BACKGROUND
[0001] Oil has been routinely recovered from oil-bearing plants for thousands of years.
A large variety of plants produce sufficient quantities of oil that can be processed
into edible or industrial products.
[0002] Oil from oil-bearing plants is typically extracted by solvents. Solvent extraction
is a mass-transfer process in which one or more materials are transported from a mixture
to a solvent phase, resulting in their separation from the mixture. Various organic
solvents have been used for commercial extraction. However, there still exists a need
in developing a cost-effective solvent and environment-friendly extraction process
for recovering oil from oil-bearing plants.
SUMMARY
[0003] This invention is based on the discovery that a triglyceride can be readily extracted
from an oil-bearing seed by using a fatty acid alkyl ester as a solvent.
[0004] In one aspect, this invention features a method of producing a triglyceride solution.
The method includes contacting a liquid fatty acid alkyl ester and a substance containing
triglyceride (e.g., at 15-180°C or 25-150°C) so that the triglyceride is dissolved
into the fatty acid alkyl ester to form a triglyceride solution. Preferably, the fatty
acid alkyl ester is obtained, prior to the contacting step, by reacting alcohol (e.g.
a C1-C8 primary or secondary alcohol) with triglyceride extracted from the same triglyceride-containing
substance. Exemplary alcohols include methanol, ethanol, n-propanol, isopropanol,
n-butanol, isobutanol, n-pentanol, isopentanol, neopentanol and n-hexanol. The fatty
acid alkyl ester and the triglyceride-containing substance can be mixed at a weight
ratio ranging from 1:2 to 10:1 (e.g., from 1:1 to 6:1).
[0005] The triglyceride-containing substance can be oil-bearing seed. The term "oil-bearing
seed" refers to any plant seed suitable for oil extraction. Examples of oil-bearing
seed include, but are not limited to, soybean, peanut, sunflower seed, rapeseed, corn
(e.g., corn germs or distillers dried corn grains), jatropha seed, karanja seed, neem
seed, mahua seed, castor bean, rubber seed, cotton seed, palm kernel, olive, almond
kernel, babassu seed, ben seed, cardoon seed, camelina seed, linseed, hazelnut kernel,
hemp seed, mustard seed (e.g., Ethiopian mustard seed and Indian mustard seed), jojoba
seed, poppy seed, safflower seed, sesame seed, wheat grain, sal seed, crambe seed,
cuphea seed, nahor seed, and tobacco seed. Alternatively, the triglyceride-containing
substance can be obtained from parts other than seed in certain oil-bearing plants.
The term "oil-bearing plant" refers to any plant that contains oil in any part (e.g.,
seed or fruit) and is suitable for oil extraction. Examples in addition to those listed
above include, but are not limited to, rice bran, palm (e.g., palm fruit pulp), yellowwood,
and algae.
[0006] The fatty acid alkyl ester described above can contain a C1-C8 primary or secondary
alkoxy moiety or a C6-C24 fatty acid moiety. The term "alkoxy" refers to a straight
or branched, saturated or unsaturated, non-aromatic hydrocarbon moiety containing
an oxygen radical, such as -OCH
3 or -OCH=C
2H
4. The term "fatty acid" mentioned herein refers to a straight or branched, saturated
or unsaturated monobasic organic acid. Exemplary fatty acids include, but are not
limited to, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid,
palmitic acid, margaric acid, stearic acid, nonadecanoic acid, arachidic acid, behenic
acid, lignoceric acid, palmitoleic acid, oleic acid, linoleic acid, linolenic acid,
cis-11-eicosenoic acid, and erucic acid. Exemplary fatty acid alkyl esters include,
but are not limited to, fatty acid methyl esters, fatty acid ethyl esters, fatty acid
n-propyl esters, fatty acid isopropyl esters, fatty acid n-butyl esters, fatty acid
isobutyl esters, fatty acid n-pentyl esters, fatty acid isopentyl esters, fatty acid
neopentyl esters, and fatty acid n-hexyl esters. Typically, the fatty acid alkyl ester
can have a boiling point of 150-500°C.
[0007] The details of one or more embodiments of the invention are set forth in the description
below. Other features, objects, and advantages of the invention will be apparent from
the description and from the claims.
DETAILED DESCRIPTION
[0008] This invention relates to extracting a triglyceride from an oil-bearing plant using
a fatty acid alkyl ester as a solvent at a certain temperature (e.g., 15-180°C) to
obtain an extraction solution. When the oil-bearing plant contains a high oil content,
the plant can be optionally pressed or squeezed to remove a portion of the oil before
extraction. If desired, the oil-bearing plant can also be pulverized to facilitate
extraction.
[0009] The extraction process can be performed by methods well known in the art. As an example,
it can be carried out by mixing a pulverized oil-bearing plant and a fatty acid alkyl
ester in a continuous stirred-tank reactor for a predetermined period of time. As
another example, it can be carried out continuously by bring together, without mixing,
a pulverized oil-bearing plant and a fatty acid alkyl ester in a plug flow reactor
or a fixed bed reactor through a counter-current flow, a co-current flow, or a combination
of both flows. The extraction process can be carried out by either a batch method
or a flow method. Typically, a flow method can be used to help maintain reasonable
manufacturing costs.
[0010] The extraction can be performed at different temperatures. Generally, extraction
at a higher temperature (e.g., above 35°C) recovers more oil. However, high temperature
extraction may also produce more impurities (e.g., phosphorus and moisture). The weight
ratio between the solvent and the oil-bearing plant used in the extraction process
depends on various factors, e.g., the type of the oil-bearing plant and the oil content
in the oil-bearing plant. For example, one can use a low weight ratio for extracting
a prepressed oil-bearing plant, from which a portion of the oil in the plant has been
removed. Typically, the weight ratio is in the range of 1:2 to 10:1. Other extraction
conditions (e.g., the extraction time) can be determined empirically.
[0011] The fatty acid alkyl ester used in the extraction process can be prepared by known
methods. For example, a fatty acid alkyl ester can be prepared by an esterification
reaction between an alcohol (e.g., ethanol) and a fatty acid (e.g., stearic acid).
As another example, a fatty acid alkyl ester can be prepared by a transeterification
reaction between an alcohol and a triglyceride, such as the transeterification reactions
described in
U.S. Patent Application 10/945,339. Preferably, the fatty acid alkyl ester is prepared from a C1-C4 alcohol. Extractions
with such a fatty acid alkyl ester generally produce a triglyceride solution that
contains less impurities (e.g., phosphorus and moisture). The triglyceride used to
prepare the fatty acid alkyl ester can be obtained from a plant different from the
plant to be extracted. Preferably, the triglyceride is obtained from a plant that
is the same as the plant to be extracted. In that case, the triglyceride extracted
from the plant is identical to the triglyceride used to prepare the extraction solvent
(i.e., the fatty acid alkyl ester). As a result, if the extracted triglyceride is
subsequently used to prepare the fatty acid alkyl ester via a transesterification
reaction, the fatty acid alkyl ester in an extraction solution can be used as a solvent
for the reaction and therefore needs not to be separated from the extracted triglyceride.
[0012] After the extraction process, the fatty acid alkyl ester can be optionally separated
from the extracted triglyceride by partially or completely removal from an extraction
solution. The removal step can be carried out by distillation using a vacuum column,
a short-path vacuum distillation unit, or any other suitable device known in the art.
Whether to remove the fatty acid alkyl ester partially or completely from an extraction
solution or to remove it at all depends on various factors, such as the ratio between
the fatty acid alkyl ester and the extracted triglyceride and the end use of the extracted
triglyceride.
[0013] The extracted triglyceride can be further processed for use in the food and pharmaceutical
industries. It can also be used as a raw material for preparing fatty acid alkyl esters
or fatty alcohols. Fatty acid alkyl esters are useful as diesel fuels, lubricant oils,
or chemical intermediates. Fatty alcohols are useful as surfactants in detergent industry.
[0014] The specific examples below are to be construed as merely illustrative, and not limitative
of the remainder of the disclosure in any way whatsoever. Without further elaboration,
it is believed that one skilled in the art can, based on the description herein, utilize
the present invention to its fullest extent. All of the publications cited herein,
including patents, are hereby incorporated by reference in their entirety.
Example 1
[0015] Soybeans were first ground into a powder and sieved through a filter having a size
of 40 mesh (about 425-520 µm). Soybean powder having an average particle size of less
than 40 mesh, which is similar to a dehulled powder, was collected and used for oil
extraction.
[0016] The soybean powder obtained above was dried until it had a moisture content of less
than 6 wt%. The powder was then extracted using soybean based fatty acid methyl esters
(FAMEs) as a solvent in a beaker with agitation. The soybean based FAMEs were previously
prepared by a transesterification reaction between methanol and triglycerides obtained
from soybean.
[0017] The extraction process was carried out by using FAMEs at a solvent-to-powder weight
ratio of 6:1 at 35°C. The beaker was agitated at a revolution per minute (rpm) of
300. After 30 minutes of extraction, the content of the miscella (i.e., the solution
containing extracted oil) was determined. The oil content in the miscella was determined
by HPLC (JASCO model 1580; column: Luna Su C18, 2 µm, 250*4.6 mm, Phenomenex, Torrance,
CA; mobile phases: methanol, and hexane/isopropyl alcohol (4:5); UV detector: UV-2075,
JASCO Inc., Tokyo, Japan). The moisture content in the miscella was determined by
the Karl-Fisher method according to the operation manual, MKC-500 KF Moisture Titrator
Kyoto Electronic Manufacturing Co. Ltd, Ver. 04, #595-0006. The phosphorus content
in the miscella was determined according to American Oil Chemist's Society official
method Ca 12-55. The results showed that miscella contained a moisture content of
818 ppm, a phosphorus content of 14.4 ppm, and an oil content of 3.60 wt%. The weight
of the extracted oil was 20% of that of the soybean powder.
[0018] The soybean powder was also successively extracted with FAMEs at a reduced solvent-to-powder
ratio in a beaker. Specifically, the powder was extracted twice at a solvent-to-powder
ratio of 1: 1 by agitating the beaker at a rpm of 1,000 for 15 mintues. After the
first extraction, the miscella contained a moisture content of 989 ppm, a phosphorus
content of 23.4 ppm, and an oil content of 14.08 wt%. After the second extraction,
the miscella contained a moisture content of 1,428.3 ppm, a phosphorus content of
14.23 ppm, and an oil content of 6.13 wt%. After two extractions, the total weight
of the extracted oil was 21.59% of that of the soybean powder.
[0019] Finally, the soybean powder obtained above was also extracted via a conventional
method. Specifically, the powder was extracted by Gerhardt's Soxtherm automated soxlet
system using hexane as a solvent at a solvent-to-powder ratio of 8:1 at 65°C. This
method is described in
Official and Tentative Methods, the American Oil Chemist Society, Vol. 1, AOCS Champaign
II (1980) Method Am 2-93. The results show that the oil contained a phosphorus content of
265 ppm. The weight of the extracted oil was 18.8% of that of the soybean powder.
Example 2
[0020] Two types of oil-bearing seeds were extracted by FAMEs prepared from triglycerides
obtained from their corresponding oil sources. Specifically, sunflower seeds were
extracted by sunflower seed based FAMEs and peanuts (ground nuts) were extracted by
peanut based FAMEs.
[0021] Sunflower seeds were dehulled and ground into a powder having an average particle
size of less than 40 mesh. The powder was dried until it had a moisture content of
less than 6 wt%. It was then extracted twice in a beaker with sunflower seed based
FAME at a solvent-to-powder ratio of 1:1. Each extraction was conducted by agitating
the beaker at a rpm of 1,000 for 15 minutes at 35°C. After the first and second extractions,
the miscella contained a moisture content of 794 and 831 ppm, respectively, a phosphorus
content of 49.6 and 47.8 ppm, respectively, and an oil content of 35.65 and 12.30
wt%, respectively. After two extractions, the total weight of the extracted oil was
54.83% of that of the sunflower seeds.
[0022] Peanuts were ground into a powder having an average particle size of less than 25
mesh (i.e., about 425-710 µm) and then dried until it contained less than 6 wt% of
moisture. The powder was then extracted four times in a beaker with peanut based FAMEs
at a solvent-to-powder ratio of 1:1. Each extraction was conducted by agitating the
beaker at a rpm of 1,000 for 15 minutes at 35°C. After the first, second, third, and
fourth extractions, the miscella contained a moisture content of 701, 690, 661, and
661 ppm, respectively, a phosphorus content of 23.5, 16.4, 0, and 0 ppm, respectively,
and an oil content of 31.4, 10.9, 2.63, and 0.78 wt%, respectively. After three extractions,
the total weight of the extracted oil was 45.83% of that of the peanuts. After four
extractions, the total weight of the extracted oil was 47.48% of that of the peanuts.
Example 3
[0023] Soybeans were extracted by soybean based fatty acid ethyl esters (FAEEs). Soybean
based FAEEs were prepared by a transesterification reaction between ethanol and triglycerides
obtained from soybeans.
[0024] Soybeans were first ground into a powder having an average particle size of less
than 40 mesh and then dried until it had a moisture content of less than 6 wt%. The
powder was then extracted three times in a beaker with soybean based FAEEs at a solvent-to-powder
ratio of 1: 1. Each extraction was conducted by agitating the beaker at a rpm of 1000
for 15 minutes at 35°C. After the first, second, and third extractions, the miscella
contained a moisture content of 650, 652, and 694 ppm, respectively, a phosphorus
content of 39.4, 23.3, 16.0 ppm, respectively, and an oil content of 14.09, 5.93,
and 1.05 wt%, respectively. After three extractions, the total weight of the extracted
oil was 20.1 % of that of the soybean powder.
Example 4
[0025] Soybeans were extracted by a method similar to that described in Example 3 except
that soybean based fatty acid butyl esters (FABEs) were used as a solvent. Soybean
based FABEs were prepared by a transesterification reaction between n-butanol and
triglycerides obtained from soybeans.
[0026] After the first, second, and third extractions, the miscella contained a moisture
content of 576, 519, and 479 ppm, respectively, a phosphorus content of 27.32,13.49,
and 0.96 ppm, respectively, and an oil content of 15.93, 5.10, and 1.60 wt%, respectively.
After three extractions, the total weight of the extracted oil was 21.6% of that of
the soybean powder.
Example 5
[0027] Soybeans were extracted by a method similar to that described in Example 4 except
that the extractions were conducted at a reduced agitation rate, i.e., at a rpm of
500. Further, the extractions were conducted at four different temperatures, i.e.,
35°C, 60°C, 100°C, and 150°C.
[0028] The results show that the total weight of the extracted oil increased at higher temperatures.
Specifically, at 35°C, 60°C, 100°C, and 150°C, the total weights of the extracted
oil were respectively 21.42, 23.25, 28.4, and 32.8% of those of soybean powder. The
results also show that at 35°C, 60°C, 100°C, and 150°C, the phosphorus contents in
a mixture containing a combination of miscella obtained after each extraction were
16.2, 18.64, 48.32, and 91.12 ppm, respectively.
Example 6
[0029] Two oil-bearing seeds were extracted by FAMEs prepared from triglycerides obtained
from their corresponding oil sources and triglycerides obtained from another oil source.
Specifically, sunflower seeds were extracted by sunflower seed based FAMEs and soybean
based FAMEs, and peanuts (ground nuts) were extracted by peanut based FAMEs and soybean
based FAMEs.
[0030] Sunflower seeds were extracted with sunflower seed based FAMEs and soybean based
FAMEs using a method similar to that described in Example 2 except that a solvent-to-powder
ratio of 6:1 was used and that only one extraction was performed. After the extraction
with sunflower seed based FAMEs and soybean based FAMEs, the miscella contained a
moisture content of 466 and 856 ppm, respectively, a phosphorus content of 10.6 and
12.78 ppm, respectively, and an oil content of 6.33 and 4.06 wt%, respectively. The
total weight of the extracted oil was 39.0% of that of the sunflower seeds when sunflower
seed based FAMEs were used as the solvent and 24.71% of that of the sunflower seeds
when soybean based FAMEs were used as the solvent.
[0031] Peanuts were extracted with peanut based FAMEs and soybean based FAMEs using a method
similar to that described in Example 2 except that the solvent-to-powder ratio was
6:1 and that only one extraction was performed. After the extraction with peanut seed
based FAMEs and soybean based FAMEs, the miscella contained a moisture content of
470 and 718 ppm, respectively, a phosphorus content of 19.36 and 10.0 ppm, respectively,
and an oil content of 6.23 and 6.83 wt%, respectively. The total weight of the extracted
oil was 39.1% of that of the peanuts when peanut based FAMEs were used as the solvent
and 39.8% of that of the peanuts when soybean based FAMEs were used as the solvent.
[0032] The above results show that oil could be extracted from a plant seed using FAMEs
prepared from oil of the same plant seed and FAMEs prepared from oil of a different
plant seed.
OTHER EMBODIMENTS
[0033] All of the features disclosed in this specification may be combined in any combination.
Each feature disclosed in this specification may be replaced by an alternative feature
serving the same, equivalent, or similar purpose. Thus, unless expressly stated otherwise,
each feature disclosed is only an example of a generic series of equivalent or similar
features.
[0034] From the above description, one skilled in the art can easily ascertain the essential
characteristics of the present invention, and without departing from the spirit and
scope thereof, can make various changes and modifications of the invention to adapt
it to various usages and conditions. Thus, other embodiments are also within the scope
of the following claims.
1. A method of producing a triglyceride solution, comprising contacting a liquid fatty
acid alkyl ester and a substance containing triglyceride so that the triglyceride
is dissolved into the fatty acid alkyl ester to form a triglyceride solution.
2. The method of claim 1, wherein the triglyceride-containing substance is from an oil-bearing
plant.
3. The method of claim 2, wherein the oil-bearing plant is rice bran, palm fruit pulp,
yellowwood, or algae.
4. The method of claim 2, wherein the triglyceride-containing substance is oil-bearing
seed.
5. The method of claim 4, wherein the oil-bearing seed is soybean, peanut, sunflower
seed, rapeseed, corn, jatropha seed, karanja seed, neem seed, mahua seed, castor bean,
rubber seed, cotton seed, palm kernel, olive, almond kernel, babassu seed, ben seed,
cardoon seed, camelina seed, linseed, hazelnut kernel, hemp seed, mustard seed, jojoba
seed, poppy seed, safflower seed, sesame seed, wheat grain, sal seed, crambe seed,
cuphea seed, nahor seed, or tobacco seed.
6. The method of claim 1, wherein the fatty acid alkyl ester contains a C6-C24 fatty
acid moiety.
7. The method of claim 1, wherein the fatty acid alkyl ester contains a C1-C8 primary
or secondary alkoxy moiety.
8. The method of claim 1, wherein the fatty acid alkyl ester is a fatty acid methyl ester,
a fatty acid ethyl ester, a fatty acid n-propyl ester, a fatty acid isopropyl ester,
a fatty acid n-butyl ester, a fatty acid isobutyl ester, a fatty acid n-pentyl ester,
a fatty acid isopentyl ester, a fatty acid neopentyl ester, or a fatty acid n-hexyl
ester.
9. The method of claim 1, wherein the fatty acid alkyl ester has a boiling point of 150-500°C.
10. The method of claim 1, wherein the contacting step is conducted at 15-180°C.
11. The method of claim 10, wherein the contacting step is conducted at 25-150°C.
12. The method of claim 1, wherein the fatty acid alkyl ester and the triglyceride-containing
substance are contacted at a weight ratio ranging from 1:2 to 10:1.
13. The method of claim 1, wherein the fatty acid alkyl ester is obtained, prior to the
contacting step, by reacting alcohol with triglyceride extracted from the same triglyceride-containing
substance.
14. The method of claim 13, wherein the triglyceride-containing substance is from an oil-bearing
plant.
15. The method of claim 14, wherein the oil-bearing plant is rice bran, palm fruit pulp,
yellowwood, or algae.
16. The method of claim 14, wherein the triglyceride-containing substance is oil-bearing
seed.
17. The method of claim 16, wherein the oil-bearing seed is soybean, peanut, sunflower
seed, rapeseed, corn, jatropha seed, karanja seed, neem seed, mahua seed, castor bean,
rubber seed, cotton seed, palm kernel, olive, almond kernel, babassu seed, ben seed,
cardoon seed, camelina seed, linseed, hazelnut kernel, hemp seed, mustard seed, jojoba
seed, poppy seed, safflower seed, sesame seed, wheat grain, sal seed, crambe seed,
cuphea seed, nahor seed, or tobacco seed.
18. The method of claim 17, wherein the fatty acid alkyl ester contains a C6-C24 fatty
acid moiety.
19. The method of claim 18, wherein the alcohol is a C1-C8 primary or secondary alcohol.
20. The method of claim 19, wherein the fatty acid alkyl ester is a fatty acid methyl
ester, a fatty acid ethyl ester, a fatty acid n-propyl ester, a fatty acid isopropyl
ester, a fatty acid n-butyl ester, a fatty acid isobutyl ester, a fatty acid n-pentyl
ester, a fatty acid isopentyl ester, a fatty acid neopentyl ester, or a fatty acid
n-hexyl ester.
21. The method of claim 20, wherein the fatty acid alkyl ester and the triglyceride-containing
substance are contacted at a weight ratio ranging from 1:2 to 10:1.
22. The method of claim 21, wherein the contacting step is conducted at 15-180°C.
23. The method of claim 22, wherein the contacting step is conducted at 25-150°C.
24. The method of claim 13, wherein the fatty acid alkyl ester contains a C6-C24 fatty
acid moiety.
25. The method of claim 13, wherein the alcohol is a C1-C8 primary or secondary alcohol.
26. The method of claim 13, wherein the fatty acid alkyl ester is a fatty acid methyl
ester, a fatty acid ethyl ester, a fatty acid n-propyl ester, a fatty acid isopropyl
ester, a fatty acid n-butyl ester, a fatty acid isobutyl ester, a fatty acid n-pentyl
ester, a fatty acid isopentyl ester, a fatty acid neopentyl ester, or a fatty acid
n-hexyl ester.
27. The method of claim 13, wherein the fatty acid alkyl ester has a boiling point of
150-500°C.
28. The method of claim 13, wherein the contacting step is conducted at 15-180°C.
29. The method of claim 28, wherein the contacting step is conducted at 25-150°C.
30. The method of claim 13, wherein the fatty acid alkyl ester and the triglyceride-containing
substance are contacted at a weight ratio ranging from 1:2 to 10:1.