

(11)

EP 1 829 918 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:

Corrected version no 1 (W1 B1)
Corrections, see
Drawings 1

(51) Int Cl.:

C08J 9/12 (2006.01) **B32B 5/18 (2006.01)**

(48) Corrigendum issued on:

20.06.2012 Bulletin 2012/25

(86) International application number:

PCT/JP2005/022858

(45) Date of publication and mention
of the grant of the patent:

28.12.2011 Bulletin 2011/52

(87) International publication number:

WO 2006/068009 (29.06.2006 Gazette 2006/26)

(21) Application number: **05816737.0**(22) Date of filing: **13.12.2005**(54) **THERMOPLASTIC RESIN FOAM**

THERMOPLASTISCHER HARZSCHAUM

MOUSSE DE RESINE THERMOPLASTIQUE

(84) Designated Contracting States:

DE ES FR GB IT

- **YAMAZAKI, H.,**
The Furukawa Electric Co., Ltd.
Tokyo 1008322 (JP)
- **MIYAGI, Hidehumi,**
The Furukawa Electric Co., Ltd.
Tokyo 1008322 (JP)
- **KIM, Yong Hoon,**
The Furukawa Electric Co., Ltd.
Tokyo 1008322 (JP)

(30) Priority: **24.12.2004 JP 2004373270**(43) Date of publication of application:
05.09.2007 Bulletin 2007/36(73) Proprietor: **The Furukawa Electric Co., Ltd.**
Tokyo 100-8322 (JP)

(74) Representative: **Grünecker, Kinkeldey,**
Stockmair & Schwanhäusser
Leopoldstrasse 4
80802 München (DE)

(72) Inventors:

- **MASUDA, Kohji,**
The Furukawa Electric Co., Ltd.
Tokyo 1008322 (JP)
- **ITO, Masayasu,**
The Furukawa Electric Co., Ltd.
Tokyo 1008322 (JP)
- **INAMORI, Kojiro,**
The Furukawa Electric Co., Ltd.
Tokyo 1008322 (JP)
- **YOSHIDA, Naoki,**
The Furukawa Electric Co., Ltd.
Tokyo 1008322 (JP)
- **KAWAKAMI, Michiaki,**
The Furukawa Electric Co., Ltd
Tokyo 1008322 (JP)

(56) References cited:

EP-A- 0 386 663	WO-A-00/44804
JP-A- 06 055 651	JP-A- 06 057 026
JP-A- 11 170 288	JP-A- 2000 169 615
JP-A- 2000 248 101	JP-A- 2002 300 690

- **DATABASE WPI Week 199413 Derwent**
Publications Ltd., London, GB; AN 1994-106356
XP002470721 & JP 06 055651 A (FURUKAWA
ELECTRIC CO LTD) 1 March 1994 (1994-03-01)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- DATABASE WPI Week 199918 Derwent Publications Ltd., London, GB; AN 1999-210917 XP002470684 & JP 11 049883 A (SEKISUI PLASTICS CO LTD) 23 February 1999 (1999-02-23)

Description

[0001] The present invention relates to thermoplastic resin foam. More particularly, the present invention relates to thermoplastic resin foam having fine pores with mean bubble diameter of 10 μ m or less therewithin. The thermoplastic resin foam obtained by the present invention has high optical reflectance, and thus, can be implemented effectively in backlights and illumination boxes for illumination signboards, lighting fixtures, displays and the like.

[0002] Conventionally proposed light reflector plates for use in backlights for illumination signboards, lighting fixtures, displays and the like, include those fabricated such that a light-reflecting synthetic resin film or sheet is formed into a three-dimensional shape to thereby yield a light reflector plate (refer to, for example, Patent Reference 1).

[0003] Known light-reflecting synthetic resin films and sheets include thermoplastic resin film or sheet having numerous fine bubbles or pores therewithin (for example, refer to Patent Reference 2), and thermoplastic resin film containing fillers wherein numerous voids are formed with the filler as the core (for example, refer to Patent Reference 3).

[0004] The former thermoplastic resin film or sheet having numerous fine bubbles or pores is obtained by placing molten or solid thermoplastic resin in contact with inert gas under increasing pressure, then depressurizing, and subsequently foaming the resin by heating the resin at a temperature higher than the softening temperature thereof under normal pressure. The obtained thermoplastic resin foam film or sheet has high reflectance due to a fine mean bubble diameter of 50 μ m or less, as well as superior shape-retention properties because the thickness thereof can be 200 μ m or more, and therefore, the thermoplastic resin foam film or sheet can be singly processed into a three-dimensional shape. The light reflectance of the thermoplastic resin foam film or sheet generally tends to indicate higher values as the number of bubbles per unit volume increases. Therefore, high light reflectance can be achieved because the smaller the bubble diameters are, the more the number of bubbles per unit volume of the resin is. Because thinner film or sheet can be obtained as a result, thermoplastic resin foam having numerous finer bubbles or pores is desired.

[0005] On the other hand, the latter thermoplastic resin film containing fillers can be obtained by forming an un-stretched film containing fillers such as calcium carbonate or barium sulfate and forming numerous voids with the fillers as the core by stretching this un-stretched film. However, because stretch processing is performed, the thickness of the obtained film becomes thin, under 200 μ m, and thus, the film alone does not have shape-retention properties and light leaking to the back surface of the film increases. Therefore, this film is implemented by placing a plate having sufficient strength and light-shielding properties to the back surface thereof.

[0006] Known thermoplastic polyester resin includes thermoplastic polyester resin foam formed by mixing an elastomer therewithin (for example, refer to Patent Reference 4). However, it is merely stated that impact-resistance is enhanced by mixing an elastomer with polyester, and there are no statements or implications regarding the bubble diameters of the obtained foam. It is difficult to make the bubbles fine and to disperse the bubbles evenly with the extrusion foaming method described in Patent Reference 4, and in reality, sheet formed by mixing an elastomer with polyester and performing extrusion foaming has large bubble diameters. Even when a reflecting plate is formed from this extrusion foamed sheet, the reflecting plate does not have sufficient functions as a reflecting plate because the reflectance is low.

[0007]

[Patent Reference 1] Japanese Patent Laid-Open Publication 2002-122863

[Patent Reference 2] WO Publication 97/01117

[Patent Reference 3] Japanese Patent Laid-Open Publication Heisei 4-296819

[Patent Reference 4] Japanese Patent Laid-Open Publication Heisei 11-49883

JP-A-06 055651 discloses a thermoplastic resin foam having a fine cell structure, being produced by mixing a crystalline thermoplastic resin with an amorphous thermoplastic resin, incorporating therein a non-reacting gas, and heating the mixture containing the gas under non-pressure conditions.

JP-A-11 049883 relates to the manufacture of a thermoplastic polyester resin foam, wherein a thermoplastic polyester resin and an elastomer are mixed in an extruder, a foaming agent is added and extrusion foaming is carried out.

WO 00/44804 discloses a polyurethane composition comprising the reaction product of:

50 (a) an A-Side composition comprising an isocyanate having an average functionality of at least 2.0; and
 (b) a B-side composition comprising:

55 (i) a polyol having a molecular weight of about 1000 g/mol or more, and having an average functionality of 2.0 or greater;
 (ii) a polyol having a Tg of about -80°C or less, and having a molecular weight of about 1000 g/mol or more, and having an average functionality of 2.0 or greater; and
 (iii) a polyhydric alcohol having a molecular weight of about 90 g/mol or more, and having an average functionality of 3.0 or more.

EP-A-0386663 relates to extruded foams and a process for preparing the foams which are in the form of billets or boards and which are characterized as having a density between about 0.9 and about 3.5 pounds per cubic foot.

[0008] In recent years, there has been a call for reduction in power consumption, and resin films or sheets having higher reflectance are required. Furthermore, the need for space-saving is rising, particularly in the fields of illumination signboards and displays, and thinner light-reflecting resin films or sheets are required. In addition, ultraviolet rays which promote the degradation of resin are emitted from the light source of the illumination signboards and displays, and therefore, processing for preventing degradation is strongly desired. An object of the present invention is to provide thermoplastic resin foam which not only has both high reflectance and shape-retention properties, but also has high ultraviolet inhibiting abilities.

[0009] As a result of thorough studies in order to resolve the foregoing issues, the present inventors found that thermoplastic resin foam having fine pores with a pore diameter of 10 μ m or less therewith can be obtained by foaming the resin after adding a certain thermoplastic resin to the thermoplastic resin. In addition, even if the thermoplastic resin is originally prone to ultraviolet degradation, this resin can be given high ultraviolet inhibiting abilities by adding a layer containing an ultraviolet inhibitor on at least one surface thereof.

[0010] In other words, in the present invention, it was discovered that, by adding thermoplastic resin (B), to which a functional group having a some kind of a mutual interaction (affinities such as polarization, hydrogen-bonding, or reaction) with the thermoplastic resin (A) has been added, to the thermoplastic resin (A), the thermoplastic resin (B) is finely dispersed throughout the thermoplastic resin (A), thus having a significant effect on the miniaturization of bubbles by becoming the starting points for crystal-nucleation, the starting points for bubble-nucleation and the like.

[0011] In other words, the present invention provides

a thermoplastic resin foam which is a resin sheet composed of thermoplastic resin (A) and thermoplastic resin (B), wherein said thermoplastic resin (B) has a functional group having an affinity with thermoplastic resin (A) and is selected from the groups as defined in claim 1, and said thermoplastic resin foam having a plurality of pores with a mean bubble diameter of 10 μ m or less therewith.

The present invention further provides a method for manufacturing the above thermoplastic resin foam, comprising a procedure for holding a resin sheet composed of thermoplastic resin (A) and thermoplastic resin (B), which has a functional group having an affinity with thermoplastic resin (A) as defined above, within a pressurized inert gas atmosphere to enable the resin sheet to contain inert gas, and a procedure for foaming by heating the resin sheet containing inert gas under normal pressure. Preferred embodiments are set forth in the subclaims.

Because the thermoplastic resin foam obtained by the present invention is fine, with a mean bubble diameter of 10 μ m or less, light reflectance is high, the sheet can be made thinner, and therefore, the thermoplastic resin foam can be used effectively as a light reflector plate.

Fig. 1 is a cross-sectional view of a light reflector created in an embodiment of the present invention.

[0012] The thermoplastic resin (A) implemented in the present invention is not particularly limited and can be polyester, polycarbonate, polyamide, polyolefin, polystyrene, acrylic resin, or the like. In addition, polyester can be selected from polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, or polyethylene naphtahalate, accordingly, and can be implemented singly or in a combination of two types or more. Among these, polyester resin is preferable, and polyethylene terephthalate is particularly favorable from the perspective of foaming and heat-resistance.

[0013] The function group in thermoplastic resin (B) is an amino group, a glycidyl group, a hydroxyl group, an aldehyde group, a carbonyl group, a sulfo group, a nitro group, a halogen group, an oxazoline group, an isocyanate group, or a thiol group. Among these, if thermoplastic resin (A) is polyester, the amino group and glycidyl group are preferable because the reactions thereof to polyester are favorable.

[0014] The thermoplastic resin (B) having the foregoing functional group which reacts to thermoplastic resin (A) is not particularly limited and can be general-purpose resins such as thermoplastic elastomer, polyolefin, polystyrene, polyvinylchloride (PVC), polybiphenylchloride, and polyvinyl alcohol, engineering plastics such as polycarbonate, polyamide, polyacetal, polyphenylene ether, ultrahigh molecular weight polyethylene, polysulfone, polyethersulfone, polyphenylenesulfide, polyalylate, polyamideimide, polyetherimide, polyetheretherketone, polyimide, polytetrafluoroethylene, liquid crystal polymer and fluororesin, or copolymers and mixtures thereof. For example, these base resins, to which a functional group is attached by graft or by introducing multiple functional groups, can be used as thermoplastic resin (B). Among these base resins, thermoplastic elastomer and polyolefin are preferable because the bubbles can be made finer.

[0015] Although the thermoplastic elastomer is not particularly limited and can be polystyrene elastomer, vinylchloride polyolefin elastomer, polyester elastomer, polyamide elastomer, polyurethane elastomer, and the like, styrene elastomer is further preferable. Styrene elastomer can be elastomer containing styrene, such as SBS (styrene-butadiene-styrene copolymer), SEBS (styrene-ethylene/butylene-styrene copolymer), SIS (styrene-isoprene-styrene copolymer), SEP (styrene-ethylene/propylene copolymer), SEBC (styrene-ethylene/butylene-ethylene block copolymer), and HSBR (hydrogenated styrene butadiene rubber). Among these, SEBS (styrene-ethylene/butylene-styrene copolymer) and SEBC

(styrene-ethylene/ butylenes-ethylene block copolymer) are more preferable.

[0016] In the present invention, if the specific density increases, or in other words, the foam growth decreases, this leads to a reduction in reflectance and formability due to reduction in the air bubble ratio and a decrease in weight-reduction effects, as a result, and thus, the specific density of the obtained thermoplastic resin foam is 0.7 or less. More preferably, the specific density is 0.65 or less, and further preferable is 0.5 or less. The specific density of the light reflector plate is preferable 0.05 or more.

[0017] In the present invention, although the amount of thermoplastic resin (B), which has a functional group, added to 100 parts by weight of thermoplastic resin (A) is not particularly limited, if the thermoplastic resin having a functional group is a polystyrene elastomer having a functional group, the amount is preferably 0.1 to 10 parts by weight. More preferably, it is 0.5 to 5 parts by weight, and further preferable is 0.5 to 3 parts by weight. If the amount of polystyrene elastomer, which has a functional group, added is less than 0.1 parts by weight, the air bubble diameters of the obtained foam tend to be large and dispersion tends to be uneven. On the other hand, if the amount of polystyrene elastomer, which has a functional group, added exceeds 10 parts by weight, it is disadvantageous from a cost perspective.

[0018] In the present invention, various additives, such as crystal nucleating agents, crystal promoting agents, bubble nucleating agents, antioxidants, antistatic agents, ultraviolet inhibitors, light stabilizers, fluorescent whitening agents, pigments, dyes, compatibilizing agents, lubricants, reinforcements, flame retardants, cross-linking agents, cross-linking aiding agents, plasticizers, thickening agents, and thinning agents, can be added to the thermoplastic resin before foaming, within a range which does not affect the characteristics thereof. In addition, resin containing the foregoing additives can be laminated onto the obtained thermoplastic resin foam or a coating containing these additives may be applied thereto. It is particularly preferable to apply a layer containing ultraviolet inhibitors or the like to at least one surface of the thermoplastic resin foam because sufficient ultraviolet-resisting degradation-inhibiting abilities can be given, even when materials which are prone to ultraviolet degradation are used in thermoplastic resin (A) and thermoplastic resin (B).

[0019] Although the method for manufacturing the thermoplastic resin foam of the present invention is not particularly limited, taking into consideration mass productivity, the implementation of a method such as the following is preferable. In other words, a method is implemented, wherein a resin sheet composed of thermoplastic resin (A) and thermoplastic resin (B), which has a functional group having an affinity with thermoplastic resin (A), is created, a roll is formed by layering and rolling the resin sheet and a separator, this roll is held in a pressurized inert gas atmosphere to enable the resin sheet to contain inert gas, and furthermore, the resin sheet containing inert gas is heated at a temperature higher than the softening temperature of thermoplastic resin (A), under normal pressure.

[0020] Helium, nitrogen, carbon-dioxide, argon and the like are given as inert gas. The amount of time for inert gas saturation and the amount of inert gas saturated until the resin sheet is in a saturated-state differs with the type of foamed resin, the type of inert gas, the saturation pressure and the thickness of the sheet. Carbon-dioxide is preferable, taking into consideration gas permeability (speed and solubility) to the resin.

[0021] In this method, the roll composed of the resin sheet and the separator can be made to contain organic solvent before being held in the pressurized inert gas atmosphere to enable the resin sheet to contain inert gas.

[0022] Benzene, toluene, methyl ethyl ketone, formic ether, acetone, acetic acid, dioxane, m-cresol, aniline, acrylonitrile, dimethyl phthalate, nitroethane, benzyl alcohol and the like are given as organic solvents. Among these, acetone is more preferable from the perspective of manageability and economic efficiency.

[0023] In the present invention, thermoplastic resin (B) is finely dispersed evenly throughout thermoplastic resin (A) because thermoplastic resin (B) has a functional group which mutually interacts in some way with thermoplastic resin (A). Although, if the thermoplastic resin (A) is polyester resin, in particular, the polyester resin crystallizes, induced by the inert gas, during gas permeation, there are effects such as the finely dispersed thermoplastic resin (B) becoming the starting points of crystal nucleation to form fine crystals, the starting points for bubble nucleation during foaming, or thermoplastic resin (B) forming fine foam. Therefore, when this resin sheet is foamed, there are fine pores with a mean bubble diameter of 10 μ m or less formed evenly within, and a foam having high reflectance can be obtained. It is thought that fine pores are created with regards to other resin by the same mechanism.

EXAMPLES

[0024] Embodiments of the present invention are explained hereafter. The measurements and evaluation of various characteristics of the obtained thermoplastic resin foam are as follows:

(Specific density)

[0025] The specific density (ρf) of the foamed sheet was measured by the underwater replacement method.

(Foam growth)

[0026] The foam growth was calculated by the ratio ρ_s/ρ_f of the specific density (ρ_f) of the foamed sheet and the specific density (ρ_s) of the resin prior to foaming. However, ρ_s was calculated as 1.34.

5

(Mean bubble diameter)

[0027] The mean bubble diameter was determined according to ASTM D3376-77. In other words, an SEM photograph of the cross-section of the sheet is taken, a line is drawn in the horizontal direction and the vertical direction on the SEM photograph, and the length t of the string of the bubble intersected by the lines are averaged out. The mean bubble diameter d was determined with the magnification of the photograph substituted in the following equation as M .

15

$$D = t / (0.616 \times M)$$

(Reflectance)

[0028] The reflectance at a wavelength of 550nm was measured using a spectral photometer (UV-3101 PC, manufactured by Shimadzu Corporation). In table 1, the diffused reflectance of respective thermoplastic resin foams are indicated by increments, with the diffused reflectance of a whiteboard composed of packed micronized barium sulfate 100%.

25

(Shape-retention)

[0029] The obtained thermoplastic resin foam was processed by heat-forming into a hemispheric light reflector plate having an opening part with a diameter of 100mm and a depth of 70mm, as shown in Fig. 1, by a vacuum forming machine. The existence of deformation was observed by holding the obtained light reflector plate manually and applying force thereto, and shape-retention was evaluated.

30

(Ultraviolet-resisting degradation-inhibiting abilities)

[0030] After the obtained thermoplastic resin foam was set in an ultraviolet degradation promoting device (Isuper UV tester SUV-W151, manufactured by Iwasaki Electric Co., Ltd.) and irradiated for 15 consecutive hours from an irradiation distance of 240mm, under a temperature of 63°C and 50% humidity, the color difference ΔE^*ab was calculated based on JIS Z8730.

35

(Example 1)

[0031] After adding and kneading 1 part by weight of SEBS (Dynaron 8630P, manufactured by JSR), having a functional group, into polyethylene terephthalate (grade: SA-1206, manufactured by Unitika, Ltd., $\rho_s=1.34$), a sheet with a thickness of 0.5mm, width of 300mm, and a length of 60mm was formed, this sheet and an olefin non-woven fabric separator (grade: FT300, manufactured by Japan Vilene Co., Ltd.) with a thickness of 160μm, a width of 290mm, a length of 60mm, and a weight of 55g/m² were layered and rolled into a rolled-shape such that there are no sections wherein the surface of the resin sheet come into contact with each other.

[0032] subsequently, this roll is placed in a pressure container, the container is pressurized to 6MPa by carbon-dioxide, and the resin sheet is saturated permeated with carbon-dioxide. The permeation time of the carbon-dioxide to the resin sheet was 72 hours. Next, the roll was removed from the pressure container and only the resin sheet was provided continuously to a hot-air circulation foaming furnace, set to 220°C, such that the foaming time is one minute, while removing the separator.

[0033] The obtained foam was foamed evenly and was extremely fine, with a mean bubble diameter of 1.5μm. The thickness of the foam became 0.8mm, and the reflectance of the foamed sheet indicated an extremely high value, 99.7%. In addition, upon evaluation of the ultraviolet-resisting degradation-inhibiting abilities after applying coating containing ultraviolet inhibitors to the surface, these abilities were an extremely superior 0.7.

45

(Example 2)

[0034] Aside from forming a sheet with a thickness of 0.5mm, width of 300mm, and a length of 60mm after adding

and kneading 1 part by weight of SEBC (Dynaron 4630P, manufactured by JSR), having a functional group, into polyethylene terephthalate (grade: SA-1206, manufactured by Unitika, Ltd., $ps=1.34$), the conditions were the same as that for Embodiment 1. The obtained foam was foamed evenly and was extremely fine, with a mean bubble diameter of $2.1\mu\text{m}$. The thickness of the foam became 0.8mm, and the reflectance of the foamed sheet indicated an extremely high value, 99.2%.

(Example 3)

[0035] Aside from adding 3 parts by weight of SEBS (Dynaron 8630P, manufactured by JSR), having a functional group, the conditions were the same as that for Embodiment 1. The obtained foam was foamed evenly and was extremely fine, with a mean bubble diameter of $1.3\mu\text{m}$. The thickness of the foam became 0.8mm, and the reflectance of the foamed sheet indicated an extremely high value, 99.5%.

(Example 4)

[0036] Aside from adding 5 parts by weight of SEBS (Dynaron 8630P, manufactured by JSR), having a functional group, the conditions were the same as that for Embodiment 1. The obtained foam was foamed evenly and was extremely fine, with a mean bubble diameter of $2.5\mu\text{m}$. The thickness of the foam became 0.8mm, and the reflectance of the foamed sheet indicated an extremely high value, 99.1 %.

(Example 5)

[0037] Aside from forming a sheet with a thickness of 0.5mm, width of 300mm, and a length of 60mm after adding and kneading 0.5 part by weight of SEBC (Dynaron 8630P, manufactured by JSR), having a functional group, into polyethylene terephthalate (grade: SA-1206, manufactured by Unitika, Ltd., $ps=1.34$), the conditions were the same as that for Embodiment 1. The obtained foam was foamed evenly and was extremely fine, with a mean bubble diameter of $2.6\mu\text{m}$. The thickness of the foam became 0.8mm, and the reflectance of the foamed sheet indicated an extremely high value, 99.0%.

(Example 6)

[0038] Aside from forming a sheet with a thickness of 0.5mm, width of 300mm, and a length of 60mm after adding and kneading 4 parts by weight of polyethylene (Bondfast E, manufactured by Sumitomo Chemical Co., Ltd.), having a functional group, into polyethylene terephthalate (grade: SA-1206, manufactured by Unitika, Ltd., $ps=1.34$), the conditions were the same as that for Embodiment 1. The obtained foam was foamed evenly and was extremely fine, with a mean bubble diameter of $1.0\mu\text{m}$. The thickness of the foam became 0.8mm, and the reflectance of the foamed sheet indicated an extremely high value, 99.0%.

(Example 7)

[0039] Aside from forming a sheet with a thickness of 0.5mm, width of 300mm, and a length of 60mm after adding and kneading 1.0 part by weight of SEBS (Dynaron 8630P, manufactured by JSR), having a functional group, into polycarbonate (grade: L-1250Y, manufactured by Teijin, Ltd., $ps=1.20$) to which thermoplastic elastomer was added, the conditions were the same as that for Embodiment 1. The obtained foam was foamed evenly and was extremely fine, with a mean bubble diameter of $4.0\mu\text{m}$. The thickness of the foam became 0.8mm, and the reflectance of the foamed sheet indicated an extremely high value, 98.0%.

(Comparative example 1)

[0040] Aside from forming a sheet with a thickness of 0.5mm, width of 300mm, and a length of 60mm, using polyethylene terephthalate (grade: SA-1206, manufactured by Unitika, Ltd.; $ps=1.34$) in which additives were not used, the conditions were the same as that for Embodiment 1. Although the obtained foam had favorable shape-retention properties, the bubbles were not even, the mean bubble diameter was $20\mu\text{m}$, and therefore, the reflectance was 80.1 %.

(Comparative example 2)

[0041] Aside from forming a sheet with a thickness of 0.5mm, width of 300mm, and a length of 60mm, using polyethylene terephthalate (grade: SA-1206, manufactured by Unitika, Ltd.; $ps = 1.34$) to which 1.0 part by weight of SEB (Dynaron

8600P, manufactured by JSR), not having a functional group, is added, the conditions were the same as that for Embodiment 1. Although the obtained foam had favorable shape-retention properties, the mean bubble diameter was 12 μm , and therefore, the reflectance was 89.5%.

[0042]

5

10

15

20

25

30

35

40

45

50

55

(Table 1).

	Amount of thermoplastic resin (B) (parts by weight)	Thickness of sheet after foaming (mm)	Mean bubble diameter (μm)	Specific density	Foam growth (times)	Reflectance (%)	Shape-retention	Ultraviolet-resisting degradation-inhibiting ability
Example 1	1	0.8	1.5	0.36	3.7	99.7	good	good
Example 2	1	0.8	2.1	0.43	3.1	99.2	good	good
Example 3	3	0.8	1.3	0.41	3.3	99.5	good	good
Example 4	5	0.8	2.5	0.28	4.8	99.1	good	good
Example 5	0.5	0.8	2.6	0.36	3.7	99.0	good	good
Example 6	4	0.8	1.0	0.35	3.8	99.0	good	good
Example 7	1	0.8	4.0	0.33	3.6	98.0	good	good
Comparative example 1	0	0.8	20	0.26	5.0	80.1	good	good
Comparative example 2	0	0.8	12	0.37	3.6	89.5	good	good

Claims

1. A thermoplastic resin foam which is a resin sheet composed of a thermoplastic resin (A) and a thermoplastic resin (B), wherein said thermoplastic resin (B) has a functional group having an affinity with the thermoplastic resin (A) and being selected from the group consisting of an amino group, a glycidyl group, a hydroxyl group, an aldehyde group, a carbonyl group, a sulfo group, a nitro group, a halogen group, an oxazoline group, an isocyanate group and a thiol group, and said thermoplastic resin foam having a plurality of pores with a mean bubble diameter of 10 μm or less therewithin.
2. The thermoplastic resin foam according to claim 1, wherein said thermoplastic resin (B) is a thermoplastic elastomer having said functional group.
3. The thermoplastic resin foam according to claim 2, wherein said thermoplastic resin (B) is a polystyrene elastomer having said functional group.
4. The thermoplastic resin foam according to any one of claims 1 to 3, wherein said thermoplastic resin (A) is a polyester resin.
5. The thermoplastic resin foam according to any one of claims 1 to 4, wherein specific density is 0.7 or less.
6. The thermoplastic resin foam according to any one of claims 1 to 5, wherein 0.1 to 10 parts by weight of the thermoplastic resin (B) which has said functional group is added to 100 parts by weight of said thermoplastic resin (A).
7. The thermoplastic resin foam according to any one of claims 1 to 6, to which a layer including an ultraviolet inhibitor is added to at least one surface thereof.
8. A method for manufacturing the thermoplastic resin foam according to any one of claims 1 to 7, comprising a procedure for holding a resin sheet composed of a thermoplastic resin (A) and a thermoplastic resin (B), wherein said thermoplastic resin (B) has a functional group selected from the group consisting of an amino group, a glycidyl group, a hydroxyl group, an aldehyde group, a carbonyl group, a sulfo group, a nitro group, a halogen group, an oxazoline group, an isocyanate group and a thiol group, within a pressurized inert gas atmosphere to enable the resin sheet to contain inert gas, and a procedure for foaming by heating the resin sheet containing inert gas under normal pressure.

Patentansprüche

1. Thermoplastischer Harzschaum, welcher eine Harzfolie ist, die zusammengesetzt ist aus einem thermoplastischen Harz (A) und einem thermoplastischen Harz (B), wobei das thermoplastische Harz (B) eine funktionelle Gruppe aufweist, die eine Affinität zu dem thermoplastischen Harz (A) aufweist und ausgewählt ist aus der Gruppe bestehend aus einer Aminogruppe, einer Glycidylgruppe, einer Hydroxylgruppe, einer Aldehydgruppe, einer Carbonylgruppe, einer Sulfogruppe, einer Nitrogruppe, einer Halogengruppe, einer Oxazolingruppe, einer Isocyanatgruppe und einer Thiolgruppe, und wobei der thermoplastische Harzschaum eine Mehrzahl von Poren mit einem mittleren Blasendurchmesser von 10 μm oder weniger darin aufweist.
2. Thermoplastischer Harzschaum nach Anspruch 1, wobei das thermoplastische Harz (B) ein thermoplastisches Elastomer mit der funktionellen Gruppe ist.
3. Thermoplastischer Harzschaum nach Anspruch 2, wobei das thermoplastische Harz (B) ein Polystyrolelastomer mit der funktionellen Gruppe ist.
4. Thermoplastischer Harzschaum nach einem der Ansprüche 1 bis 3, wobei das thermoplastische Harz (A) ein Polyesterharz ist.
5. Thermoplastischer Harzschaum nach einem der Ansprüche 1 bis 4, wobei die spezifische Dichte 0,7 oder weniger beträgt.
6. Thermoplastischer Harzschaum nach einem der Ansprüche 1 bis 5, wobei 0,1 bis 10 Gewichtsteile des thermopla-

stischen Harzes (B), welches die funktionelle Gruppe aufweist, zu 100 Gewichtsteilen des thermoplastischen Harzes (A) zugegeben werden.

5 7. Thermoplastischer Harzschaum nach einem der Ansprüche 1 bis 6, zu dem eine Schicht, die einen Ultraviolett-Inhibitor enthält, zu wenigstens einer Oberfläche davon zugegeben wird.

10 8. Verfahren zum Herstellen des thermoplastischen Harzschaums nach einem der Ansprüche 1 bis 7, umfassend eine Prozedur zum Halten einer Harzfolie, die zusammengesetzt ist aus einem thermoplastischen Harz (A) und einem thermoplastischen Harz (B), wobei das thermoplastische Harz (B) eine funktionelle Gruppe aufweist, die ausgewählt ist aus der Gruppe bestehend aus einer Aminogruppe, einer Glycidylgruppe, einer Hydroxylgruppe, einer Aldehydgruppe, einer Carbonylgruppe, einer Sulfogruppe, einer Nitrogruppe, einer Halogengruppe, einer Oxazolingruppe, einer Isocyanatgruppe und einer Thiolgruppe, in einer unter Druck stehenden Inertgasatmosphäre, um zu ermöglichen, dass die Harzfolie Inertgas enthält, und eine Prozedur zum Schäumen durch Erwärmen der Harzfolie, die Inertgas enthält, unter Normaldruck.

15

Revendications

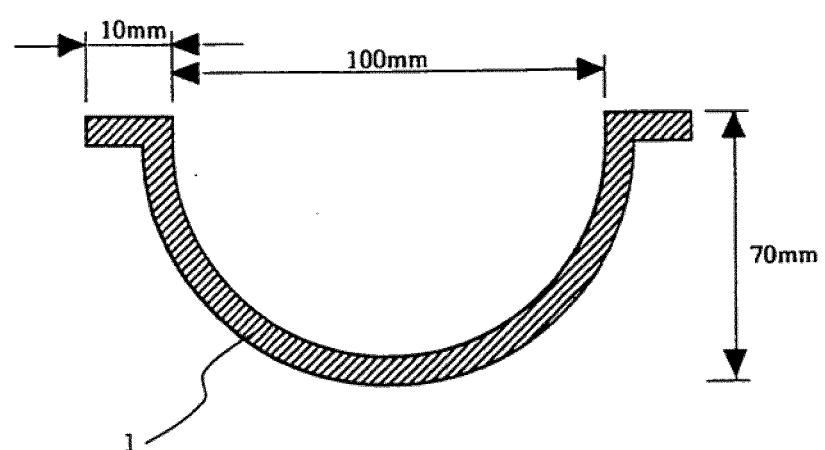
20 1. Mousse de résine thermoplastique qui est une feuille de résine composée d'une résine thermoplastique (A) et d'une résine thermoplastique (B), dans laquelle ladite résine thermoplastique (B) a un groupe fonctionnel ayant une affinité pour la résine thermoplastique (A) et choisi dans l'ensemble constitué par un groupe amino, un groupe glycidyle, un groupe hydroxyle, un groupe aldéhyde, un groupe carbonyle, un groupe sulfo, un groupe nitro, un groupe halogéno, un groupe oxazoline, un groupe isocyanate et un groupe thiol, ladite mousse de résine thermoplastique ayant une pluralité de pores ayant un diamètre de bulle moyen de 10 µm ou moins à l'intérieur de celle-ci.

25 2. Mousse de résine thermoplastique selon la revendication 1, dans laquelle ladite résine thermoplastique (B) est un élastomère thermoplastique ayant ledit groupe fonctionnel.

30 3. Mousse de résine thermoplastique selon la revendication 2, dans laquelle ladite résine thermoplastique (B) est un élastomère de polystyrène ayant ledit groupe fonctionnel.

35 4. Mousse de résine thermoplastique selon l'une quelconque des revendications 1 à 3, dans laquelle ladite résine thermoplastique (A) est une résine de polyester.

40 5. Mousse de résine thermoplastique selon l'une quelconque des revendications 1 à 4, dans laquelle la densité spécifique est de 0,7 ou moins.


45 6. Mousse de résine thermoplastique selon l'une quelconque des revendications 1 à 5, dans laquelle 0,1 à 10 parties en poids de la résine thermoplastique (B) qui a ledit groupe fonctionnel sont ajoutées à 100 parties en poids de ladite résine thermoplastique (A).

50 7. Mousse de résine thermoplastique selon l'une quelconque des revendications 1 à 6, à laquelle une couche contenant un inhibiteur d'ultraviolets est ajoutée sur au moins une surface de celle-ci.

55 8. Procédé pour fabriquer la mousse de résine thermoplastique selon l'une quelconque des revendications 1 à 7, comprenant une procédure pour maintenir une feuille de résine, composée d'une résine thermoplastique (A) et d'une résine thermoplastique (B), dans laquelle ladite résine thermoplastique (B) a un groupe fonctionnel choisi dans l'ensemble constitué par un groupe amino, un groupe glycidyle, un groupe hydroxyle, un groupe aldéhyde, un groupe carbonyle, un groupe sulfo, un groupe nitro, un groupe halogéno, un groupe oxazoline, un groupe isocyanate et un groupe thiol, dans une atmosphère de gaz inerte sous pression, pour permettre à la feuille de résine de contenir le gaz inerte, et une procédure pour effectuer le moussage par chauffage de la feuille de résine contenant le gaz inerte sous une pression normale.

55

[Fig. 1]

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2002122863 A [0007]
- WO 9701117 A [0007]
- JP HEISEI14296819 B [0007]
- JP HEISEI1149883 B [0007]
- JP 6055651 A [0007]
- JP 11049883 A [0007]
- WO 0044804 A [0007]
- EP 0386663 A [0007]