(19)
(11) EP 1 835 051 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
19.09.2007  Patentblatt  2007/38

(21) Anmeldenummer: 07003184.4

(22) Anmeldetag:  15.02.2007
(51) Internationale Patentklassifikation (IPC): 
C25D 5/08(2006.01)
C25D 15/02(2006.01)
C25D 5/10(2006.01)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL BA HR MK YU

(30) Priorität: 15.03.2006 DE 102006011848

(71) Anmelder: Bayerische Motorenwerke Aktiengesellschaft
80809 München (DE)

(72) Erfinder:
  • Mielsch, Goetz
    80992 München (DE)

   


(54) Selbstreinigende Oberfläche


(57) Eine selbstreinigende Oberfläche wird aus einer Metallmatrix gebildet, in die photokatalytisch aktive Titandioxid-Partikel eingelagert sind. Auch kann die photokatalytische Metallmatrix mit einem dünnen Metallfilm, der selbst keine Partikel enthält, überzogen sein, so dass die darunter liegenden Titandioxid-Partikel Poren bilden und damit ihre photokatalytische Aktivität beibehalten.


Beschreibung


[0001] Die Erfindung bezieht sich auf eine selbstreinigende Oberfläche mit photokatalytisch aktivem Titandioxid und ein Verfahren zu deren Herstellung.

[0002] Die Verwendung von Titandioxid als Photokatalysator zum Abbau organischer Verbindungen unter Lichteinwirkung ist bekannt. Dabei kommt es aufgrund der Halbleitereigenschaften des Titandioxids gemäß der Gleichung (1) in einem ersten Schritt zu einer Ladungstrennung im Titandioxid-Partikel unter Bildung eines Elektrons e- im Leitungsband und einem positiven Loch p+ im Valenzband.



[0003] Im nächsten Schritt oxidiert das Loch gemäß der Gleichung (2) ein aus an der TiO2-Oberfläche adsorbierten Wasser gebildetes Hydroxyl-Anion, wobei ein Hydroxyl-Radikal entsteht.



[0004] Zudem werden aus an der TiO2-Oberfläche adsorbierten Sauerstoff Hydroperoxyl-Radikale gebildet, die zusammen mit dem Hydroxyl-Radikal die organische Verbindung abbauen, wie in Jochen Winkler "Titandioxid", Hrsg. von Dr. Ulrich Zorll - Hannover: Vincentz, 2003 (Technologie des Beschichtens), Seiten 71 bis 74 im Einzelnen beschrieben. Bei Oberflächen, die mit einer solchen photokatalytisch aktiven Titandioxid-Beschichtung versehen sind, führt dies zu einer Zersetzung organischer Verschmutzungen und damit zu einem Selbstreinigungseffekt.

[0005] Es ist bekannt, photokatalytisch aktive Titandioxid-Beschichtungen durch chemische Dampfabscheidung (CVD), mittels Vakuumverfahren wie physikalische Dampfabscheidung (PVD) oder Plasmadampfabscheidung (PaCVD) oder mit dem Sol-Gel-Verfahren herzustellen, bei dem ein aus einer hydrolysierten Titanverbindung gebildetes Titandioxid-Sol auf dem Substrat in ein Gel und dann thermisch in kristallisiertes Titandioxid übergeführt wird. Die dabei gebildeten zusammenhängenden Schichten werden vorwiegend auf keramische oder metallische Substrate aufgetragen.

[0006] Die bekannten Verfahren sind aufwändig und kostspielig. Zudem können nur temperaturstabile Substrate beschichtet werden. Des weiteren ist die Haftung z.B. beim Sol-Gel-Verfahren auf metallischen Oberflächen schwierig und oft nicht ausreichend.

[0007] Aufgabe der Erfindung ist es, eine selbstreinigende Oberfläche mit photokatalytisch aktivem Titandioxid bereitzustellen, die auf einfache Weise herstellbar ist, zu einer festen Haftung auf metallischen Oberflächen führt und auch auf temperaturempfindliche Substrate aufgetragen werden kann.

[0008] Dies wird erfindungsgemäß mit der im Anspruch 1 gekennzeichneten selbstreinigenden Oberfläche erreicht, die durch die Merkmale der Ansprüche 2 bis 10 in vorteilhafter Weise ausgestaltet wird. Im Anspruch 11 ist ein bevorzugtes Verfahren zur Herstellung der erfindungsgemäßen selbstreinigenden Oberfläche angegeben, und im Anspruch 12 eine bevorzugte Ausführungsform dieses Verfahrens.

[0009] Erfindungsgemäß besteht die selbstreinigende Oberfläche aus einer Metallmatrix, in die photokatalytisch aktive Titandioxid-Partikel eingelagert sind. Es liegt also keine zusammenhängende Titandioxid-Beschichtung vor, vielmehr erfolgt die selbstreinigende Wirkung durch einzelne im Abstand angeordnete Titandioxid-Partikel an der Oberfläche der Metallmatrix, wodurch überraschenderweise der gleiche selbstreinigende Effekt hervorgebracht wird.

[0010] Zur Herstellung der selbstreinigenden Oberfläche wird erfindungsgemäß das Teil, das mit der selbstreinigenden Oberfläche versehen werden soll, in ein Bad gegeben, das aus einer z.B. wässerigen Lösung eines Salzes des Metalls besteht, aus dem die Metallmatrix gebildet wird. In der Lösung werden die photokatalytisch aktiven Titandioxid-Partikel durch Bewegung des Bades, also z.B. Rühren oder Lufteinblasung, dispergiert und dann die Metallmatrix mit den darin eingelagerten Titandioxid-Partikeln durch Reduktion des Salzes auf dem Teil abgeschieden.

[0011] Die Reduktion kann stromlos durch Zugabe eines Reduktionsmittels erfolgen. Bei Teilen mit elektrisch leitfähiger Oberfläche wird die Metallmatrix mit den eingelagerten Titandioxid-Partikeln jedoch vorzugsweise galvanisch abgeschieden.

[0012] Zur Herstellung der erfindungsgemäßen selbstreinigenden Oberfläche können im Handel erhältliche photokatalytisch aktive Titandioxid-Partikel verwendet werden. Aus solchen Partikeln werden beispielsweise poröse Sinterkörper hergestellt, die in der Abwasserbehandlung zur UV-Entkeimung verwendet werden.

[0013] Die Titandioxid-Partikel können in der Anatas- oder Brookit-Kristallform vorliegen. Während Titandioxid-Partikel in der Anatas-Form Licht mit einem hohen UV-Anteil voraussetzen, um selbstreinigend zu wirken, führt die Brookit-Form auch im sichtbaren Lichtbereich zu einer selbstreinigenden Wirkung.

[0014] Die Teilchengröße der Titandioxid-Partikel beträgt vorzugsweise 0,01 µm bis 10 µm, insbesondere 0,1 µm bis 1 µm. Der Anteil der Titandioxid-Partikel in der Metallmatrix beträgt vorzugsweise 1 bis 40 Vol.-%, insbesondere 5 bis 20 Vol.-%, bezogen auf das Gesamtvolumen aus Metallmatrix und Titandioxid-Partikeln.

[0015] Die Mindestschichtdicke der Metallmatrix, in der die Titandioxid-Partikel eingelagert sind, ist von der Teilchengröße der Titandioxid-Partikel abhängig. D.h., die Schichtdicke der Metallmatrix muss mindestens so groß sein, dass die Titandioxid-Partikel darin sicher fixiert werden. Sie beträgt daher vorzugsweise mindestens ein Drittel, insbesondere mindestens zwei Drittel der mittleren Teilchengröße der Titandioxid-Partikel. Andererseits soll die Schichtdicke der Metallmatrix nicht zu groß sein, da nur der Anteil der Titandioxid-Partikel an der Oberfläche der Metallmatrix eine selbstreinigende Wirkung besitzt. Vorzugsweise liegt die Schichtdicke der Metallmatrix zwischen 0,5 µm und 30 µm, insbesondere 5 µm bis 20 µm.

[0016] Die Metallmatrix kann aus einem beliebigen Metall bestehen. Vorzugsweise wird sie jedoch aus Nickel, Chrom, Kupfer, Silber oder Gold gebildet.

[0017] In einer Silbermatrix wird durch die Titandioxid-Partikel neben der selbstreinigenden Wirkung zusätzlich erreicht, dass die Silberoberfläche nicht anläuft. Das Anlaufen des Silbers ist bekanntlich darauf zurückzuführen, dass eine Oxidation des Silbers an der Oberfläche durch Schwefelverbindungen aus der Umgebung unter Bildung von Silbersulfid erfolgt. Wie eingangs anhand der Gleichung (1) erläutert, stellt Titandioxid zugleich einen Photohalbleiter dar, wodurch bei Lichteinfall Elektronen gebildet werden. Durch Abfluss dieser Elektronen in die Silbermatrix werden der Silbermatrix reduzierende Eigenschaften verliehen, wodurch die Bildung von Silbersulfid verhindert wird. Eine erfindungsgemäß ausgebildete Silberoberfläche behält daher ihren Glanz, da sie bei Lichteinwirkung nicht nur nicht anläuft, sondern organische Verunreinigungen, beispielsweise Fettspuren durch Fingerabdrücke, selbstreinigend entfernt werden.

[0018] Der durch die Halbleitereigenschaften des Titandioxids bei Lichteinfall gebildete Elektronenüberschuss verhindert jedoch nicht nur ein Anlaufen des Silbers, sondern bewirkt generell einen kathodischen Korrosionsschutz der Metallmatrix.

[0019] Auf der Metallmatrix, in die die Titandioxid-Partikel eingelagert sind, kann eine weitere dünne Metallschicht abgeschieden werden. Beispielsweise kann die untere Schicht durch Nickel, Kupfer oder Silber und Titandioxid-Partikel und die obere Schicht durch Chrom oder Edelmetalle wie Gold, Platin oder Ruthenium gebildet sein, in denen selbst eine Partikeleinlagerung nicht möglich oder schwierig ist. Die dünne obere Schicht wird mit einer Schichtdicke von vorzugsweise maximal 0,8 µm, insbesondere 0,1 µm bis 0,5 µm, abgeschieden. Wichtig hierbei ist, dass die Partikel nicht zugedeckt werden, sondern als offene Poren vorliegen.

[0020] Um ein Teil zu verchromen, können die Titandioxid-Partikel z.B. mit der unteren dicken Nickelschicht abgeschieden werden, worauf die Chromschicht abgeschieden wird. Dazu kann auf dem Teil zunächst beispielsweise galvanisch eine Nickelschicht mit den darin eingelagerten Titandioxid-Partikeln mit einer Schichtdicke von beispielsweise 5 µm bis 20 µm abgeschieden werden. Da Chrom nur in dünner Schicht glänzt und eine Partikeleinlagerung nicht möglich ist, wird dann auf der Nickelschicht mit den Titandioxid-Partikeln eine dünne Chromschicht von z.B. 0,1 µm bis 0,6 µm abgeschieden.

[0021] Wie sich gezeigt hat, findet dabei auf den aus der Oberfläche der Nickelschicht ragenden Titandioxid-Partikeln keine Chromabscheidung statt. In der Chromschicht werden vielmehr Poren gebildet, die einen Lichteinfall auf die Titandioxid-Partikel an der Oberfläche der Nickelschicht ermöglichen. Das Teil, auf dem die Nickelschicht mit den darin eingelagerten Titandioxid-Partikeln galvanisch abgeschieden wird, kann z.B. vernickeltes Stahlblech sein.

[0022] Die erfindungsgemäße selbstreinigende Oberfläche kann auf Metall und jedes andere Substrat auf einfache Weise aufgebracht werden. Da das Substrat erfindungsgemäß keiner Erwärmung unterworfen zu werden braucht, kann die erfindungsgemäße selbstreinigende Oberfläche auch auf Substrate mit geringer Temperaturstabilität, also beispielsweise Kunststoff, Aluminium oder Zinkdruckguss gebildet werden. Sofern eine galvanische Abscheidung der Metallmatrix mit den darin eingelagerten Titandioxid-Partikeln erfolgt, kann die erfindungsgemäße Beschichtung auf allen Substraten mit elektrisch leitfähiger Oberfläche hergestellt werden, also z.B. auch auf galvanisiertem Kunststoff.

[0023] Die erfindungsgemäße Oberflächenbeschichtung ist insbesondere für verchromte Fahrzeugaußenflächen geeignet, die einer starken Verschmutzung durch Insekten, wie Fliegen, oder anderes organisches Material ausgesetzt sind, beispielsweise die Spiegelkappe der Außenspiegel, die Scheinwerferringe, der Kühlergrill, usw. Die erfindungsgemäße selbstreinigende Oberfläche kann jedoch auch im Fahrzeuginnenraum eingesetzt werden, insbesondere wenn die Brookit-Form des Titandioxid verwendet wird. So können mit der erfindungsgemäßen selbstreinigenden Oberfläche beispielsweise dauerhaft hochglänzende Silberoberflächen hoher Wertigkeit im Innenraum eines Fahrzeugs hergestellt werden.

Beispiel 1



[0024] Um hochglanzverchromtes Stahlblech mit selbstreinigender Oberfläche herzustellen, wird ein zweifach vernickeltes Stahlblechteil nach einer herkömmlichen Entfettungsbehandlung als Kathode in ein Elektrolytbad gegeben, das als Lösungsbestandteile 300 g/l Nickelsulfat, 60 g/l Nickelchlorid sowie herkömmliche Mengen eines handelsüblichen Nickelglanzträgers, eines handelsüblichen Nickelnetzmittels, eines handelsüblichen Nickelglanzzusatzes und eines handelsüblichen Nickeleinebners enthält, außerdem 15 g/l Titandioxid-Partikel der Anatas-Form mit einer mittleren Teilchengröße von 0,5 µm. Das Bad wird durch Lufteinblasung in Bewegung gehalten. Es wird eine Nickelschicht mit einer Schichtdicke von 2 µm galvanisch abgeschieden, in die die Titandioxid-Partikel eingelagert sind.

[0025] Darauf wird auf herkömmliche Weise eine Chromschicht mit einer Schichtdicke von 0,3 µm aus einem handelsüblichen Chromelektrolyten abgeschieden.

Beispiel 2



[0026] Ein Stahlteil wird nach einer herkömmlichen Entfettungsbehandlung als Kathode in ein Elektrolytbad gegeben, das 50 g/l Silbercyanid, 70 g/l Calciumcyanid, 10 g/l Kaliumhydroxid und 20 g/l Kaliumcarbonat als Lösungsbestandteile sowie 15 g/l Titandioxid-Partikel der Anatas-Form mit einer mittleren Teilchengröße von 0,5 µm enthält. Das Bad wird in Bewegung gehalten. Es wird eine Silberschicht mit einer Schichtdicke von 10 µm galvanisch abgeschieden, in die die Titandioxid-Partikel eingelagert sind.


Ansprüche

1. Selbstreinigende Oberfläche mit katalytisch aktivem Titandioxid, dadurch gekennzeichnet, dass sie aus einer Metallmatrix besteht, in die das photokatalytisch aktive Titandioxid in Form von Partikeln eingelagert ist.
 
2. Oberfläche nach Anspruch 1, dadurch gekennzeichnet, dass die Metallmatrix mit den darin eingelagerten Titandioxid-Partikeln eine galvanisch abgeschiedene Metallmatrix ist.
 
3. Oberfläche nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Metallmatrix aus Nickel, Chrom, Kupfer, Silber oder Gold besteht.
 
4. Oberfläche nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Metallmatrix eine Schichtdicke von höchstens 30 µm aufweist.
 
5. Oberfläche nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass auf der Metallmatrix, in der die Titandioxid-Partikel eingelagert sind, eine Metallschicht abgeschieden ist.
 
6. Oberfläche nach Anspruch 5, dadurch gekennzeichnet, dass die abgeschiedene Metallschicht eine Schichtdicke von höchstens 2 µm aufweist.
 
7. Oberfläche nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Metallmatrix, in der die Titandioxid-Partikel eingelagert sind, durch eine Nickelschicht gebildet ist, auf der eine Chromschicht oder ein Metall abgeschieden ist, das selbst keine Metall-Titandioxid-Dispergide bilden kann, wobei die Schichtdicke so gewählt ist, dass die Titandioxid-Partikel der darunter liegenden Schicht nicht verdeckt werden und durch Bildung von Poren photokatalytisch wirksam sind.
 
8. Oberfläche nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die mittlere Teilchengröße der Titandioxid-Partikel 0,01 µm bis 10 µm beträgt.
 
9. Oberfläche nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Konzentration der Titandioxid-Partikel in der Metallmatrix 1 bis 40 Vol.-% beträgt.
 
10. Oberfläche nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Titandioxid-Partikel in der Anatas- oder Brookit-Form vorliegen.
 
11. Verfahren zur Herstellung der selbstreinigenden Oberfläche nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das mit der selbstreinigenden Oberfläche zu versehende Teil in ein Bad gegeben wird, das ein gelöstes Salz des die Metallmatrix bildenden Metalls und die photokatalytisch aktiven Titandioxid-Partikel enthält, die in dem Bad durch Bewegung dispergiert werden, und die Metallmatrix durch Reduktion des Salzes zusammen mit den Titandioxid-Partikeln auf der Oberfläche des Teiles abgeschieden wird.
 
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Metallmatrix mit den Titandioxid-Partikeln galvanisch abgeschieden wird.
 






Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Nicht-Patentliteratur