design.
[0011] US 2002/0064458 discloses an array of a plurality of alternating high frequency and low frequency
flow directing elements for use in turbo machinery device.
[0012] In particular in the case of rotor blades of a ninth phase of a compressor an extremely
high efficiency is required, at the same time maintaining an appropriate aerodynamic
and mechanical load.
[0013] An objective of an embodiment of the present invention is to provide a blade of a
rotor of a ninth phase of a compressor which avoids or in any case reduces resonance
problems due to flexural vibrations which reduce the life of the component, and at
the same time allow a high aerodynamic efficiency.
[0014] A further objective of an embodiment of the present invention is to provide a rotor
of a ninth phase of a compressor which allows a high aerodynamic efficiency and at
the same time allows a high reliability of the compressor to be obtained with a consequent
increase in the power of the turbine itself with the same compressor dimensions.
[0015] The present invention provides a rotor blade of a ninth phase of a compressor as
specified in claim 1.
[0016] Further characteristics of the invention are indicated in the subsequent claims.
[0017] The characteristics and advantages of a rotor blade of a ninth phase of a compressor
according to various embodiments of the present invention will appear more evident
from the following illustrative and non-limiting description, referring to the enclosed
schematic drawings in which:
Figure 1 is a raised view of a rotor blade of a compressor produced with an aerodynamic
profile according to an embodiment of the present invention;
Figure 2 is a raised view of the opposite side of the blade of figure 1: and
Figure 3 is a diagram of the maximum thickness trend of a blade according to an embodiment
of the present invention, with respect to its height.
[0018] With reference to the figures, a blade 10 is provided of a rotor of a ninth phase
of a compressor.
[0019] Said blade 10 is defined by means of coordinates of a discreet combination of points,
in a Cartesian reference system (X,Y,Z), wherein the axis (Z) is a radial axis intersecting
the central axis of the compressor, not shown.
[0020] The profile of the blade 10 is identified by means of a series of closed intersection
curves between the profile itself and planes (X,Y) lying at distances (Z) from the
central axis.
[0021] The profile of said blade 10 comprises a first substantially concave surface 3. which
is pressurized, and a second substantially convex surface 5 which is in depression
and opposite the first.
[0022] The two surfaces 3, 5 are continuous and joined to each other, and together form
the profile of said blade 10.
[0023] At a base portion 12, commonly called "foot" of the blade 10, according to the known
art there is a connecting joint with the aerodynamic profile of the blade 10 itself,
said base portion 12 being suitable for being fixed to said rotor of said compressor.
[0024] Said blade 10 comprises a thickening 30, i.e. a prolonged portion having a greater
thickness with respect to the adjacent portions, which is substantially parallel to
said base portion 12 so as to shift the resonance frequencies of said blade 10 outside
a functioning frequency range of the rotor itself, thus reducing or in any case avoiding
problems of instability and vibrations of the blade 10 and rotor.
[0025] This advantageously leads to an increase in both the useful life and reliability
of the rotor and compressor itself.
[0026] Said thickening 30 relates to at least one section or closed curve, and is also situated
half-way up the blade 10.
[0027] In other words, said thickening 30 confers a dynamic behaviour to said blade which
is such as to have flexural frequencies which fall outside a functioning velocity
range of the rotor of said compressor and consequently such that there is no intensification
of the maximum flexural deformation of the blade during the functioning of the compressor.
[0028] This consequently leads to a higher performance of the compressor, of the rotor and
a longer useful life of its components, as problems of resonance such as those described
above are avoided.
[0029] The clearances and tolerances of the blade and stator can therefore be dimensioned
so as to further increase the performances of the compressor itself.
[0030] This is possible as the blade 10 is prevented, upon deforming, from causing a contact
and relative friction against the relative stator.
[0031] In particular, each closed curve has a maximum thickness determined by the maximum
distance between said first surface 3 and said second surface 5.
[0032] Said maximum surface of each closed curve, along the height of the blade 10, moving
towards a free end 14 of the blade 10, has first a decreasing and then an increasing
trend, followed again by a decreasing and finally increasing trend, with two different
slopes, said blade 10 comprising a further thickening substantially parallel to said
base portion 12 and situated in particular close to said free end 14.
[0033] For example, the variation in the trend of the maximum thickness is shown in figure
3, in which it is compared with the maximum thickness trend of a blade according to
the known art. In particular, in figure 3, the abscissa indicates the height of the
blade 10, whereas the ordinate represents the maximum thickness of the blade 10, adimensionalized
by putting the thickness in correspondence with the foot of the blade equal to 1.
In the diagram shown in figure 3, the lower line represents the maximum thickness
trend of a blade according to the known art, whereas the upper line shows the trend
of the maximum thickness of the blade according to an embodiment of the present invention.
[0034] Along the height of the blade 10 in the direction of a free end 14 of the blade 10,
said maximum thickness preferably has a trend which can be described by four different
mathematical functions, identifying four different regions of the blade.
[0035] In the first region, that closest to the blade 10, up to a height equal to 45% of
the height of the blade, the maximum thickness trend can be described by a polynomial
function of the fourth degree (first decreasing and subsequently increasing) and in
particular said polynomial function is:

wherein h represents the percentage of the height of the blade 10, and wherein Tmax
is the maximum adimensionalized thickness relating to that closed curve corresponding
to that percentage of the height of the blade 10.
[0036] In the subsequent region, ranging from 45% to 58% of the height of the blade 10,
the thickness varies according to the linear function (decreasing):

[0037] Therefore, between 58% and 86% of the height of the blade 10, the thickness trend
is represented by the linear function (increasing):

[0038] Finally, between 86% and the free end 14 of the blade, the maximum thickness varies
according to the linear function (increasing):

[0039] The profile of each blade 10 was also suitably shaped to be able to maintain the
same efficiency at high levels.
[0041] At the same time, each blade 10 therefore has an aerodynamic profile which allows
a high conversion efficiency and a high useful life to be maintained.
[0042] Furthermore, the aerodynamic profile of the blade 10 according to an embodiment of
the invention is obtained with the values of Table I by piling up the series of closed
curves and grouping them so as to obtain a continuous aerodynamic profile.
[0043] In order to take into account the dimensional variability of each blade 10, the profile
of each blade 10 can have a tolerance of +/- 2 mm in a normal direction with respect
to the profile of the blade 10 itself.
[0044] The profile of each blade 10 can also comprise a coating, applied subsequently and
which varies the profile itself.
[0045] Said antiwear coating preferably has a thickness defined in a normal direction at
each surface of the blade 10 and ranging from 0 to 0.5 mm.
[0046] It is evident, moreover, that the values of the coordinates of Table I can be multiplied
or divided by a corrective constant to obtain a profile in a greater or smaller scale,
maintaining the same form.
[0047] According to another aspect of the present invention, a rotor of a ninth phase of
a compressor is provided, which comprises a series of blades 10 of the type described
above, each of which having a shaped aerodynamic profile, which are fixed to an outer
surface of said rotor so as to be uniformly distanced thereon, and also oriented so
as to confer a high efficiency to the compressor in which said rotor is preferably
inserted.
[0048] According to another aspect of the present invention, a compressor is provided, comprising
a rotor of the type described above.
[0049] It can thus be seen that a blade of a rotor of a ninth phase of a compressor according
to various embodiments of the present invention achieves the objectives specified
above.
[0050] The rotor blade of a ninth phase of a compressor of various embodiments of the present
invention thus conceived can undergo numerous modifcations and variants.
[0051] Furthermore, in practice, the materials used, as also the dimensions and components,
can vary according to technical requirements.
1. A blade (10) of a rotor of a ninth phase of a compressor, which can be defined by
coordinates of a discreet combination of points, in a Cartesian reference system (X,
Y, Z), wherein the axis (Z) is a radial axis intersecting the central axis of the
compressor, said blade (10) having a profile which can be identified by means of a
series of closed intersection curves between the profile itself and planes (X, Y)
lying at distances (Z) from the central axis, said blade (10) being
characterized in that it comprises
a first thickening (30), substantially parallel to a base portion (12) of the blade
(10) itself, fixable to said rotor, said thickening (30) being substantially situated
half-way up the blade (10):
a further thickening, substantially parallel to said base portion (12) and situated
close to a free end (14); and
the first and further thickening being suitable for shifting the natural resonance
frequencies of the blade (10) itself outside a functioning frequency range of said
rotor.
2. The blade (10) according to claim 1, wherein it comprises a profile which is identified
by a first substantially concave surface (3), which is pressurized, and a second substantially
convex surface (5) which is in depression and which is opposite to the first, said
two surfaces (3, 5) being continuous and joined to each other to form the profile
of said blade 10.
3. The blade (10) according to claim 2, wherein each closed curve has a maximum thickness
determined by the maximum distance between said first surface (3) and said second
surface (5), said maximum thickness of each closed curve, along the height of the
blade 10 in the direction of a free end (14) of the blade (10), first having a decreasing
and then an increasing trend, followed again by a decreasing and finally increasing
trend, with a discontinuity point of the slope.
4. The blade (10) according to claim 3, wherein along the height of the blade (10) in
the direction of its free end (14), said maximum thickness has a trend according to
the following equations, wherein h represents the height of the blade (10), expressed
as a percentage of the total height of the blade (10), and wherein Tmax is the maximum
adimensionalized thickness relating to the closed curve corresponding to the height:

for height values ranging from 0 to 45%;

for a height ranging from 45% to 58%;

for a height ranging from 58% to 86%;

for a height ranging from 86% to 100%.
5. The blade (10) according to any of the previous claims, wherein the profile of each
blade (10) has a tolerance of +/- 2 mm in a normal direction with respect to the profile
of the blade 10 itself.
6. The blade (10) according to any of the previous claims, wherein the profile of each
blade (10) comprises an antiwear coating.
7. The blade (10) according to claim 6, wherein said coating has a thickness ranging
from 0 to 0.5 mm.
8. A rotor of a ninth phase of a compressor, comprising a series of blades (10) according
to any of the claims 1-7.
9. The rotor according to claim 8, wherein said series of blades (10) is constrained
to an outer surface of said rotor and said series of blades (10) is also uniformly
distributed thereon in order to maximize the efficiency of the rotor itself.
10. A compressor characterized in that it comprises a rotor according to claim 8 or claim 9.
1. Laufschaufel (10) eines Rotors einer neunten Stufe eines Verdichters, welche durch
Koordinaten einer diskreten Kombination von Punkten in einem kartesischen Bezugssystem
(X, Y, Z) definiert werden kann, wobei die Achse (Z) eine die Mittenachse des Verdichters
schneidende radiale Achse ist, die Laufschaufel (10) ein Profil besitzt, welches mittels
einer Serie von geschlossenen Schnittkurven zwischen dem Profil selbst und in Abständen
(Z) von der Mittenachse liegenden Ebenen (X, Y) bestimmt werden kann, wobei die Laufschaufel
(10)
dadurch gekennzeichnet ist, dass sie aufweist:
eine erste Verdickung (30) im Wesentlichen parallel zu einem Basisabschnitt (12) der
Laufschaufel (10) selbst, die an dem Rotor befestigt werden kann, wobei die Verdickung
(30) im Wesentlichen auf halber Höhe der Laufschaufel (10) angeordnet ist;
eine weitere Verdickung im Wesentlichen parallel zu dem Basisabschnitt (12) und nahe
an einem freien Ende (14) angeordnet; und
wobei die erste und weitere Verdickung dafür geeignet sind, die Eigenresonanzfrequenzen
der Laufschaufel (10) selbst aus einem Funktionsfrequenzbereich des Rotors zu verschieben.
2. Laufschaufel (10) nach Anspruch 1, wobei sie ein Profil aufweist, welches durch eine
erste im Wesentlichen konkave Oberfläche (3), welche unter Druck steht, und eine zweite
im Wesentlichen konvexe Oberfläche (5), welche sich im Unterdruck befindet, und welche
der Ersten gegenüberliegt, bestimmt ist, wobei die zwei Oberflächen (3, 5) zusammenhängen
und miteinander zur Ausbildung des Profils der Laufschaufel (10) verbunden sind.
3. Laufschaufel (10) nach Anspruch 2, wobei jede geschlossene Kurve eine durch den maximalen
Abstand zwischen der ersten Oberfläche (3) und der zweiten Oberfläche (5) bestimmte
maximale Dicke hat, wobei die maximale Dicke jeder geschlossenen Kurve entlang der
Höhe der Laufschaufel (10) in der Richtung zu dem freien Ende (14) der Laufschaufel
(10) zuerst einen abnehmenden und dann einen zunehmenden Trend hat, dem wiederum ein
abnehmender und schließlich zunehmender Trend mit einem Unstetigkeitspunkt der Steigung
folgt.
4. Laufschaufel (10) nach Anspruch 3, wobei die maximale Dicke entlang der Höhe der Laufschaufel
(10) in der Richtung zu dessen freiem Ende (14) hin, einen Trend gemäß den nachstehenden
Gleichungen hat, wobei h die Höhe der Laufschaufel (10) ausgedrückt als ein Prozentsatz
der Gesamthöhe der Laufschaufel (10) repräsentiert, und wobei T
max die maximale nicht dimensionierte Dicke in Bezug auf die der Höhe entsprechenden
geschlossenen Kurve ist:

für Höhenwerte von 0 bis 45 %;

für eine Höhe von 45 % bis 58 %;

für eine Höhe von 58 % bis 86 %;

für eine Höhe von 86 % bis 100 %.
5. Laufschaufel (10) nach einem der vorstehenden Ansprüche, wobei das Profil jeder Laufschaufel
(10) eine Toleranz von ± 2 mm in einer Richtung rechtwinklig in Bezug auf das Profil
der Laufschaufel (10) selbst hat.
6. Laufschaufel (10) nach einem der vorstehenden Ansprüche, wobei das Profil jeder Laufschaufel
(10) eine Beschichtung gegen Verschleiß aufweist.
7. Laufschaufel (10) nach Anspruch 6, wobei die Beschichtung eine Dicke in dem Bereich
von 0 bis 0,5 mm hat.
8. Rotor einer neunten Stufe eines Verdichters, mit einer Serie von Laufschaufeln (10)
gemäß einem der Ansprüche 1 bis 7.
9. Rotor nach Anspruch 8, wobei die Serie der Laufschaufeln (10) auf eine Außenoberfläche
des Rotors beschränkt ist und die Serie der Laufschaufeln (10) auch gleichmäßig darauf
verteilt ist, um den Wirkungsgrad des Rotors selbst zu maximieren.
10. Verdichter, dadurch gekennzeichnet, dass er einen Rotor gemäß Anspruch 8 oder Anspruch 9 aufweist.
1. Aube (10) de rotor d'un neuvième étage d'un compresseur, qui peut être définie par
des coordonnées d'une combinaison discrète de points, dans un système de coordonnées
cartésiennes (X, Y, Z), l'axe (Z) étant un axe radial coupant l'axe central du compresseur,
ladite aube (10) ayant un profil identifiable à l'aide d'une série de courbes d'intersection
fermées entre le profil proprement dit et des plans (X, Y) situés à certaines distances
(Z) de l'axe central, ladite aube (10) étant caractérisée en ce qu'elle comprend
un premier épaississement (30), sensiblement parallèle à une partie basale (12) de
l'aube (10) proprement dite, pouvant se fixer audit rotor, ledit épaississement (30)
étant situé sensiblement à mi-hauteur sur l'aube (10) ;
un autre épaississement, sensiblement parallèle à ladite partie basale (12) et situé
près d'une extrémité libre (14) ; et
le premier et l'autre épaississements permettant aux fréquences naturelles de résonance
de l'aube (10) proprement dite de sortir d'une gamme de fréquences de fonctionnement
dudit rotor.
2. Aube (10) selon la revendication 1, comprenant un profil identifié par une première
surface sensiblement concave (3), qui est sous pression, et par une seconde surface
sensiblement convexe (5) qui est en dépression et est opposée à la première, lesdites
deux surfaces (3, 5) étant continues et réunies l'une à l'autre pour former le profil
de ladite aube (10).
3. Aube (10) selon la revendication 2, dans laquelle chaque courbe fermée a une épaisseur
maximale déterminée par la distance maximale entre ladite première surface (3) et
ladite seconde surface (5), ladite épaisseur maximale de chaque courbe fermée, dans
le sens de la hauteur de l'aube (10) en direction d'une extrémité libre (14) de l'aube
(10), ayant tout d'abord une tendance à augmenter puis tendance à diminuer, suivie
à nouveau d'une tendance à diminuer et enfin à augmenter, avec un point de discontinuité
de la pente.
4. Aube (10) selon la revendication 3, dans laquelle, dans le sens de la hauteur de l'aube
(10) en direction de son extrémité libre (14), ladite épaisseur maximale a une tendance
conforme aux équations ci-après, où h représente la hauteur de l'aube (10), exprimée
en pourcentage de la hauteur totale de l'aube (10), et où Tmax est l'épaisseur maximale
adimensionnalisée relative à la courbe fermée correspondant à la hauteur :

pour des valeurs de hauteur de 0 à 45 % ;

pour une hauteur de 45 % à 58%;

pour une hauteur de 48 % à 86 % ;

pour une hauteur de 86 % à 100 %.
5. Aube (10) selon l'une quelconque des revendications précédentes, le profil de chaque
aube (10) ayant une tolérance de ± 2 mm dans une direction normale par rapport au
profil de l'aube (10) proprement dite.
6. Aube (10) selon l'une quelconque des revendications précédentes, le profil de chaque
aube (10) comportant un revêtement anti-usure.
7. Aube (10) selon la revendication 6, dans laquelle ledit revêtement à une épaisseur
de 0 à 0,5 mm.
8. Rotor d'un neuvième étage d'un compresseur, comprenant une série d'aubes (10) selon
l'une quelconque des revendications 1 à 7.
9. Rotor selon la revendication 8, dans lequel ladite série d'aubes (10) est limitée
à une surface extérieure dudit rotor et ladite série d'aubes (10) est également répartie
uniformément sur celle-ci afin de parvenir à un rendement maximal du rotor proprement
dit.
10. Compresseur caractérisé en ce qu'il comprend un rotor selon la revendication 8 ou la revendication 9.