FIELD OF THE INVENTION
[0001] The invention relates to hot melt adhesives, in particular reactive hot melt adhesives
having improved green strength.
BACKGROUND OF THE INVENTION
[0002] Hot melt adhesives are solid at room temperature but, upon application of heat, melt
to a liquid or fluid state in which form they are applied to a substrate. On cooling,
the adhesive regains its solid form. The hard phase(s) formed upon cooling the adhesive
imparts all of the cohesion (strength, toughness, creep and heat resistance) to the
final adhesive. Curable hot melt adhesives, which are also applied in molten form,
cool to solidify and subsequently cure by a chemical crosslinking reaction. An advantage
of hot melt curable adhesives over traditional liquid curing adhesives is their ability
to provide "green strength" upon cooling prior to cure.
[0003] The majority of reactive hot melts are moisture-curing urethane adhesives. These
adhesives consist primarily of isocyanate terminated polyurethane prepolymers that
react with surface or ambient moisture in order to chain-extend, forming a new polyurethane
polymer. Polyurethane prepolymers are conventionally obtained by reacting diols with
diisocyanates. Pure diols are favored for use, instead of polyols with higher functionality,
to avoid excessive branching that can lead to poor pot stability. Methylene bisphenyl
diisocyanate (MDI) is favored over lower molecular weight isocyanates to minimize
volatility. Cure is obtained through the diffusion of moisture from the atmosphere
or the substrates into the adhesive, and subsequent reaction. The reaction of moisture
with residual isocyanate forms carbamic acid. This acid is unstable, decomposing into
an amine and carbon dioxide. The amine reacts rapidly with isocyanate to form a urea.
The final adhesive product is a crosslinked material held together primarily through
urea groups and urethane groups.
[0004] The prior art discloses that that the performance of reactive hot melt adhesives
for most applications may be substantially improved by the incorporation of acrylic
polymers into conventional polyurethane adhesives, in particular reactive hydroxy-containing
and nonreactive acrylic copolymers. Improvement in green strength may be obtained
by adding higher molecular weight polymers (reactive or not) and/or incorporating
crystalline diols, most commonly polyester diols.
[0005] These prior art adhesives are extremely tough, with outstanding low temperature flexibility,
heat and chemical resistance, and specific adhesion to polar substrates. Adhesion
to a wide range of other substrates may be obtained through the addition of adhesion
promoters such as silane coupling agents. Despite these advances in the art, there
remains a need for improvements in reactive hot melt technology to expand the application
of such adhesives and their effectiveness in such applications. The present invention
addresses this need.
SUMMARY OF THE INVENTION
[0006] The invention provides moisture curable reactive hot melt adhesive compositions that
have improved green strength.
[0007] One aspect of the invention is directed to a polyurethane hot melt adhesive composition
comprising an isocyanate and an effective amount of an aliphatic diol to prevent phase
separation. Another embodiment of the invention is directed to a method of improving
the green strength of a polyurethane hot melt adhesive comprising adding an effective
amount of an aliphatic diol to a reactive hot melt adhesive formulation.
[0008] Yet another embodiment of the invention is directed to a method for bonding materials
together which comprises applying the reactive hot melt adhesive composition of the
invention in a liquid form to a first substrate, bringing a second substrate in contact
with the composition applied to the first substrate, and subjecting the applied composition
to conditions which will allow the composition to cool and cure to an irreversible
solid form, said conditions comprising moisture.
[0009] Still another aspect of the invention is directed to an article of manufacture comprising
the adhesive of the invention.
DETAILED DESCRIPTION OF THE INVENTION
[0010] The disclosures of all documents cited herein are incorporated in their entireties
by reference.
[0011] All percents are percent by weight of the adhesive composition, unless otherwise
stated.
[0012] It has now been discovered that high green strength reactive hot melt adhesives may
be prepared using aliphatic diols. The adhesives of the invention have improved green
strength.
[0013] The moisture curable, hot melt polyurethane adhesives of the invention may be prepared
through the reaction of a mixture of aliphatic difunctionals, preferably aliphatic
diols, with an isocyanate-containing compound preferably containing a thermoplastic
polymer at a temperature of from about 120 °F to about 275 °F. The difunctionals are
added in an amount sufficient to prevent phase separation of the adhesive's components.
The adhesives of the invention comprise an isocyanate, MDI being preferred, greater
than about 2.0 wt% and preferably greater than about 5.0 wt% of an aliphatic diol,
from about 0 to about 90, preferably from about 5 to about 80 wt %, and most preferably
from about 10 to about 70 wt % of a polyester polyol and from about 0 to about 80,
preferably from about 5 to about 80 wt % and most preferably from about 10 to about
70 wt % of a polyether polyol.
[0014] To obtain the adhesive of the invention, any non-polymeric aliphatic compound having
a molecular weight lower than 2000 and containing active hydrogen atoms may be utilized.
Aliphatic diols that may be used to practice the invention are preferably reactive
and include dodecane, cyclohexane, decane, octane and hexane.
[0015] The reactive hot melt compositions of the invention are useful for bonding articles
composed of a wide variety of substrates (materials), including but not limited to
wood, metal glass and textiles. As such, these adhesive find particular use in applications
such as use in water towers, for bonding to exterior surfaces, bonding to wood with
high levels of pitch and e.g., in marine and automotive applications. Other non-limiting
uses include textile bonding applications (carpet and clothing), use in the manufacture
of footwear (shoes), use as a glazing/backbedding compound in the manufacture of windows,
use in the manufacture of doors including entry doors, garage doors and the like,
use in the manufacture of architectural panels, use in bonding components on the exterior
of vehicles, and the like.
[0016] The urethane prepolymers that can be used to prepare the adhesives of the invention
are those conventionally used in the production of polyurethane hot melt adhesive
compositions. Any suitable compound, which contains two or more isocyanate groups,
may be used for preparing the urethane prepolymers. Typically from about 2 to about
25 parts by weight of an isocyanate is used.
[0017] Organic polyisocyanates, which may be used to practice the invention, include alkylene
diisocyanates, cycloalkylene diisocyanates, aromatic diisocyanates and aliphatic-aromatic
diisocyanates. Specific examples of suitable isocyanate-containing compounds include,
but are not limited to, ethylene diisocyanate, ethylidene diisocyanate, propylene
diisocyanate, butylene diisocyanate, trimethylene diisocyanate, hexamethylene diisocyanate,
toluene diisocyanate, cyclopentylene-1, 3-diisocyanate, cyclo-hexylene-1,4-diisocyanate,
cyclohexylene-1,2-diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,2-diphenylpropane-4,4'-diisocyanate,
xylylene diisocyanate, 1,4-naphthylene diisocyanate, 1,5-naphthylene diisocyanate,
m-phenylene diisocyanate, p-phenylene diisocyanate, diphenyl-4,4'-diisocyanate, azobenzene-4,4'-diisocyanate,
diphenylsulphone-4,4'-diisocyanate, 2,4-tolylene diisocyanate, dichlorohexa-methylene
diisocyanate, furfurylidene diisocyanate, 1-chlorobenzene-2,4-diisocyanate, 4,4',4"-triisocyanatotriphenylmethane,
1,3,5-triisocyanato-benzene, 2,4,6-triisocyanato-toluene, 4,4'-dimethyldiphenyl-methane-2,2',5,5-tetratetraisocyanate,
and the like. While such compounds are commercially available, methods for synthesizing
such compounds are well known in the art. Preferred isocyanate-containing compounds
are methylenebisphenyldiisocyanate (MDI), isophoronediisocyanate (IPDI), hydrogenated
methylenebisphenyldiisocyanate (HMDI) and toluene diisocyanate (TDI).
[0018] Preferably the adhesive is prepared by including a thermoplastic polymer. The thermoplastic
polymer may be either a functional or a non-functional thermoplastic. Suitable thermoplastic
polymers include acrylic polymers, functional acrylic polymers, non-functional acyrlic
polymers, hydroxy functional acrylic polymers, polyvinyl acetate, polyvinyl chloride,
methylene polyvinyl ether, cellulose acetate, styrene acrylonitrile, amorphous polyolefin,
thermoplastic urethane, polyacrylonitrile, functional EVA, block copolymers, ethylene/acrylate
copolymers, ethyl methacrylate, ethyl hexyl acrylate, ethylene-n-butyl acrylate, polybutadiene
diol, ethylene butadiene, isobutylene diol, and mixtures thereof.
[0019] Most commonly, the prepolymer is prepared by the polymerization of a polyisocyanate
with a polyol, most preferably the polymerization of a diisocyanate with a diol. Following
the polymerization reaction, the composition comprises greater than about 40 weight
percent of the urethane prepolymer. In certain embodiments the composition may comprise
greater than about 45 or 50 weight percent. The polyols used include polyhydroxy ethers
(substituted or unsubstituted polyalkylene ether glycols or polyhydroxy polyalkylene
ethers), polyhydroxy polyesters, the ethylene or propylene oxide adducts of polyols
and the monosubstituted esters of glycerol, as well as mixtures thereof. The polyol
is typically used in an amount of between about 10 to about 70 parts by weight.
[0020] Examples of polyether polyols include a linear and/or branched polyether having plural
numbers of ether bondings and at least two hydroxyl groups, and contain substantially
no functional group other than the hydroxyl groups. Examples of the polyether polyol
may include polyoxyalkylene polyol such as polyethylene glycol, polypropylene glycol,
polybutylene glycol and the like. Further, a homopolymer and a copolymer of the polyoxyalkylene
polyols may also be employed. Particularly preferable copolymers of the polyoxyalkylene
polyols may include an adduct at least one compound selected from the group consisting
of ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene
glycol, 2-ethylhexanediol-1,3,glycerin, 1,2,6-hexane triol, trimethylol propane, trimethylol
ethane, tris(hydroxyphenyl)propane, triethanolamine, triisopropanolamine, ethylenediamine
and ethanolamine; with at least one compound selected from the group consisting of
ethylene oxide, propylene oxide and butylene oxide.
[0021] A number of suitable polyols are commercially available. Non-limiting examples include
CP4701 (Dow Chemicals), Niax 11-34 (Union Carbide Corp)., Desmorphen 3900 (Bayer),
Propylan M12 (Lankro Chemicals), Highflex 303 (Daiichi Kogyo Seiyaku K.K.) and Daltocel
T 32-75 (ICI). "Polymer polyols" are also suitable, i.e., graft polyols containing
a proportion of a vinyl monomer, polymerized in situ, e.g., Niax 34-28.
[0022] Polyester polyols are formed from the condensation of one or more polyhydric alcohols
having from 2 to 15 carbon atoms with one or more polycarboxylic acids having from
2 to 14 carbon atoms. Examples of suitable polyhydric alcohols include ethylene glycol,
propylene glycol such as 1,2-propylene glycol and 1,3-propylene glycol, glycerol,
pentaerythritol, trimethylolpropane, 1,4,6-octanetriol, butanediol, pentanediol, hexanediol,
dodecanediol, octanediol, chloropentanediol, glycerol monallyl ether, glycerol monoethyl
ether, diethylene glycol, 2-ethylhexanediol-1,4, cyclohexanediol-1,4, 1,2,6-hexanetriol,
1,3,5-hexanetriol, 1,3-bis-(2-hydroxyethoxy)propane and the like. Examples of polycarboxylic
acids include phthalic acid, isophthalic acid, terephthalic acid, tetrachlorophthalic
acid, maleic acid, dodecylmaleic acid, octadecenylmaleic acid, fumaric acid, aconitic
acid, trimellitic acid, tricarballylic acid, 3,3'-thiodipropionic acid, succinic acid,
adipic acid, malonic acid, glutaric acid, pimelic acid, sebacic acid, cyclohexane-1,2-dicarboxylic
acid, 1,4-cyclohexadiene-1,2-dicarboxylic acid, 3-methyl-3,5-cyclohexadiene-1,2-dicarboxylic
acid and the corresponding acid anhydrides, acid chlorides and acid esters such as
phthalic anhydride, phthaloyl chloride and the dimethyl ester of phthalic acid. Preferred
polycarboxylic acids are the aliphatic and cycloaliphatic dicarboxylic acids containing
no more than 14 carbon atoms and the aromatic dicarboxylic acids containing no more
than 14 atoms.
[0023] Commercially available polyols which may be used in the practice of the invention
include polyethers such as ARCOL PPG 2025 (Bayer), PolyG 20-56 (Arch) and Pluracol
P-2010 (BASF), polyesters such as Dynacoll 7360 (Creanova), Fomrez 66-32 (Crompton)
and Rucoflex S-105-30 (Bayer) and polybutadiene such as PolyBD R-45HTLO (Elf Atochem).
[0024] In addition, the urethane prepolymers may be prepared by the reaction of a polyisocyanate
with a polyamino or a polymercapto-containing compound such as diamino polypropylene
glycol or diamino polyethylene glycol or polythioethers such as the condensation products
of thiodiglycol either alone or in combination with other glycols such as ethylene
glycol, 1,2-propylene glycol or with other polyhydroxy compounds disclosed above.
In accordance with one embodiment of the invention, the hydroxyl containing acrylic
polymer may function as the polyol component, in which case, no additional polyol
need be added to the reaction.
[0025] Further, small amounts of low molecular weight dihydroxy, diamino, or amino hydroxy
compounds may be used such as saturated and unsaturated glycols, e.g., ethylene glycol
or condensates thereof such as diethylene glycol, triethylene glycol, and the like;
ethylene diamine, hexamethylene diamine and the like; ethanolamine, propanolamine,
N-methyldiethanolamine and the like.
[0026] Virtually any ethylenically unsaturated monomer containing a functionality greater
than one may be utilized in the compositions of the present invention. Functional
monomers include, without limitation acid, hydroxy, amine, isocyanate, and thiol functional
monomers. Hydroxyl functionality is preferred and is described in detail herein.
[0027] Most commonly employed are hydroxyl substituted C
1 to C
12 esters of acrylic and methacrylic acids including, but not limited to hydroxyl substituted
methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, isobutyl
acrylate, n-propyl or iso-propyl acrylate or the corresponding methacrylates. Mixtures
of compatible (meth)acrylate monomers may also be used. Additional monomers that may
be used include the hydroxyl substituted vinyl esters (vinyl acetate and vinyl propionate),
vinyl ethers, fumarates, maleates, styrene, acrylonitrile, etc. as well as comonomers
thereof.
[0028] These monomers may blended with other copolymerizable comonomers as formulated so
as to have a wide range of Tg values, as between about -48° C and 105° C, preferably
15° C to 85° C. Suitable comonomers include the C
1 to C
12 esters of acrylic and methacrylic acids including, but not limited to methyl acrylate,
ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, n-propyl
or iso-propyl acrylate or the corresponding methacrylates. Mixtures of compatible
(meth)acrylate monomers may also be used. Additional monomers that may be used include
the vinyl esters (vinyl acetate and vinyl propionate), vinyl ethers, fumarates, maleates,
styrene, acrylonitrile, ethylene, etc. as well as comonomers thereof. The hydroxyl
containing monomers may be the same or different from the monomers used in the remainder
of the acrylic polymerization. The particular monomers selected will depend, in large
part, upon the end use for which the adhesives are intended. Thus, adhesives to be
used in pressure sensitive applications or in applications wherein adhesion to metal
is required will be selected to obtain a lower Tg polymer than may be desired in non-pressure
sensitive applications or those involving more easily bonded substrates.
[0029] When the adhesive is to be prepared utilizing monomeric materials, the respective
monomers may be added to the polyols and polymerized therein prior to formation of
the prepolymer or may be added to the already formed prepolymer and the acrylic polymerization
subsequently performed. In the case of polyamino or polymercapto containing prepolymers,
in-situ vinylic polymerization must be performed only in the pre-formed prepolymer.
[0030] The hydroxyl containing ethylenically unsaturated monomer is polymerized using conventional
free radical polymerization procedures to a relatively low molecular weight. For purposes
of clarification, use of the term "low molecular weight" means number average molecular
weights in the range of approximately 1,000 to 50,000, preferred for use are monomers
having an average molecular weight in the range of from about 5,000 to about 30,000.
Molecular weight distribution is characterized by Gel Permeation Chromatography using
a PL Gel, Mixed 10 micron column, a Shimadzu Model RID 6A Detector with a tetrahydrofuran
carrier solvent at a flow rate of 1 milliliter per minute. The low molecular weight
is obtained by carefully monitoring and controlling the reaction conditions and, generally,
by carrying out the reaction in the presence of a chain transfer agent such as dodecyl
mercaptan. Subsequent to the polymerization of the ethylenically unsaturated monomer(s),
the polyisocyanate and any additional ingredients required for the urethane prepolymer
forming reaction are added and that reaction is carried out using conventional condensation
polymerization procedures. In this manner, the resultant isocyanate terminated urethane
prepolymer forms the reactive curing hot melt adhesive described above which contains
about 2 to about 90 % of the low molecular weight hydroxyl containing polymer.
[0031] It is also possible to polymerize the low molecular weight polymer in the presence
of the already formed isocyanate terminated urethane prepolymer. This method has the
drawback of subjecting the prepolymer to unnecessary heating during the acrylic polymerization,
heating that might result in branching, viscosity increase, depletion of needed isocyanate
groups and possible gellation. Although these disadvantages are subject to control,
more stringent control of conditions are required as compared to polymerization in
the non-isocyanate functional urethane components. When the reaction is run in the
polyol or other non-isocyanate containing component, there is also the advantage of
lower reaction viscosities and reduced exposure to isocyanate vapors because of the
lesser amount of heating required.
[0032] Optionally, the hydroxyl containing functionality may be introduced into the adhesive
in the form of pre-polymerized low molecular weight hydroxyl containing polymers.
In the latter case, typical polymers include hydroxyl substituted butyl acrylate,
hydroxylated butyl acrylate/methyl methacrylate copolymers, hydroxylated ethyl acrylate/methyl
methacrylate copolymers, and the like. Preferred polymers have a number average molecular
weight of 5,000 to 30,000 and a hydroxyl number of 4 to 30. If used in the form of
low molecular weight polymers, the polymers may be blended with the polyol prior to
reaction thereof with the isocyanate or they may be added directly to the isocyanate
terminated prepolymer.
[0033] While the adhesives may be used directly as described above, if desired the adhesives
of the present invention may also be formulated with conventional additives which
are compatible with the composition. Such additives include plasticizers, compatible
tackifiers, curing catalysts, dissociation catalysts, fillers, anti-oxidants, pigments,
adhesion promoters, stabilizers, aliphatic C
5-C
10 terpene oligomers and the like. Conventional additives that are compatible with a
composition according to this invention may simply be determined by combining a potential
additive with the composition and determining if they are compatible. An additive
is compatible if it is homogenous within the product. Non-limited examples of suitable
additives include, without limitation, rosin, rosin derivatives, rosin ester, aliphatic
hydrocarbons, aromatic hydrocarbons aromatically modified aliphatic hydrocarbons,
terpenes, terpene phenol, modified terpene, high molecular weight hindered phenols
and multifunctional phenols such as sulfur and phosphorous-containing phenol, terpene
oligomers, DMDEE, paraffin waxes, microcrystalline waxes and hydrogenated castor oil.
[0034] The reactive hot melt adhesives of the invention may also contain flame retardant
components. Fire retardant additives known in the art for imparting flame resistance
to polyurethane compositions may be added. Such compounds include inorganic compounds
such as a boron compound, aluminum hydroxide, antimony trioxide and the like, and
other halogen compounds including halogen-containing phosphate compounds such as tris(chloroethyl)phosphate,
tris(2,3-dichloropropyl)-phosphate, and the like. These and other flame retarding
compositions are described in
U.S. Patent Nos. 3,773,695 4,266,042,
4,585,806,
4,587,273 and
4,849,467, and
European Patent No. 0 587 942. In a preferred embodiment, ethylenebistetrabromophthalimide and/or tris(2,3-dibromopropyl)-isocyanurate
is added as a prime flame retardant component. The ethylenebistetrabromophthalimide
and/or tris(2,3-dibromopropyl)isocyanurate may be used with or without other flame
retardants. The composition may further comprise a chlorinated paraffin and/or an
aryl phosphate ester as a further flame retardant component. The optional chlorinated
paraffin imparts flame retardancy as well as performing as a viscosity modifier. The
aryl phosphate ester further imparts improved adhesion to the substrates. The flame
retardant polyurethane-based reactive hot melt adhesives when used in the practice
of the invention gives excellent flame retardancy while maintaining the targeted properties
of the base polymer, such as good green strength, controlled setting speed and good
thermal stability at elevated temperatures.
[0035] The invention also provides a method for bonding articles together which comprises
applying the reactive hot melt adhesive composition of the invention in a liquid melt
form to a first article, bringing a second article in contact with the composition
applied to the first article, and subjecting the applied composition to conditions
which will allow the composition to cool and cure to a composition having an irreversible
solid form, said conditions comprising moisture. The composition is typically distributed
and stored in its solid form, and is stored in the absence of moisture. When the composition
is ready for use, the solid is heated and melted prior to application. Thus, this
invention includes reactive polyurethane hot melt adhesive compositions in both its
solid form, as it is typically to be stored and distributed, and its liquid form,
after it has been melted, just prior to its application.
[0036] After application, to adhere articles together, the reactive hot melt adhesive composition
is subjected to conditions that will allow it to solidify and cure to a composition
that has an irreversible solid form. Solidification (setting) occurs when the liquid
melt is subjected to room temperature. Curing, i.e. chain extending, to a composition
that has an irreversible solid form, takes place in the presence of ambient moisture.
[0037] As used herein, "irreversible solid form" means a solid form comprising polyurethane
polymers extended from the aforementioned polyurethane prepolymers. The composition
having the irreversible solid form typically can withstand temperatures of up to 150°C.
Using a flame retardant the thermal stability of the irreversible solid can be improved.
[0038] The invention is further illustrated by the following non-limiting examples.
EXAMPLES
[0039] In the Examples that follow, the following tests were used to determine viscosity
and dynamic peel rate.
Viscosity:
[0040] Brookfield Viscometer with Thermosel heating unit, spindle 27
Dynamic Peel:
[0041] A 6 mil film of the adhesive was applied to a glass plate, preheated at 120°C. A
strip of vinyl (16mm wide, 7 mil thick) with a hole punched near one end was applied
over the adhesive. The plate is inverted and, at several temperature intervals, a
103g weight was applied to the hole in the vinyl for 10-60 seconds. The peel rate
at these intervals was calculated
Example 1. Reactive hot melt adhesives having the formulations shown in Table 1 (%
by weight) were prepared. All the polyols and acrylic polymers (reactive or not) were
added to melt and mix under vacuum until homogeneous and free of moisture. Then MDI
was added and polymerization allowed to proceed with mixing under vacuum until reaction
is complete. The resulting pre-polymer was then placed into a container under a dry
nitrogen headspace to prevent exposure to moisture.
Table 1. Formulations of Reactive Hot Melt Adhesives
Sample |
A |
B |
C |
D |
E |
F |
MODAFLOW |
0.8 |
0.8 |
0.8 |
0.8 |
0.8 |
0.8 |
PPG 2025 |
19.5 |
19.5 |
19.5 |
19.5 |
19.5 |
19.5 |
PPG 4025 |
19.5 |
19.5 |
19.5 |
19.5 |
19.5 |
19.5 |
DYNACOLL 7360 |
19.5 |
19.5 |
19.5 |
19.5 |
19.5 |
19.5 |
ELVACITE 2016 |
28.0 |
28.0 |
28.0 |
28.0 |
28.0 |
28.0 |
Dodecane Diol |
-- |
5.0 |
-- |
-- |
-- |
-- |
Cyclohexane Diol |
-- |
-- |
5.0 |
-- |
-- |
-- |
Decane Diol |
-- |
-- |
-- |
5.0 |
-- |
-- |
Octane Diol |
-- |
-- |
-- |
-- |
5.0 |
-- |
Hexane Diol |
-- |
-- |
-- |
-- |
-- |
5.0 |
MDI |
12.6 |
18.8 |
23.4 |
19.8 |
21.2 |
23.2 |
PPG 2025 (polypropylene glycol, molecular weight 2000, available from Aldrich)
PPG 4025 (polypropylene glycol, molecular weight 4000, available from Aldrich)
Dynacoll 7360 (a 3750 MW hexanediol adipate available from Creanova)
ELVACITE 2016 (a a 55°C Tg/65,000 Mw acrylic - available from Lucite)
MODAFLOW (an acrylic defoamer available from Solutia)
MDI |
[0042] Comparative Sample A is a conventional reactive hot melt. Samples B - F were prepared
using various aliphatic olefin diols as shown. The adhesive properties of Samples
A - F were compared. Results are shown in Table 2.
Table 2. Reactive Hot Melt Properties
Sample |
A |
B |
C |
D |
E |
F |
% NCO |
2.4 |
2.1 |
2.5 |
2.0 |
2.2 |
2.3 |
Viscosity (cps) |
9,250 |
87,000 |
151,000 |
122,000 |
111,000 |
112,000 |
Melt Stability % |
1.6 |
1.1 |
4.0 |
0.0 |
6.3 |
4.4 |
Peel (Set Strength) |
12mm /30°C |
0.0mm/ 45°C |
0.0mm/ 39°C |
0.0mm/ 39°C |
0.0mm/ 38°C |
0.0mm/ 37°C |
As shown in Table 2, the physical properties of the adhesive formulations containing
the aliphatic olefin diols were greatly improved. In particular, the melt viscosity
increased from less than 10,000 cps to over 150,000 cps. As shown by the peel test
results, the initial strength was greatly improved for each formulation containing
an aliphatic olefin diol.
[0043] A second set of samples was formulated to determine the effect of differing amounts
of polyester diol on the set strength. The formulations of the second set of samples
are shown in Table 3.
Table 3. Formulations of Reactive Hot Melt Adhesives
Sample |
A |
B |
H |
I |
MODAFLOW |
0.8 |
0.8 |
0.8 |
0.8 |
PPG 2025 |
19.5 |
19.5 |
19.5 |
19.5 |
PPG 4025 |
19.5 |
19.5 |
19.5 |
19.5 |
DYNACOLL 7360 |
19.5 |
19.5 |
10.0 |
-- |
ELVACITE 2016 |
28.0 |
28.0 |
28.0 |
28.0 |
Dodecane Diol |
-- |
5.0 |
5.0 |
5.0 |
MDI |
12.6 |
18.8 |
18.1 |
17.4 |
[0044] The results of the testing on the formulations having varying amounts of polyester
diol are shown in Table 4.
Table 4. Reactive Hot Melt Properties
Sample |
A |
B |
H |
I |
% NCO |
2.4 |
2.1 |
1.9 |
2.1 |
Viscosity (cps) |
9,250 |
87,000 |
118,000 |
168,000 |
Melt Stability % |
1.6 |
1.1 |
6.8 |
16.7 |
Peel (set strength) |
12 mm/30°C |
0.0mm/45°C |
0.0mm/38°C |
0.0mm/48°C |
[0045] As shown in Table 4, the viscosity of the reactive hot melt adhesive increases when
the amount of polyester diol is reduced. As shown by the peel test results, the initial
strength was greatly improved for each formulation containing an aliphatic olefin
diol, even without the polyester diol.
[0046] Many modifications and variations of this invention can be made without departing
from its spirit and scope, as will be apparent to those skilled in the art. The specific
embodiments described herein are offered by way of example only, and the invention
is to be limited only by the terms of the appended claims, along with the full scope
of equivalents to which such claims are entitled.
1. A polyurethane hot melt adhesive composition comprising an isocyanate, a reactive
non-polymeric aliphatic difunctional in an amount effective to prevent phase separation
of the adhesive, greater than 40 weight percent of a urethane prepolymer at the completion
of a polymerization reaction comprising at least one polyol, and optionally a thermoplastic
polymer wherein the reactive non-polymeric aliphatic difunctional comprises at least
one aliphatic diol.
2. The adhesive of claim 1, wherein the thermoplastic polymer is selected from the group
consisting of acrylic polymers, functional acrylic polymers, non-functional acrylic
polymers, hydroxy functional acrylic polymers, polyvinyl acetate, polyvinyl chloride,
methylene polyvinyl ether, cellulose acetate, styrene acrylonitrile, amorphous polyolefin,
thermoplastic urethane, polyacrylonitrile, functional EVA, block copolymers, ethylene/acrylate
copolymers, ethyl methacrylate, ethyl hexyl acrylate, ethylene-n-butyl acrylate, polybutadiene
diol, ethylene butadiene, isobutylene diol, and mixtures thereof.
3. The adhesive of claim 1, wherein the polyol is a polyether polyol.
4. The adhesive of claim 1, wherein the polyol is a polyester polyol.
5. The adhesive of claim 1, wherein the polyol is a mixture of a polyester polyol and
a polyether polyol.
6. The adhesive of claim 1, wherein the aliphatic diol is selected from the group consisting
of dodecane, cyclohexane, decane, octane, hexane, derivatives thereof and mixtures
thereof
7. The adhesive of claim 1, wherein the aliphatic diol comprises a non-polymeric compound
having a molecular weight lower than 2000.
8. The adhesive of claim 1, wherein the adhesive comprises greater than about 2 wt %
of the non-polymeric aliphatic diol.
9. The adhesive of claim 8, wherein the adhesive comprises greater than about 5 wt %
of the non-polymeric aliphatic diol.
10. The adhesive of claim 1, wherein the adhesive further contains one or more additives
from the group consisting of plasticizers, compatible tackifiers, curing catalysts,
dissociation catalysts, fillers, anti-oxidants, pigments, adhesion promoters, stabilizers,
aliphatic C5-C10 terpene oligomers, rosin, rosin derivatives, rosin ester, aliphatic hydrocarbons,
aromatic hydrocarbons aromatically modified aliphatic hydrocarbons, terpenes, terpene
phenol, modified terpene, high molecular weight hindered phenols and multifunctional
phenols such as sulfur and phosphorous-containing phenol, terpene oligomers, DMDEE,
paraffin waxes, microcrystalline waxes, hydrogenated castor oil, and mixtures thereof.
11. A method of improving the green strength of a polyurethane adhesive containing isocyanate,
comprising adding a reactive non-polymeric aliphatic difunctional in an amount effective
to prevent phase separation to an adhesive formulation, wherein the adhesive comprises
greater than 40 weight percent of a urethane prepolymer at the completion of the polymerization
reaction comprising at least one polyol and optionally a thermoplastic polymer and
wherein the reactive non-polymeric aliphatic difunctional comprises at least one aliphatic
diol.
12. The method of claim 11, wherein the thermoplastic polymer is selected from the group
consisting of acrylic polymers, functional acrylic polymers, non-functional acrylic
polymers, hydroxy functional acrylic polymers, polyvinyl acetate, polyvinyl chloride,
methylene polyvinyl ether, cellulose acetate, styrene acrylonitrile, amorphous polyolefin,
thermoplastic urethane, polyacrylonitrile, functional EVA, block copolymers, ethylene/acrylate
copolymers, ethyl methacrylate, ethyl hexyl acrylate, ethylene-n-butyl acrylate, polybutadiene
diol, ethylene butadiene, isobutylene diol, and mixtures thereof.
13. The method of claim 11, wherein the polyol is a polyether polyol.
14. The method of claim 11, wherein the polyol is a polyester polyol.
15. The method of claim 11, wherein the polyol is a mixture of a polyester polyol and
a polyether polyol.
16. The method of claim 11, wherein the aliphatic diol is selected from the group consisting
of dodecane, cyclohexane, decane, octane, hexane, derivatives thereof and mixtures
thereof.
17. The method of claim 11, wherein the aliphatic diol comprises a non-polymeric compound
having a molecular weight lower than 2000.
18. The method of claim 11, wherein the adhesive comprises greater than about 2 wt % of
the non-polymeric aliphatic diol.
19. The method of claim 18, wherein the adhesive comprises greater than about 5 wt % of
the reactive non-polymeric aliphatic diol.
20. The method of claim 11, wherein the adhesive further comprises one or more additives
from the group consisting of plasticizers, compatible tackifiers, curing catalysts,
dissociation catalysts, fillers, anti-oxidants, pigments, adhesion promoters, stabilizers,
aliphatic C5-C10 terpene oligomers, rosin, rosin derivatives, rosin ester, aliphatic hydrocarbons,
aromatic hydrocarbons aromatically modified aliphatic hydrocarbons, terpenes, terpene
phenol, modified terpene, high molecular weight hindered phenols and multifunctional
phenols such as sulfur and phosphorous-containing phenol, terpene oligomers, DMDEE,
paraffin waxes, microcrystalline waxes, hydrogenated castor oil, and mixtures thereof.
21. A method of bonding materials together which comprises applying the reactive hot melt
adhesive composition of claim 1 in a liquid form to a first substrate, bringing a
second substrate in contact with the composition applied to the first substrate, and
subjecting the compositions to conditions which will allow the compositions to cool
and cure to an irreversible solid form, the conditions comprising moisture.
22. The method of claim 21, wherein the aliphatic diol is selected from the group consisting
of dodecane, cyclohexane, decane, octane, hexane, derivatives thereof and mixtures
thereof.
23. The method of claim 21, wherein the aliphatic diol comprises a non-polymeric compound
having a molecular weight lower than 2000 and containing active hydrogen atoms.
24. The method of claim 23, wherein the adhesive comprises greater than about 2 wt % of
the reactive non-polymeric aliphatic diol.
25. The method of claim 30, wherein the adhesive comprises greater than about 5 wt % of
the reactive non-polymeric aliphatic diol.
26. The method of claim 21 wherein the adhesive comprises a non-functional acrylic polymer.
27. The method of claim 21 wherein the adhesive comprises a functional acrylic polymer.
28. The method of claim 27 wherein the functional acrylic polymer is a hydroxy functional
polymer.
29. An article of manufacture comprising the adhesive of claim 1.