Technical Field
[0001] The present invention relates to a method for producing a metal by an electrolytic
process, in particular to a method of producing a metal which can be applied to the
production of such a metal as calcium or a rare earth element.
Background Art
[0002] Metallic calcium is strong in reducing power and is a valuable metal usable as a
reducing agent in producing other metals. Rare earth metals are used in various ways
in a wide range of fields of industry, such as glasses (coloring agents), ceramics
and, further, magnetic materials, nuclear materials, metallurgical additives, catalysts,
etc.
[0003] Among those metals, rare earth metals are currently produced by the steps of: extracting
specific rare earth metals (to be produced) from a refined ore containing them by
a solvent extracting process; converting them to oxides by an alkali precipitation
process, for instance; and then reducing the oxides by a fused or molten salt electrolysis
or metallothermic reduction process, for instance.
[0004] On the other hand, calcium is currently produced mainly by the aluminum reduction
process which comprises heating refined calcium carbonate with metallic aluminum and
condensing the calcium vapor thus formed to yield metallic calcium. However, for increasing
its purity, vacuum refining must be done and, for this and other reasons, the production
cost becomes very high. Therefore, in spite of its being suitable as a reducing agent,
calcium cannot be easily applied.
[0005] If metallic calcium can be produced by electrolysis of such a molten salt as molten
calcium chloride, such a process will be very useful as a relatively inexpensive production
process without requiring such a large quantity of thermal energy as required in the
aluminum reduction process.
Such a molten salt electrolysis process can be applied to the production of rare earth
metals as well. However, because of the excessively strong reducing power of calcium,
the so-called back reaction readily occurs and the calcium formed on the cathode side
immediately reacts with the chlorine formed on the anode (graphite) side to form calcium
chloride again.
[0006] For preventing such a phenomenon, the application of a diaphragm process according
to which a diaphragm is provided between the cathode and anode has been proposed.
However, alkaline earth metals such as calcium and alkali metals are strong in reducing
power and readily react with and reduce the ceramic material used as the diaphragm
material. Therefore, such a diaphragm process has not yet been put to practical use.
[0007] In a related technical document (
Waste Management, Vol. 17, No. 7, pp. 451-461, 1997. P. D. Ferro et al.: Application of Ceramic Membrane in Molten Salt Electrolysis of CaO-CaCl
2), it is described that magnesia (MgO) is best suited as a sheath material surrounding
the anode for inhibiting the back reaction attributable to Ca at the time of electrolytic
reduction in a CaO-CaCl
2 molten salt system.
[0008] However, when the present inventors happened to use magnesia as a material for the
diaphragm to be disposed between the cathode and anode in electric reduction of a
CaCl
2-based molten salt, the reduction attributable to Ca occurred. Further, it was also
confirmed that alumina (Al
2O
3), silicon nitride (Si
3N
4) and zirconia (ZrO
2) are also reduced by reaction with Ca.
Dislcosure Of Invention
[0009] It is an object of the present invention to provide a method for producing a metal
which can be applied to the production of such a metal as calcium and a rare earth
element which is produced or producible by an electrolytic process.
[0010] To accomplish the above object, the present inventors made investigations on the
application of the molten salt electrolysis method to be carried out with a diaphragm
disposed between the anode and cathode (diaphragm method), in particular on the diaphragm
material in terms of the resistance to the reducing action of calcium (calcium reduction
resistance), the mechanical strength and the like, among others. As the results of
these, they found that a porous ceramic body comprising yttria (Y
2O
3) as prepared by firing or sintering shows such a selective permeability that it allows
the passage of calcium and chloride ions but does not allow the passage of metallic
calcium.
[0011] Although yttria has a property such that it will not be reduced by even a metal having
a strong reducing powder such as calcium, yttria has so far been regarded as being
difficult to apply as a diaphragm from the viewpoint of strength and the like. However,
as the results of investigations made by the present inventors, this strength problem
also has been successfully overcome. Namely, it was revealed that an yttria-based
porous ceramic body can be used on the occasion of molten salt electrolysis as a diaphragm
which is highly resistant to reduction by calcium and has the above-mentioned selective
permeability.
[0012] The gist of the present invention, which has been completed based on the above-mentioned
findings and others, consists in an electrolytic method for producing metals wherein
a porous ceramic article or body containing yttria is used as a diaphragm.
The "diaphragm" so referred to herein has function of allowing the passage of calcium
and chloride ions through itself but not allowing the passage of metallic calcium.
[0013] The method for producing metals according to the invention is characterized by the
following first to tenth aspects or modes of embodiment.
In a first embodiment of the invention, the above-mentioned porous ceramic body is
made of a material which is mainly constituted by yttria and can be highly and stably
resistant to reduction by calcium. Further, in a second embodiment of the invention,
a metal halide is used as an electrolytic bath.
[0014] In a third embodiment of the invention, the porous ceramic body has a porosity of
1% or more so that it may function as a diaphragm while securing the conductivity
of the bath. In a fourth embodiment of the invention, the diaphragm desirably has
a thickness of 0.05-50 mm. Further, in a fifth embodiment of the invention, the porous
ceramic body has a pore diameter of 20 µm or less so that the passage of metallic
calcium through it may effectively be inhibited.
[0015] In a sixth embodiment of the invention, the porous ceramic body has an yttria purity
of 90 mass % or more so that a further improvement in resistance to calcium reduction
may be produced. Further, in a seventh embodiment of the invention, a current density
of 0.1-100 A/cm
2 is preferably employed in electrolysis.
[0016] In an eighth embodiment of the invention, a molten calcium salt or a mixed salt containing
calcium salt in a molten state is used as an electrolytic bath to make it possible
to obtain metallic calcium or a molten salt containing metallic calcium by applying
the relevant method for producing a metal (inclusive of any of the above-mentioned
embodiments).
In this case, the metallic calcium can be obtained as a solid in a ninth embodiment
of the invention and, in a tenth embodiment of the invention, the metallic calcium
can be obtained as a molten substance.
[0017] The method for producing a metal according to the invention is a method using an
yttria-containing porous ceramic body as a diaphragm and can be utilized in the production
of such a metal as calcium or a rare earth element and, in particular, is suited for
the production of metallic calcium. When the method is applied to the production of
calcium, for instance, metallic calcium can be produced with much ease and at low
cost without consuming enormous heat energy to be needed in the prior art aluminum
reduction method.
Brief Description Of The Drawing
[0018] Fig. 1 is a drawing schematically illustrating the configuration of an example of
the apparatus in which the method for producing a metal according to the invention
can be carried out.
Best Modes For Carrying Out The Invention
[0019] In the following, the method for producing a metal according to the invention is
described in detail, referring to the drawing.
Fig. 1 is a drawing schematically illustrating the configuration of an example of
the apparatus in which the method for producing a metal according to the invention
can be carried out. In Fig. 1, the electrolytic cell 1 comprises an anode 2 and a
cathode 3 and retains molten calcium chloride (CaCl
2) as an electrolytic bath 4. A diaphragm 5 is disposed between the anode 2 and cathode
3, and the inside of the electrolytic cell 1 is divided thereby into an anode 2 side
and a cathode 3 side.
[0020] When the molten calcium chloride is electrolyzed in the electrolytic cell 1, two
electrode reactions occur according to the equation (1) and equation (2) given below
and Cl
2 gas is generated in the vicinity of the surface of the anode 2 while Ca is formed
in the vicinity of the surface of the cathode 3.
Anode: 2Cl
· → 2e
· + Cl
2 (1)
Cathode: Ca
2+ + 2e
· → Ca (2)
[0021] The Cl
2 gas formed rises in the electrolytic bath 4 and then leaves the bath 4, while the
Ca floats to the surface owing to the difference in specific gravity from the molten
calcium chloride and forms a Ca layer 6 on the liquid surface of the molten calcium
chloride. This Ca layer 6 is extracted and thereby metallic calcium can be obtained.
The Cl
2 gas that has left the bath 4 is recovered and reused.
[0022] If there is provided no diaphragm 5, the so-called back reaction, namely the reaction
between the Cl
2 gas formed and part of the Ca in the electrolytic bath 4 to return to CaCl
2, will occur, the current efficiency will then decrease and the production of Ca will
be markedly obstructed. On the contrary, in the configuration example shown, neither
of the Cl
2 gas nor Ca can pass through the diaphragm 5 and no back reaction will occur. The
electrolysis sufficiently proceeds since CaCl
2 can pass through the diaphragm 5 in the form of ions (Ca
2+, Cl).
[0023] The method for producing a metal according to the invention is an "electrolytic method
for producing a metal according to which an yttria-containing porous ceramic article
or body is used as a diaphragm". That is, the method is characterized in that, in
the apparatus configuration shown in Fig. 1, the diaphragm 5 comprises an yttria-containing
porous ceramic body
[0024] The content of yttria is not particularly restricted since insofar as yttria is contained,
the resistance to calcium reduction can be expected. However, a higher content of
yttrium gives a greater resistance to calcium reduction, so that a porous ceramic
body containing a considerable amount of yttria is used in practice.
[0025] The porosity and pore diameter, among others, of the porous ceramic body are not
particularly restricted, either. The ceramic body is made of a material obtained via
a process including the step of firing or sintering and, so long as it can be regarded
as porous according to a generally accepted perception, the electrolytic bath can
pass through the ceramic body to thereby enable electrolysis.
[0026] While, in the configuration example shown in Fig. 1, the diaphragm 5 is positioned
approximately in the middle of the electrolytic cell 1 and divides the cell into the
anode 2 side and cathode 3 side, the position of the diaphragm is not restricted to
such position but may be much closer to the anode side or cathode side. Further, it
may be disposed so as to surround the anode to prevent the calcium and chlorine from
contacting with each other.
[0027] The first embodiment of the invention is directed to a production method which comprises
using a porous ceramic article or body made of an yttria-based material as a diaphragm.
The term "yttria-based" means that the yttria content is not less than 50 mass % .
[0028] There is no rigid reason why the yttria content should be not less than 50 mass %.
When yttria accounts for at least half of the material constitution, however, the
porous ceramic body obtained by firing the material exhibits the characteristics of
yttria to a greater extent and the calcium reduction resistance thereof is insured
to be good and stable.
[0029] The second embodiment of the invention is directed to a production method comprising
using a metal halide as the electrolytic bath. In the production of metallic calcium,
calcium chloride (CaCl
2) and calcium fluoride (CaF
2) are suitable as the "metal halide". In the production of rare earth metals, the
respective metal chlorides or fluorides are preferably used.
[0030] The third embodiment of the invention is directed to a production method according
to which the porous ceramic body to be used as the diaphragm has a porosity of 1%
or more. The "porosity" so referred to herein is the porosity measured by mercury
porosimetry. When this porosity is less than 1%, the electrolytic bath will fail to
pass through the diaphragm to a sufficient extent, so that the resistance on the occasion
of electrolysis will increase, possibly rendering the operation difficult.
[0031] The upper limit to the porosity is fixed of its own accord under the restrictions
as to the constitution (strength in particular) of the diaphragm. For efficient and
smooth progress of the electrolysis, however, the porosity of the ceramic body is
desirably 10-40%, more desirably 20-30%.
[0032] The fourth embodiment of the invention is directed to a production method according
to which the diaphragm to be used has a thickness of 0.05-50 mm. The "diaphragm thickness"
defined herein is the thickness of the diaphragm when a single diaphragm is disposed
as shown in Fig. 1 and, when two or more diaphragms are disposed, it corresponds to
the sum of the respective thicknesses of the diaphragms.
[0033] When the diaphragm thickness is less than 0.05 mm, the diaphragm is so thin that
the strength thereof cannot be secured and the selective permeation function which
is inherently held by the diaphragm cannot be fully performed. On the other hand,
when the thickness exceeds 50 mm, the passage of the electrolytic bath becomes difficult
and the resistance on the occasion of electrolysis is great, leading to a failure
in smooth operation. The diaphragm thickness is desirably 2-10 mm.
[0034] The fifth embodiment of the invention is directed to a production method according
to which a porous ceramic body having a pore diameter of 20 µm or less is used as
the diaphragm. The "pore diameter of porous ceramic body" so referred to herein is
the pore diameter measured by mercury porosimetry. When this pore diameter is 20 µm
or less, the Ca formed in the vicinity of the cathode surface is effectively prevented
from passing through the diaphragm. The lower limit to the pore diameter is not particularly
set since an excessively small pore diameter results in an increase in electric resistance,
which in turn makes the operation difficult, and, in this manner, the lower limit
is fixed of its own accord.
For efficiently performing the electrolysis while inhibiting the passage of Ca through
the diaphragm, it is desirable that the ceramic body have a pore diameter of 0.1-10
µm.
[0035] The sixth embodiment of the invention is directed to a production method which comprises
using a porous ceramic body made of a material comprising yttria at a purity of 90
mass % or more as the diaphragm. The diaphragm used in this mode of embodiment is
constituted of a ceramic body mostly made of yttria and therefore is highly resistant
to calcium reduction. The yttria purity is desirably 99% or more.
[0036] The seventh embodiment of the invention is directed to a production method wherein
the current density on the occasion of electrolysis is 0.1-100 A/cm
2.
[0037] The eighth embodiment of the invention is directed to a method for producing a metal
wherein a calcium salt or a mixed salt containing calcium salt in the molten state
is used as the electrolytic bath and metallic calcium or a metallic calcium-containing
molten salt is obtained by applying the method for producing a metal according to
the invention (including the above-mentioned first to seventh embodiment).
[0038] Suited for use as the above-mentioned calcium salt are calcium chloride and calcium
fluoride (CaF
2). The mixed salt containing calcium salt is a mixture resulting from addition, to
a calcium salt, of such a chloride as potassium chloride (KCl), lithium chloride (LiCl)
or barium chloride (BaCl
2) or another salt (but only the salt being higher in decomposition voltage than the
calcium salt) for the purpose of lowering the melting point and/or adjusting the viscosity.
[0039] The configuration example shown in Fig. 1 corresponds to a case where calcium chloride
is used as the electrolytic bath. The calcium formed by electrolysis may be separated
as a solid or a molten substance; either mode of practice can be employed. The calcium
formed, either in the form of a solid or in the form of a molten substance, is lower
in specific gravity than molten calcium chloride and forms a Ca layer 6 on the liquid
surface of the electrolytic bath 4.
[0040] The ninth embodiment of the invention is directed to a method for producing a metal
wherein metallic calcium is obtained as a solid in the above-mentioned eighth mode
of embodiment. When, for example, the electrolytic bath temperature is maintained
at a temperature higher than the melting point of the calcium salt or the mixed salt
containing calcium salt, which constitutes the bath, but lower than the melting point
of calcium, the metallic calcium formed by electrolysis is obtained as a solid matter.
Therefore, the metallic calcium that has floated to the surface can be extracted from
the electrolytic cell in the form of solid metallic calcium or together with the molten
salt in the form of a molten salt containing solid metallic calcium.
[0041] The tenth embodiment of the invention is directed to a method for producing a metal
wherein metallic calcium is obtained as a molten substance in the above-mentioned
eighth mode of embodiment. In this case, the electrolytic bath temperature is maintained
at a temperature higher than the melting point of calcium. The metallic calcium formed
by electrolysis floats, as a molten substance, to the surface of the electrolytic
bath 4, so that it can be extracted from the electrolytic cell either as a molten
substance of metallic calcium or together with the molten salt.
[0042] As mentioned above, the method for producing a metal according to the invention is
characterized in that the diaphragm used on the occasion of electrolysis is constituted
of an yttria-containing porous ceramic article or body For producing this porous ceramic
body that constitutes the diaphram, it is desirable that an yttria powder having a
predetermined purity be pressure-molded and the molded body be sintered by burning
at a temperature of 1600°C or higher for 0.5-10 hours.
[0043] The yttria powder desirably has a particle diameter within the range of 0.1-500 µm.
When the content of particles having a diameter exceeding this range is high, it will
become difficult for the body after molding to maintain the shape thereof, or the
ceramic body after sintering will be low in strength and the use thereof as a diaphragm
will be sometimes hindered. When the content of particles having a diameter smaller
than the above range is high, the desired porosity cannot be obtained in some instances.
[0044] For the pressure-molding, an appropriate amount of water is added to the above-mentioned
yttria powder, and the mixture is placed in a mold and molded by applying a pressure
of about 0.2-20 MPa. At a pressure lower than 0.2 MPa, it is difficult to maintain
the shape of the molded body after removal from the mold while application of a pressure
exceeding 20 MPa will result only in a slight increase in strength after molding,
hence it is not necessary to further increase the pressure to be applied.
[0045] The sintering or firing is carried out in a fairly high temperature range, namely
1600°C or above, because yttria is sintered without adding any sintering auxiliary.
At a temperature lower than 1600°C, the sintering will not be effected to a sufficient
extent. The upper limit to the firing temperature is fixed of its own accord from
the viewpoint of plant capacity and of reduction in energy required for sintering,
hence it is not particularly specified, but it is considered to be about 1800°C. The
firing time may be properly adjusted within the range mentioned above according to
the firing temperature, taking into consideration the thickness of the ceramic body
and the desired porosity, among others.
[0046] The porosity and pore diameter of the sintering product (ceramic body) can be controlled
by properly combining the firing conditions (firing temperature and time) with the
particle diameter of the yttria powder.
[0047] The thus-obtained porous ceramic body contains no added sintering auxiliary, is made
of a material based on yttria highly resistant to calcium reduction, has a necessary
level of mechanical strength, and can be satisfactorily used as the diaphragm in the
method (electrolytic method) for producing a metal according to the invention.
[0048] The cathode to be used on the occasion of electrolysis is desirably made of a material
which will not form an alloy with the metal to be produced. In the case of production
of Ca, metallic titanium or pure iron, for instance, is preferably used. As the anode,
graphite is generally used.
Examples
[0049] An electrolytic cell was prepared applying metallic titanium as the cathode and graphite
as the anode, calcium chloride mixed with 25 mole percent of potassium chloride was
used as the electrolytic bath, and the bath temperature was adjusted to 700-750°C
(in certain tests, 850°C).
[0050] A diaphragm was disposed between the cathode and anode, and electrolysis was carried
out for 300 minutes. The diaphragm was constituted with a porous ceramic body obtained
by firing an yttria-containing material under varied conditions. The purity of yttria,
the porosity, pore diameter and thickness of the ceramic body obtained, and the current
density on the occasion of electrolysis are shown in Table 1.
[0051] As the yttria-containing material, employed was high-purity yttria (≥ 99.9 mass %)
whose content of impurities (Fe
2O
3, SiO
2, etc.) resulting from the production process was less than 0.1 mass %. For investigating
the influence of the yttria purity, materials being low in yttria purity were used
in some test runs.
[0052] The porosity and pore diameter of each porous ceramic body were measured by mercury
porosimetry using a Micromeritics model AutoPore III 9400 mercury porosimeter. The
pore diameter and porosity measured by this method are respectively represented by
the average pore diameter and porosity defined as follows:
Average pore diameter (D):
The value (D = 4V/A) obtained by dividing the total pore volume (V = IID2L/4) by the total pore surface area (A = nDL) on the assumption that each pore is
cylindrical. Here, V is the total volume of all pores, and L is the average pore depth.
Porosity:
The ratio of the total volume of open/through-wall pores (the pores stretching from
one side of the ceramic body to the opposite side) to the volume of the ceramic body.
The volume of closed pores is not included.
[0053] For comparison, electrolysis was carried out in the same manner for the cases where
a ceramic body obtained by firing alumina, magnesia, silicon nitride or zirconia (each
being a high-purity material) was used as the diaphragm.
(Table 1)
[0054]
Table 1
| Test No. |
Diaphragm |
Current density (A/cm2) |
Current efficiency (%) |
Remarks |
| Purity of Y2O3 (mass%) |
Porosity (%) |
Pore diameter (µm) |
Thickness (mm) |
| 1 |
25 |
19 |
5 |
5 |
1.0 |
61 |
|
| 2 |
50 |
20 |
6 |
5 |
1.0 |
77 |
|
| 3 |
90 |
20 |
6 |
5 |
1.0 |
83 |
|
| 4 |
≧99.9 |
18 |
5 |
5 |
1.0 |
100 |
|
| 5 |
≧99.9 |
3 |
4 |
5 |
1.0 |
80 |
|
| 6 |
≧99.9 |
8 |
5 |
5 |
1.0 |
85 |
|
| 7 |
≧99.9 |
13 |
5 |
5 |
1.0 |
97 |
|
| 8 |
≧99.9 |
21 |
6 |
5 |
1.0 |
100 |
|
| 9 |
≧99.9 |
42 |
7 |
5 |
1.0 |
96 |
|
| 10 |
≧99.9 |
55 |
8 |
5 |
1.0 |
91 |
|
| 11 |
≧99.9 |
17 |
0.5 |
5 |
1.0 |
100 |
Increase in electrolytic resistance |
| 12 |
≧99.9 |
18 |
5 |
5 |
1.0 |
100 |
|
| 13 |
≧99.9 |
20 |
11 |
5 |
1.0 |
98 |
|
| 14 |
≧99.9 |
19 |
18 |
5 |
1.0 |
97 |
|
| 15 |
≧99.9 |
20 |
24 |
5 |
1.0 |
96 |
|
| 16 |
≧99.9 |
20 |
5 |
0.3 |
1.0 |
87 |
|
| 17 |
≧99.9 |
18 |
4 |
1.5 |
1.0 |
92 |
|
| 18 |
≧99.9 |
20 |
5 |
5 |
1.0 |
100 |
|
| 19 |
≧99.9 |
19 |
5 |
20 |
1.0 |
100 |
Increase in electrolytic resistance |
| 20 |
≧99.9 |
20 |
5 |
5 |
0.2 |
100 |
|
| 21 |
≧99.9 |
20 |
6 |
5 |
1.0 |
100 |
|
| 22 |
≧99.9 |
18 |
7 |
5 |
10 |
100 |
|
| 23 |
≧99.9 |
20 |
5 |
5 |
20 |
98 |
|
| 24 |
≧99.9 |
19 |
5 |
5 |
0.2 |
100 |
|
| 25 |
≧99.9 |
20 |
6 |
5 |
1.0 |
100 |
|
| 26 |
≧99.9 |
19 |
6 |
5 |
10 |
100 |
|
| 27 |
≧99.9 |
20 |
5 |
5 |
20 |
100 |
|
| 28 |
Al2O3 |
20 |
6 |
5 |
1.0 |
|
Unusable as a diaphragm because of being reduced by Ca |
| 29 |
MgO |
19 |
5 |
5 |
1.0 |
|
Ditto |
| 30 |
Si3N4 |
20 |
5 |
5 |
1.0 |
|
Ditto |
| 31 |
ZrO2 |
20 |
5 |
5 |
1.0 |
|
Ditto |
[0055] The current efficiency data obtained in the electrolysis tests are also shown in
Table 1. Each current efficiency value was calculated from the yield of calcium (theoretical
precipitate amount) calculated from the quantity of electricity as supplied and the
sum of the amount of calcium actually formed in the vicinity of the cathode and found
adhering to the cathode and the amount of calcium actually formed and retained by
the electrolytic bath (on the bath surface and within the bath). The above-mentioned
total amount of calcium was determined by causing the portion of calcium adhering
to the cathode and the portion of calcium retained by the electrolytic bath to react
with H
2O, determining the amount of H
2 thus produced and converting this amount to the amount of Ca.
[0056] In Table 1, Test Nos. 1-4 each is the case where the yttria purity was varied (the
porosity, pore diameter, thickness and current density were retained at almost constant
levels). A higher current efficiency was obtained at a higher purity and, at a purity
of 99.9 mass % or more, the current efficiency was 100%.
The decrease in current efficiency with the decrease in yttria purity is the result
of reduction of alumina by the metallic calcium formed and the passage of calcium
through the diaphragm to cause the back reaction.
[0057] Test Nos. 5-10 each is the case where the porosity of the ceramic body was varied
while the other conditions were maintained almost constant. In Test Nos. 7 and 8,
where the porosity was in the above-mentioned desirable range (10-40%), the current
efficient was 100% or close thereto.
[0058] Test Nos. 11-15 each is the case where the pore diameter of the ceramic body was
varied. There was found a tendency for the current efficiency to increase with the
decrease in pore diameter. When the pore diameter was 0.5 µm, however, the resistance
on the occasion of electrolysis increased to some extent.
[0059] Test Nos. 16-19 each is the case where the diaphragm thickness was varied. The current
efficiency increased with the increase in diaphragm thickness. When the thickness
was 20 mm, however, the resistance in electrolysis increased. When the thickness was
0.3 mm (Test No. 16), the current efficiency decreased to some extent and this was
presumably due to occurrence of the back reaction as a result of the passage of a
very small proportion of the formed calcium through the diaphragm.
[0060] Test Nos. 20-23 each is the case where the electrolytic bath temperature was raised
(to 850°C) and the metallic calcium was obtained as a molten substance. The current
efficiency was good, namely 100% or close thereto. Among the tests, in Test No. 23
in which the current density was 20 A/cm
2, the current efficiency decreased, although to a slight extent. Since the metallic
calcium was in a molten state, it was easy for the same to pass through the diaphragm
accompanying the passage of large quantities of the electrolytic bath (Ca
2+, Cl
·) through the diaphragm and the decrease in current density was presumably due to
the actual passage of a very slight portion of the molten calcium through the diaphragm
to cause the back reaction.
[0061] Test Nos. 24-27 each is the case where the electrolytic bath temperature was maintained
at 700-750°C to obtain the metallic calcium as a solid matter, and the current efficiency
was 100% in all the cases. In these cases, the metallic calcium was a solid and presumably
no passage of metallic calcium through the diaphragm occurred even at increased current
density levels.
[0062] Test Nos. 28-31 are comparative examples in which the diaphragm to be used was constituted
of a sintered alumina (Al
2O
3), magnesia (MgO), silicon nitride (Si
3N
4) or zirconia (ZrO
3). In each case, the diaphragm suffered reduction by the calcium formed by electrolysis
and allowed the passage of calcium through the same, so that the back reaction occurred
and the current efficiency fell too far and, thus being impossible to be employed
as the diaphragm.
[0063] As is evident from the results shown above, the method for producing a metal according
to the invention which comprises using an yttria-containing porous ceramic body as
the diaphragm makes it possible to produce metallic calcium with a high current efficiency
not less than 80%.
Industrial Applicability
[0064] The method for producing a metal according to the invention is the one which uses
an yttria-containing porous ceramic body as the diaphragm and can be utilized in producing
such a metal as calcium or a rare earth element, in particular. When it is applied
to the production of calcium, for instance, it is possible to produce metallic calcium
in an easy and simple manner and at low cost without the need for enormous heat energy,
and the method can be expected to contribute greatly to promoted utilization of calcium,
in particular, as a reducing agent.