

EP 1 837 481 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
28.10.2009 Bulletin 2009/44

(51) Int Cl.:
E21B 7/20 (2006.01)
E21B 10/64 (2006.01)

E21B 4/10 (2006.01)

(21) Application number: **07005240.2**

(22) Date of filing: **14.03.2007**

(54) Drilling tool and drilling method

Werkzeug und Verfahren zum Bohren

Outil et procédé de forage

(84) Designated Contracting States:
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE
SI SK TR**

(30) Priority: **24.03.2006 JP 2006082425**

(43) Date of publication of application:
26.09.2007 Bulletin 2007/39

(73) Proprietor: **IMITSUBISHI MATERIALS
CORPORATION**
Chiyoda-ku,
Tokyo (JP)

(72) Inventors:
• **Nakamura, Kazuyoshi**
Anpachi-gun
Gifu-ken (JP)
• **Hisada, Masaya**
Anpachi-gun
Gifu-ken (JP)

(74) Representative: **HOFFMANN EITLE**
Patent- und Rechtsanwälte
Arabellastrasse 4
81925 München (DE)

(56) References cited:
WO-A-02/081856 CA-A1- 2 496 199
NL-A- 6 410 471 US-A- 5 472 057

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**BACKGROUND****1. Field of the Invention**

[0001] The present invention relates to, a drilling tool having a ring bit attached to a tip of a casing pipe and an inner bit attached to a tip of a transmission member transmitting a striking force, a torque and a thrust such as an inner rod inserted in the casing pipe, and a drilling method using the same.

2. Description of the Related Art

[0002] As a drilling tool having a said ring bit and inner bit, the drilling tool in which a contact portion capable of relatively rotating and preventing each other's omission is installed in a coupling part of a casing shoe on a tip portion of a casing pipe and a ring bit is described in JP-A-9-158656. In addition, the drilling tool and the drilling method which proceeds to drill with only an inner bit after stopping the drilling and pulling-out of a casing pipe by means of an outer bit and a protective tube (a casing pipe) by pulling out the outer bit (the ring bit) from an inner bit (an inner bit) in a desired position are described in JP-T-10-510601. Furthermore, the drilling tool in which a drilling head is constituted by the ring bit and the inner bit, and the inner bit engaged to a ring lost bit is inserted in the casing shoe is further described in JP-A-11-173057.

[0003] However, first, in a drilling tool described in JP-A-9-158656, since a casing pipe and a ring bit are accommodated by a contact portion, after an drilling hole can be secured by performing the drilling with the casing pipe in a soft formation which is easy to collapse, and the drilling cannot be efficiently performed only by the inner bit in a hard formation which is difficult to collapse. More particularly, in case that the transmission member and the inner bit are pulled out from the casing pipe, and the member, like an anchor, is inserted within an drilling hole, an outer diameter of the member is limited to less than an inner diameter of a part on which an inclined surface of the ring bit which is transmitted a striking force from the inner bit to a tip side, while since the inner and outer diameter of the ring bit or the casing pipe must be raised to insert the member having a predetermined outer diameter, it is inefficient and uneconomic.

[0004] In addition, in the drilling tool described in JP-T-10-510601, which can proceed to drill only with the inner bit after having formed the first hole to a predetermined depth with the ring bit and the inner bit, as described above, a second drilling hole can be formed in succession only by the inner bit without the casing pipe in the hard formation. However, the second hole formed by this configuration has the inner diameter smaller than the inner diameter of the first excavation hole. Besides, since the outer diameter of the member, like an anchor

in the second hole must be also limited to less than the inner diameter of a protruding part formed on the inner surface of the ring bit to be transmitted the rotation and striking force from the inner bit, the inner and outer diameter of the ring bit or the casing pipe cannot avoid being raised with respect to the outer diameter of the said member similar to the drilling tool described in JP-A-9-158656.

[0005] By this configuration, in the drilling tool described in JP-A-11-173057, the member having the outer diameter as large as the inner diameter of a stepped portion which is transmitted the striking force from the inner bit can be said in the hole through the casing pipe by removing the ring bit from the inner bit and pulling out the inner rod and the inner bit from the casing pipe after terminating the drilling. However, even by the drilling tool described in JP-A-11-173057, the second drilling hole described above cannot be formed without the casing pipe and the ring bit is installed in the tip of the casing pipe to be merely rotatable. Accordingly, for example, in case that the hole is formed downward, since there was a hollow on the ground, when the striking force is transmitted to the ring bit being not contact with the bottom of hole, engaging with the inner bit comes off and the ring bit falls off within the hole by the impact, whereby the later drilling becomes impossible in itself.

[0006] US Patent 5,472,057 is considered the closest prior art with regard to the subject-matter of claim 1 describing a drilling with casing and retrievable bit-motor assembly. The drilling apparatus includes an elongated cylindrical extension member which is adapted to house a drilling motor during drilling operations. Furthermore, the drilling apparatus includes a bit assembly with a generally cylindrical annular reamer bit portion and a retractable central bit portion. The reamer bit portion is retained on the extension member by a split sleeve retainer, which is threadedly engaged with the upper end of the reamer bit portion. In addition, the reamer bit portion includes a plurality of circumferentially spaced latch receptacles which can be engaged with drive keys of a reamer bit drive mechanism.

[0007] Further background art is known from CA 2 496 199 A1.

45 SUMMARY

[0008] Under the above circumstances, an object of the present invention is to provide the drilling tool and a drilling method using the same which are efficient so that the drilling is performed by the casing pipe and then, drilling the second drilling hole having a same diameter can be performed without the casing pipe, which are economic so that the outer diameter of the member, like an anchor inserted through the casing pipe can be significantly secured, that is, in case that the members, like an anchor having the same outer diameter are inserted, the diameter of the casing pipe or the ring bit can be lowered, and in which the ring bit never falls off during drilling with

respect to all drilling tools having a ring bit and inner bit. [0009] To achieve the object by solving the above problem, a drilling tool comprises a cylindrical casing pipe; an annular ring bit inserted in a tip portion of the cylindrical casing pipe to be rotatable around an axis line of the casing pipe, wherein the ring bit is inserted such that an outer peripheral surface thereof is opposed to an inner peripheral surface of the tip portion of the casing pipe; latching means constituted by a concave portion formed in at least one peripheral surface of the inner and outer peripheral surfaces opposed to each other to be extended axially, wherein the concave portion has an annular shape around the axis line, and a convex portion formed in the other peripheral surface to be accommodated in the concave portion, the ring bit being latched on a tip side in the direction of the axis line of the casing pipe by the latching means and mounted to be advanced or retreated in the direction of the axis line; and an inner bit mounted on a tip of a transmission member inserted within the casing pipe, wherein a first contact portion which can be contacted to a contact portion of the casing pipe side protruded on an inner periphery of the tip portion of the casing pipe toward the tip side of the direction of the axis line and a second contact portion which can be contacted to a contact portion of the ring bit side formed at the ring bit and having an inner diameter smaller than that of the contact portion of the casing pipe side toward the tip side of the direction of the axis line are formed on the outer peripheral surface of the inner bit, wherein the inner bit can be engaged around the axis line with respect to the ring bit by engaging means, and wherein the latching means has a pull-out mechanism which pulls out the ring bit to the tip side of the direction of the axis line with respect to the casing pipe.

[0010] Accordingly, the drilling method using the drilling tool of the present invention comprise the steps of applying to the inner bit, the striking force onto the tip side in the direction of the axis line and the torque around the axis line, to form a first hole having a predetermined depth while transmitting the striking force to the casing pipe and the ring bit via the first and second contact portions, the contact portion of the casing pipe side and the contact portion of the bit side, and transmitting the torque only to the ring bit by engaging means; retreating the inner bit and a transmission member to pull out from the casing pipe; mounting a second inner bit having the outer diameter smaller than the inner diameter of the contact portion of the casing pipe and having the second contact portion and the engaging means without the first contact portion onto the tip of the transmission member; inserting the second inner bit in the inner periphery of the ring bit through the casing pipe; pulling out the ring bit to the tip side in the direction of the axis line with respect to the casing pipe by the pull-out mechanism; and applying to the second inner bit, the striking force onto the tip side in the direction of the axis line and the torque around the axis line to form a second hole at a tip end side of the first hole while transmitting the striking force to the ring

bit via the second contact portion and the contact portion of the ring bit side and transmitting the torque to the ring bit by the engaging means.

[0011] That is, when the first hole is formed, since the torque and the striking force which could have been applied to the inner bit is transmitted to the ring bit and the only striking force is transmitted to the casing pipe to form the hole, the first hole can be secured on the soft formation and then, the ring bit is latched to the tip portion of the casing pipe toward the tip side in the axis direction by the latching means, even if null is hit, the ring bit can be prevented from falling off. Moreover, after the first hole reaches the hard formation, the second hole having the same diameter as the that of the first hole can be effectively formed without the casing pipe by the torque and the striking force from the second inner bit by exchanging the inner bit for the above-described second inner bit and pulling out the ring bit from the tip portion of the casing pipe by the pull-out mechanism having the latching means.

[0012] Accordingly, by retreating after the second hole is formed, the second inner bit and the transmission member to pull out from the casing pipe in a state that the ring bit is left within the second hole, and inserting the member, like an anchor having the outer diameter smaller than the inner diameter of the contact portion of the casing pipe and larger than the inner diameter of the contact portion of the ring bit within the casing pipe to said within the hole, for example, even though it is compared with the drilling tool and the drilling method which can drill the second drilling hole described in JP-T-10-510601 or the drilling tool described in JP-A-9-158656, the outer diameter of the member, like an anchor which can be built-up to the second drilling hole can be raised, in other words, when the member, like an anchor having the same outer diameter is built-up, the diameter of the hole or the casing pipe can be lowered, so that it is economic.

[0013] In addition, the drilling method using the drilling tool of the present invention, comprises the steps of: applying to the inner bit, the striking force onto the tip side in the direction of the axis line and the torque around the axis line via the transmission member, to form a first hole having a predetermined depth while transmitting the striking force to the casing pipe and the ring bit via the first and second contact portions, the contact portion of the casing pipe side and the contact portion of the bit side, and transmitting the torque only to the ring bit by engaging means; retreating the inner bit and a transmission member to pull out from the casing pipe; pulling out the ring bit to the tip side in the direction of the axis line with respect to the casing pipe by the pull-out mechanism; and inserting the member, like an anchor having the outer diameter smaller than the inner diameter of the contact portion of the casing pipe and larger than the inner diameter of the contact portion of the ring bit within the casing pipe to build up within the hole. Accordingly, in this case, the fall-off of the ring bit similar to the drilling tool de-

scribed in JP-A-11-173057 can be prevented by the latching means. Further, the member, like an anchor having the diameter larger than that in the drilling tool or the drilling method described in JP-A-9-158656 and JP-T-10-510601, can be built up, and in this case, the hole and the casing pipe diameter can be smaller than above the drilling tool or the drilling method.

[0014] Here, as described above, when drilling with the casing pipe, by the latching means constituted by the concave and convex portions formed the inner and outer peripheral surfaces of the tip portion of the casing pipe and the ring bit opposed to each other, to certainly latch the ring bit to the casing pipe in the tip side of the direction of the axis line, and when the second hole without the casing pipe is formed, to pull out the ring bit from the casing pipe by the pull-out mechanism, in the latching means, the annular convex portions are formed in a tip portion of a peripheral surface of the casing pipe side and a rear end portion of a peripheral surface of the ring bit side and the concave portions accommodating the convex portions in the other peripheral surfaces are formed in a rear end portion of a peripheral surface of the casing pipe side and a tip portion of the peripheral surface of the ring bit side along the direction of the axial line on the inner and outer peripheral surfaces, and wherein the pull-out mechanisms are a male screw portion and a female screw portion formed on the inner and outer peripheral surfaces of the convex portion to be threaded with each other.

[0015] That is, in the latching means and the pull-out mechanism configured as described above, since the inner diameter of the thread of the female screw portion is smaller than the outer diameter of the thread of the male screw portion in the male and female screw portions screwed with each other, the ring bit is certainly latched to the tip side in the direction of the axis line at a location where the convex portion of the tip portion of the peripheral surface of the casing pipe and the convex portion of the rear end side of the peripheral surface of the ring bit side contact each other, and the ring bit is rotatable around the axis line and can be moved along the axis line in the range of the concave portions arranged in the convex portions thereof. In addition, the rotational direction of the ring bit with respect to the casing pipe at the time of drilling is set to the direction where the male and female screw portions of the convex portion contacted as described above are not screwed. When the ring bit is pulled out by the pull-out mechanism, if the ring bit is relatively rotated with respect to the casing pipe in the direction opposite to the rotational direction on drilling, since the male and female screw portions are screwed together, and the ring bit is discharged to a side opposite to the inserted direction and screwing is released, to pull out the ring bit. Accordingly, according to the latching means and pull-out mechanism, the ring bit is rotated by the inner bit via the engaging means or the ring bit is rotated by the second inner bit described above, whereby the ring bit can be pulled out certainly and easily.

[0016] In addition, instead of the latching means and the pull-out mechanism, in the latching means, the concave portion is formed on one peripheral surface, and a latching member urged toward the one peripheral surface

5 side is annularly disposed on the other peripheral surface to be the convex portion, out of the inner and outer peripheral surfaces, and in the pull-out mechanism, an inclined surface is formed on an annular surface which is contacted to the latching member when the ring bit is 10 pulled out with respect to the tip portion of the casing pipe and is directed toward a direction that the inner and outer peripheral surfaces oppose as being directed toward a direction that the latching member is contacted onto the annular surface. In the latching means described above, 15 when the convex portion where the latching member disposed in the other peripheral surface is biased to the concave portion of one peripheral surface to be protruded pulls out the ring bit with respect to the tip portion of the casing pipe, the ring bit is latched to the tip side in the 20 direction of the axis line by contacting the latching member to one annular surface of one pair of annular surfaces which is directed toward the direction of the axis line formed in both end portions in the direction of the axis line of the concave portion and the ring bit can be moved 25 in the direction of the axis line with respect to the casing pipe within the range where the convex portion overpasses the one annular surface.

[0017] Further, in the pull-out mechanism with which the latching means is equipped, in a state that the ring 30 bit is latched toward the tip side in the direction of the axis line, as the ring bit is directed toward the direction where the latching member is contacted, since the inclined surface which is directed toward the direction where the inner and outer peripheral surfaces oppose as being directed toward a direction where the latching member is contacted, in a state that the convex portion is contacted to the annular surface where the inclined surface is formed, for example, the second inner bit or the member, like an anchor described above is inserted 35 to be contacted to the contact portion of the ring bit side, and the striking force or the thrust force is applied toward the tip side or the casing pipe is relatively retreated with respect to the ring bit, so that the latching member constituting the convex portion is guided to the inclined surface, the latching thereof being loosen, whereby the ring bit can be pulled out to the tip side. Furthermore, in order 40 to mount the ring bit which is equipped with the latching means and the pull-out mechanism onto the tip portion of the casing pipe, in a state that the latching member is retreated within the peripheral surface by resisting the biasing force on the contrary thereto, it is preferable to insert the ring bit into the tip portion of the casing pipe. 45 **[0018]** Meanwhile, by means of the latching means and the pull-out mechanism, in the latching means, the convex portions are formed on the tip portion of the peripheral surface of the casing pipe side and the rear end portion of the peripheral surface of the ring bit side, and the concave portions accommodating the convex por-

tions in the other peripheral surfaces are formed in a rear end portion of a peripheral surface of the casing pipe side and a tip portion of the peripheral surface of the ring bit side along the direction of the axial line, out of the inner and outer peripheral surfaces, and in the pull-out mechanism, an inclined surface is formed at a surface toward the direction of the axial line which is formed at a portion where the concave portion and the convex portion of each of the inner and outer peripheral surfaces are connected and is directed toward a direction that the inner and outer peripheral surfaces are opposed as being directed toward the direction of the axial line opposite to the direction that the inclined surface is directed. In the latching means described above, out of the inner and outer periphery surfaces of the ring bit and the tip portion of the casing pipe opposed to each other, the convex portion is formed the tip portion of the peripheral surface of the casing pipe side and the rear end portion of the peripheral surface of the ring bit side, and the concave portion where the convex portion of the ring bit side is accommodated is formed in the rear end portion of the peripheral surface of the casing pipe side, while the concave portion where the convex portion of the casing pipe side is accommodated is formed in the tip portion of the peripheral surface of the ring bit side. Therefore, the ring bit is rotatable and can be moved in the direction of the axis line in the range of the concave portion thereof, and the ring bit is latched to the tip side in the direction of the axis line at a location where the convex portions of both peripheral surfaces are contacted.

[0019] In addition, in the pull-out mechanism with which the latching means is equipped, an inclined surface, which is directed toward a direction where the inner and outer peripheral surfaces oppose, is formed on the surface which directed toward the direction of the axis line arranged in from the convex portion to the concave portion contacted in a state that the ring bit is latched to the tip side in the direction of the axis line, as directed toward a side opposite to the direction of the axis line where the surface is directed. Since the inclined surface which is directed toward the direction where the inner and outer peripheral surfaces oppose, the second inner bit or the said member is inserted and the striking force or the thrust force is relatively applied to the ring bit toward the tip side in the direction of the axis line with respect to the casing pipe, so that the inclined surfaces thereof can be guided each other. Therefore, out of the ring bit and the tip portion of the casing pipe, a side where the concave and convex portions are formed on the inner peripheral surface is enlarged the diameter, a side where the concave and convex portions are formed on the outer peripheral surface is reduced the diameter, or both sides are enlarged and reduced the diameter, the deformation occurs elastically and by this configuration, each convex portion is pulled out from the concave portion having been accommodated to pull out the ring bit to the tip side. Here, it is preferable to use, for example, a shrinkage-fitted method, that is, inserting the other by heating and ex-

anding one where the concave and convex portions are formed on the inner peripheral surface out of the ring bit and the tip portion of the casing pipe so that the inner diameter of the convex portion is larger than the outer diameter of the other convex portion.

[0020] Meanwhile, in the drilling tool described above, for example, the ring bit is inserted by opposing the outer peripheral surface thereof to the inner peripheral surface of the tip portion of the casing pipe, in the engaging means, the protrusion extended in the direction of the axial line is formed on the outer periphery of the inner bit and the groove accommodating the protrusion is formed on the inner periphery of the ring bit to be opened to a rear end of the ring bit, and the groove of the engaging means and at least one of the concave portion and the convex portion formed on the outer peripheral surface of the ring bit in the latching means are formed so that at least a part thereof is overlapped in the direction of the axial line. Therefore, since the axial length of the ring bit can be reduced and the mass thereof can be reduced, it is economic, and even if the ring bit is drawn out to the tip side when the striking force is transmitted by the inner bit to the ring bit being not contact with the bottom of hole, the inertia can be reduced, so that the dropout of the ring bit can be more certainly prevented.

[0021] In addition, similarly, in the engaging means, for example, the protrusion extended in the axis line direction is formed on an outer periphery of the inner bit and the groove capable of accommodating the protrusion and having a width circumferentially larger than that of the protrusion is formed on the inner periphery of the ring bit to be opened to the rear end of the ring bit, wherein a convex wall portion capable of being contacted to the rear end of the protrusion accommodated in the groove toward the tip side in the direction of the axial line is formed in a rear end opening of the groove at a side of rotational direction of the inner bit upon drilling, and wherein in a state that the first contact portion is contacted to a contact portion of the casing pipe side and the convex wall portion is contacted to the rear end of the protrusion, the convex portions of the latching means are accommodated within the concave portions at both ends in the direction of the axial line with interval therebetween. Therefore, even if the striking force is transmitted to the ring bit being not contact with the bottom of hole and is drawn out to the tip side at the time of drilling, before the convex portion of the latching means is collided with the concave portion of the latching means, the convex wall portion formed in the rear end of the ring bit is contacted to the rear end of the protrusion of the inner bit, so that the extension of the life of the tool can be achieved by preventing the concave and convex portions of the latching means from being damaged.

[0022] Furthermore, regardless of the pull-out mechanism or not, the configuration can be applied to the drilling tool having the ring bit just latched to the tip side of casing pipe by the latching means and the effect described above can be achieved. Accordingly, the drilling

tool comprises a cylindrical casing pipe; an annular ring bit inserted in a tip portion of the cylindrical casing pipe to be rotatable around an axis line of the casing pipe, wherein the ring bit is inserted such that an outer peripheral surface thereof is opposed to an inner peripheral surface of the tip portion of the casing pipe; latching means constituted by a concave portion formed in at least one peripheral surface of the inner and outer peripheral surfaces opposed to each other to be extended axially, wherein the concave portion has an annular shape around the axis line, and a convex portion formed in the other peripheral surface to be accommodated in the concave portion, the ring bit being latched on a tip side in the direction of the axial line of the casing pipe by the latching means and mounted to be moved in the direction of the axial line; and an inner bit mounted on a tip of a transmission member inserted within the casing pipe, wherein a first contact portion which can be contacted to a contact portion of the casing pipe side protruded on an inner periphery of the tip portion of the casing pipe toward the tip side of the direction of the axial line and a second contact portion which can be contacted to a contact portion of the ring bit side formed at the ring bit and having an inner diameter smaller than that of the contact portion of the casing pipe side toward the tip side of the direction of the axial line are formed on the outer peripheral surface of the inner bit, wherein the inner bit can be engaged around the axis line with respect to the ring bit by engaging means, wherein, in the engaging means, a protrusion extended in the direction of the axial line is formed on an outer periphery of the inner bit and a groove accommodating the protrusion is formed on the inner periphery of the ring bit to be opened to the rear end of the ring bit, and wherein, the groove of the engaging means and at least one of the concave portion and the convex portion formed on the ring bit side in the latching means are formed so that at least a part thereof is overlapped in the direction of the axial line.

[0023] Moreover, a drilling tool of the present invention, comprises a cylindrical casing pipe; an annular ring bit inserted in a tip portion of the cylindrical casing pipe to be rotatable around an axis line of the casing pipe, wherein the ring bit is inserted such that an outer peripheral surface thereof is opposed to an inner peripheral surface of the tip portion of the casing pipe; latching means constituted by a concave portion formed in at least one peripheral surface of the inner and outer peripheral surfaces opposed to each other to be extended axially, wherein the concave portion has an annular shape around the axis line, and a convex portion formed in the other peripheral surface to be accommodated in the concave portion, the ring bit being latched on a tip side in the direction of the axial line of the casing pipe by the latching means and mounted to be moved in the direction of the axial line; and an inner bit mounted on a tip of a transmission member inserted within the casing pipe, wherein a first contact portion which can be contacted to a contact portion of the casing pipe side protruded on an inner periph-

ery of the tip portion of the casing pipe toward the tip side of the direction of the axial line and a second contact portion which can be contact to a contact portion of the ring bit side formed at the ring bit and having an inner diameter smaller than that of the contact portion of the casing pipe side toward the tip side of the direction of the axial line are formed on the outer peripheral surface of the inner bit, wherein the inner bit can be engaged around the axis line with respect to the ring bit by engaging means, wherein in the engaging means, the protrusion extended in the axis line direction is formed on an outer periphery of the inner bit and the groove accommodating the protrusion and having a width circumferentially larger than that of the protrusion is formed on the outer periphery of the inner bit to be opened to the rear end of the ring bit, wherein the convex wall portion capable of being contacted to the rear end of the protrusion accommodated in the groove toward the tip side in the direction of the axial line is formed in a rear end opening of the groove at a side of rotational direction of the inner bit upon drilling, and wherein in a state that the first contact portion is contacted to a contact portion of the casing pipe side and the convex wall portion is contacted to the rear end of the protrusion, the convex portions of the latching means are accommodated within the concave portions at both ends in the direction of the axial line with interval there-between.

[0024] Consequently, according to the drilling tool and the drilling method using the same of the present invention, in case that the second hole having a same diameter of the first hole is formed after the first hole is formed by a predetermined depth by preventing the dropout of the ring bit until the latching means and pulling out the ring bit from the casing pipe by the pull-out mechanism, or after the drilling is terminated, the outer diameter of the member, like an anchor built up in the drilling hole can be enlarged, or in case that the member, like an anchor having the same diameter is built up, the outer diameter of the casing pipe and drilling hole can be reduced, thereby being efficient or economic. In addition, regardless of the pull-out mechanism, according to the drilling tool of the present invention, the dropout or the damage of the concave and convex portions in the latching means can be prevented.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] Fig. 1 is a cross-sectional side view showing a first embodiment of a drilling tool of the present invention.

[0026] Fig. 2 is a front view showing the embodiment shown in Fig. 1 viewed from a tip side (the direction of an arrow Z in Fig. 1) in the direction of an axis line.

[0027] Fig. 3 is an enlarged cross-sectional side view of the tip portion in a state that a contact portion 3A of a casing pipe side and a contact portion 4A of a ring bit side are contacted to a first contact portion 5A and a second contact portion 5B of an inner bit 5 in the embodiment shown in Fig. 1.

[0028] Fig. 4 is an enlarged cross-sectional side view of the tip portion in a state that the contact portion 3A of the casing pipe side and a convex wall portion 4C of the ring bit 4 are contacted to the first contact portion 5A and a protrusion 5C of the inner bit 5, respectively, in the embodiment shown in Fig. 1.

[0029] Fig. 5 is a side view showing a second inner bit 9 according to a first embodiment of a drilling method of the present invention using the embodiment shown in Fig. 1.

[0030] Fig. 6 shows the first embodiment of the drilling method of the present invention using the embodiment shown in Fig. 1.

[0031] Fig. 7 shows a second embodiment of the drilling method of the present invention using the embodiment shown in Fig. 1.

[0032] Fig. 8 is an enlarged cross-sectional view of a part of a rear end portion of a ring bit 4 inserted into an inner periphery of a tip portion of a casing top 3 showing a second embodiment of a drilling tool of the present invention.

[0033] Fig. 9 is an enlarged cross-sectional view of a part of a rear end portion of a ring bit 4 inserted into an inner periphery of a tip portion of a casing top 3 showing a third embodiment of a drilling tool of the present invention.

[0034] Fig. 10 is an enlarged cross-sectional view of a part of a rear end portion of a ring bit 4 inserted into an inner periphery of a tip portion of a casing top 3 showing a fourth embodiment of a drilling tool of the present invention.

[0035] Fig. 11 is an enlarged cross-sectional view of a part of a rear end portion of a ring bit 4 inserted into an inner periphery of a tip portion of a casing top 3 showing a fifth embodiment of a drilling tool of the present invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

[0036] Figs. 1 to 4 show a first embodiment of the present invention. A drilling tool of this embodiment is mounted in a drilling rig not shown and, for example, is used for a vertical drilling, a horizontal drilling or a diagonal drilling in civil engineering, a construction foundation, a water well, a drainage, a pipe roof, a piling, anchoring, and a micro piling.

[0037] According to this embodiment, a casing pipe 1 has a tubular pipe body 2 sequentially added as needed and a cylindrical casing top 3 concentrically mounted on a tip of the tubular pipe body 2 by welding. In addition, transmission members such as an inner rod (not shown), which transmit a striking force, a torque and a thrust, are inserted concentrically to an axis center line O of the casing pipe 1 in an inner periphery of the casing pipe 1 and the transmission members are sequentially added as needed. An utmost rear end of the transmission member is connected to the drilling rig which applies the torque around an axis line O and the thrust toward a tip side in

the direction of the axis line O to the transmission member at the time of drilling. Further, an annular ring bit 4 is mounted on the tip of the casing top 3 of the tip of the casing pipe 1 and an inner bit 5 is mounted on the tip of the transmission member via a down-the-hole hammer 5H which is a part of the transmission member for applying the striking force toward the tip side in the direction of the axis line O and is inserted in the inner periphery of the ring bit 4.

[0038] In the casing top 3, a rear end portion thereof is formed to be reduced smaller than the inner and the outer diameter with respect to the tip portion, and a tapered portion gradually enlarged toward the rear end is formed on an edge of the rear end and to be a contact portion 3A of the casing pipe. And the rear end portion is inserted in the inner periphery of the pipe body 2 of the utmost tip, and the rear end of the tip portion is mounted by welding to the tip of the pipe body 2. In addition, in the tip portion of the casing top 3, the outer diameter thereof is substantially similar to that of the pipe body 2 and the inner diameter thereof is slightly larger than that of the pipe body 2. However, the outer diameter of the tip portion of the casing top 3 may be larger than that of the pipe body 2.

[0039] In the ring bit 4 mounted on the tip side of the casing top 3, the rear end portion thereof is inserted in the inner periphery of the tip portion of the casing top 3 to be rotatable around an axis line of the casing pipe concentrically to the axis line O. Further, an outer diameter of the tip portion of the ring bit 4 is enlarged, whereby the outer diameter thereof is larger than the outer diameter of the casing top 3 or the pipe body 2. Accordingly, in this embodiment, the ring bit 4 is inserted into the casing top 3 so that the outer peripheral surface of the rear end portion of the ring bit 4 is diametrically opposed to the inner peripheral surface of the tip portion in the casing top 3 of the tip of the casing pipe 1. In addition, the inner peripheral surface of the ring bit 4 has the inner diameter slightly smaller than the inner peripheral surface of the rear end portion of the casing top 3, and a tapered portion which is gradually enlarged as it is directed toward the rear end, is formed on a part reduced smaller than the inner diameter of the rear end portion of the casing top 3 of the rear end portion to be a contact portion 4A of the ring bit.

[0040] In addition, in this embodiment, the tip surface of the ring bit 4 includes a flat annular surface perpendicular to the axis line O and two tapered portions slanting toward the rear end as they are arranged in the inner and outer peripheries of the annular surface. A plurality of inserts 6 made of hard material such as cemented carbide are implanted in an annular surface and a tapered portion of the inner and outer peripheries, respectively. Moreover, a plurality of concaves 4B parallelly extended to the axis line O are formed on the inner peripheral surface of the tip side of the ring bit 4 at even intervals and are formed not to interfere with the inserts implanted on the tapered surface of the inner peripheral side of the tip

of the ring bit 4. In such concaves 4B, a rear part in a rotational direction T of the inner bit 5 at the time of drilling is opened by passing through the contact portion 4A of the ring bit from the tapered surface of the inner periphery of the ring bit 4 at the time of drilling. Meanwhile, a convex wall portion 4C having a wall surface perpendicular to the axis line O is formed on a rear end side of a part in rotational direction T of the inner bit at the time of drilling, and thereby being not passed through the contact portion 4A of the ring bit.

[0041] Meanwhile, after the inner bit 5 is enlarged from the tip toward the rear end in two steps, the inner bit 5 has the profile multi-step cylindrical shape in which the inner bit 5 is reduced stepwise. The outer diameter of a first-step part has a size capable of loosely being inserted into the inner periphery of the ring bit 4, the outer diameter of a second-step part has the size capable of loosely being inserted into the inner periphery of the rear end portion of the casing top 3 and the outer diameter of a largest third-step part has a size capable of loosely being inserted into the inner periphery of the pipe body 2, respectively. In addition, an outer peripheral portion of the tip surface in the first-step part of the inner bit 5, that is, an outer peripheral portion of the tip surface of the inner bit 5, and a portion between the first step and the second step, and a portion of the second step and the third step are formed on the tapered portions conically enlarged toward the rear end as toward the outer periphery, respectively. Among them, the tapered portion between the second step and the third step, and the tapered portion between the first step and the second step have the same angle as the contact portion 3A of the casing pipe and the contact portion 4A of the ring bit, whereby they are the first contact portion 5A and the second contact portion 5B of the inner bit 5 in this embodiment, respectively. As shown in Figs. 1 to 3, the tip of the inner bit 5 is set to be protruded more than the tip of the ring bit 4 in a state that the first and second contact portions 5A and 5B are contacted to the contact portion 3A of the casing pipe and the contact portion 4A of the ring bit.

[0042] Moreover, protrusions 5C as many as the grooves 4B protruded on the outer periphery rather than the outer diameter which can be loosely inserted in the inner periphery of the ring bit 4 as described above are formed peripherally at even intervals and are extended through the a front part of the second contact portion 5A at a position retreated slightly from the tip surface of the inner bit 5 in the direction of the axis line O. The protrusions 5C can be loosely inserted into the opening of the contact portion 4A of the ring bit side of the groove 4B of the ring bit 4 from the rear end. Therefore, as described above, the contact portion 3A of the casing pipe is contacted by the first contact portion 5A and the contact portion 4A of the ring bit is contacted by the second portion 5B to be accommodated within the groove 4B by spacing between the rear end of protrusions 5C and the convex wall portion 4C of the groove 4B as shown in Fig. 3.

[0043] Accordingly, in the inner bit 5 in which the pro-

trusion 5C is accommodated in the groove 4B and inserted into the inner periphery of the ring bit 4, and the first contact portion 5A is contacted to the contact portion 4A of the ring bit side, the protrusions 5C are contacted to either side walls of the groove 4B in the case of the rotation of the axis line O, whereby engaging means in this embodiment is constituted b5C are contacted to the side wall of the groove 4B by rotating the inner bit 5 in the rotational direction at the time of drilling by means of the drilling tool, the protrusion 5C is accommodated in the front side of the convex wall portion 4C by moving from the tip side of the opening of the groove 4B as shown Fig. 2. That is, the width of the groove 4B is larger than the width of the protrusion 5C, and the width of the convex wall portion 4C is substantially similar to the width of the protrusion 5C. However, the width of the convex wall portion may be larger or smaller than the width of the protrusion 5C.

[0044] Furthermore, a part in which the diameter is reduced on the rear end side of the inner bit 5 is a shank mounted onto the down-the-hole hammer 5H. In addition, in case that a hammer applying the striking force to the inner bit 5 is so called a top hammer, the shank is fitted to by the inner rod, screw and the like which are the transmission member. In addition, a supplying hole 5D for supplying compressed air sent via the down-the-hole hammer 5H or the transmission member toward the tip side along the axis line O from the rear end is formed within the inner bit 5. The supplying hole 5D is branched into flushing holes extended to the tip side as it is directed toward the outer periphery side of the inner bit 5. Some flushing holes are opened in the tip surface of the inner bit 5, and the other flushing holes are opened in a position substantially facing the tip surface of the ring bit 4 in a state that the second contact portion 5B is contacted to the contact portion 4A of the ring bit on the first-step outer peripheral surface of the inner bit 5.

[0045] In addition, grooves 5E for discharging the cuttings as many as the protrusions 5C and the grooves 4B are formed to be adjacent to the rear side of the rotational direction T of the protrusion 5C, to be extended radially in the tip surface of the inner bit 5, to be opened in the third-step part parallel to the axis line O in the outer peripheral surface and to have a maximum outer diameter 45 of the inner bit 5 on the outer peripheral surface from the tip surface of the inner bit 5. In groove 5E, the depth of the groove is provided to be gradually lowered toward the inner periphery side in the inner peripheral surface of the inner bit 5 and the part of ejection holes branched 50 from the supplying hole 5D is formed to have rectangular shape which is opened within the discharging groove 5E on the tip surface and opened on the outer periphery side in the outer peripheral surface of the inner bit 5 as shown in Fig. 2.

55 In a state that the protrusion 5C accommodated in the groove 4B is positioned in the front side of the convex wall portion 4C as described above, the protrusion 5C is peripherally matched with a part unifying with the opening

of the groove 4B. A through-hole unifying with the tubular space within the casing pipe 1 from the tip of the ring bit 4 and the inner bit 5 is partially formed. Moreover, a lot of inserts 6 made of the hard material such as cemented carbide are implanted in a position not interfering with the discharging groove 5E through the outer peripheral portion which is the tapered portion in the tip surface of the inner bit 5.

[0046] As described above, the concave portion 7A having an annular shape around the axis line O and extended in the direction of the axis line O is formed on one peripheral surface in the outer peripheral surface of the rear end portion of the ring bit 4 and the inner peripheral surface of the tip portion of the casing top 3 inserted to be opposed to each other. In addition, a convex portion 7B which can be accommodated in the concave portion 7A is formed on the other peripheral surface. The ring bit 4 is latched on the tip side in the direction of the axis line O with respect to the casing top 3 (the casing pipe 1) by the concave portions 7A and the convex portion 7B, and latching means 7 which can be moved in the direction of the axis line O in the range of the convex portion 7B is constituted. Moreover, the latching means 7 comprises the pull-out mechanism which can pull out and remove the ring bit 4 latched and accommodated onto the tip side in the direction of the axis line O with respect to the casing top 3 as needed.

[0047] Here, in this embodiment, the concave portion 7A and the convex portion 7B are formed on both the peripheral surface of the tip portion of the casing top 3 and the outer peripheral surface of the ring bit 4 opposed to each other by the latching means 7, respectively. That is, in the inner peripheral surface of the tip portion of the casing top 3, the convex portion 7B which becomes the convex in the inner peripheral side of the tip is annularly formed in the periphery of the axis line O and the concave portion 7A is lined on the convex portion 7B from the convex portion 7B to a portion in a part in which the rear end portion of the casing top 3 on the rear end side in the direction of the axis line O is slightly reduced rather than the tip portion thereof in inner diameter.

[0048] In addition, on the outer peripheral surface of the ring bit 4, the convex portion 7B which becomes the convex in the outer peripheral side of the rear end also is annularly formed in the periphery of the axis line O and the concave 7A is lined on the convex portion 7B from the convex portion 7B to a portion in a part in which the tip portion of the ring bit 4 is slightly enlarged rather than the rear end portion thereof in outer diameter. Accordingly, in this embodiment, with respect to the concave 4B in the engaging means formed in the inner periphery of the rear end portion of the ring bit 4, and the concave and convex portions 7A and 7B in the latching means formed in the outer periphery of the rear end of the ring bit 4, the concave and convex portions 7A and 7B are formed to be overlapped with a part of the concave 4B in the direction of the axis line O, that is, the concave 4B, and the concave and convex portions 7A and 7B are

formed in both the inner periphery and the outer periphery in the rear end portion of the cylindrical ring bit 4.

[0049] Further, the inner diameter of the convex portion 7B on the casing top 3 is slightly large to be loosely inserted into the concave portion 7A on the ring bit 4 side and is slightly smaller than the outer diameter of the convex portion 7B on the ring bit 4 side and the outer diameter of the convex portion 7B on the ring bit 4 side is slightly small to be loosely inserted into the concave portion 7A on the casing top 3. In addition, the concave portions 7A and the convex portions 7B on the inner peripheral surface of the tip portion of the casing top 3 and the outer peripheral surface of the rear end portion of the ring bit 4 are formed approximately in a same length. Furthermore, the concave portion 7A is longer than the convex portion 7B and a bottom surface (inner and outer peripheral surfaces) of the concave portion 7A is the cylindrical surface having a constant diameter along the axis line O.

[0050] Moreover, the pull-out means 8 in this embodiment is constituted by the male and female thread portions 8A and 8B which screw each other and are formed on both the inner and outer peripheral surfaces of the convex portion 7B on the casing top 3 side and the ring bit 4 side of the latching means 7. That is, the female thread portions 8A having a constant diameter are provided on the inner peripheral surface of the convex portion 7B formed the tip on the inner peripheral surface of the tip portion of the casing top 3 and the male thread portions 8B having a constant diameter which can be inserted into the female thread portions 8A are formed on the outer peripheral surface of the convex portion 7B formed in the rear end on the outer peripheral surface of the rear end portion of the ring bit 4. Further, the inner and outer diameters of the convex portion 7B are the diameter of the thread in the male and female thread portions 8A and 8B, and the thread form of the male and female thread portions 8A and 8B are the trapezoidal screw.

[0051] In the latching means 7 having the pull-out mechanism 8, the male thread portion 8B formed on the outer periphery of the convex portion 7B of the ring bit 4 is screwed the female screw portion 8A formed on the inner periphery of the convex portion 7B of the casing top 3 from the tip side, the ring bit 4 is inserted with respect to the casing top 3 by relatively rotating, the convex portion 7B of the ring bit 4 is accommodated in the concave portion 7A of the casing top 3, and the convex portion 7B of the casing top 3 is accommodated in the concave portion 7A of the ring bit 4, respectively, when the male thread portion 8B is pulled out to the rear end side of the female thread portion 8A. In this state, the convex portion 7B of the ring bit 4 is latched to the concave portion 7A of the casing top 3 from the rear end side by contacting toward the tip side of the direction of the axis line O. Furthermore, the direction of the relative rotation of the ring bit 4 to the casing top 3 is the same as the rotational direction (the rotational direction viewed from the direction of arrow Z in Fig. 1) T, that is, the male and female

thread portions 8A and 8B are not screwed together by the rotation of the ring bit 4 at the time of drilling, so that the male and female thread portions 8A and 8B are not inserted in the direction in which the ring bit 4 is pulled out.

[0052] In addition, a distance L1 in the direction of the axis line O between the tip of the convex portion 7B of the ring bit 4 and the rear end of the convex portion 7B of the casing top 3 respectively accommodated in the concave portion 7A as shown above is larger than a distance L2 in the direction of the axis line between the front wall surface of the convex wall surface 4C formed in the rear end portion of the concave 4B of the ring bit 4 and the rear end surface of the protrusion 5C of the inner bit 5 accommodated the concave 4B in a state that the first and second contact portions 5A and 5B are contacted to the contact portion 3A of the casing pipe side and the contact portion 4A of the ring bit side, respectively, as shown in Figs. 1 and 3 in this embodiment.

[0053] Accordingly, in a state that the protrusion 5C is accommodated in the tip side in the direction of the axis line O of the convex wall portion 4C of the concave 4B by rotating the inner bit 5 in the rotational direction T at the time of drilling, when the ring bit 4 is advanced to the tip side, the convex wall portion 4C is contacted to the rear end of the protrusion 5C before the tip of the convex portion 7B of the ring bit 4 is contacted to the rear end of the convex portion 7B of the casing top 3 as described above. Therefore, a distance α between L1 and L2 is generated between both convex portions 7B, that is, the convex portions 7B are disposed on both the tip side and the rear end side in the direction of the axis line O with the concave portion 7A which accommodates the convex portions 7B at intervals.

[0054] Besides, as described above, the male and female thread portions 8A and 8B of the pull-out mechanism are screwed together to the opposite direction when the convex portion 7B is screwed to be respectively accommodated in the concave portion 7A, and the ring bit 4 is relatively rotated to the opposite direction above described with respect to the casing top 3 and advanced to the direction of tip side of the casing top 3. Therefore, the male thread portion 8B passes through the female portion 8A, so that the ring bit 4 latched by the latching means 7 can be pulled out.

[0055] Further, in case that the drilling tool is being used downward, the convex portions 7B are contacted to each other by removing the rear end of the protrusion 5C from the tip wall surface of the convex wall portion 4C by rotating the inner bit 5 in the direction opposite to the rotational direction T in drilling, the male and female thread portions 8A and 8B are screwed together by means of the ring bit 4's own weight and rotating the inner bit 5, and the ring bit 4 is advanced to the tip side (downward), the ring 4 can be pulled out as described above. However, for example, by using a second inner bit 9 shown in Fig. 5 used for the first embodiment of the drilling method according to the present invention described below, the ring bit 4 can be further certainly pulled out.

[0056] Though the tip portion of the above described inner bit 5 has a multi-step cylindrical shape enlarged from the tip to the rear end in two steps, a tip portion of a second inner bit 9 has a multiple cylindrical shape enlarged in one step. A third-step outer diameter which is the maximum outer diameter of the tip portion of the inner bit 5 has the same diameter as the second-step outer diameter, is smaller than the inner diameter of the casing top 3 and larger than the inner diameter of the ring bit 4, that is, the first contact portion 5A has not been formed, so that the second inner bit 9 can be contacted to the contact portion 4A of the ring bit side and passed through the contact portion 3A of the casing pipe side. Further, since the second inner bit 9 shown in Fig. 5 is short not to have the third-step part of the tip portion with the inner bit 5 shown in Fig. 1 and the other parts are configured similar to the inner bit 5, the descriptions of the parts common to the inner bit 5 are omitted by giving the same reference numerals in Fig. 6.

[0057] That is, the drilling tool according to the present invention in which the second inner bit 9 is mounted comprises a cylindrical casing pipe 1; an annular ring bit 4 inserted in a tip portion of the cylindrical casing pipe 1 to be rotatable around an axis line of the casing pipe 1, wherein the ring bit is inserted such that another peripheral surface thereof is opposed to an inner peripheral surface of the tip portion of the casing pipe; latching means 7 constituted by a concave portion 7A formed in at least one peripheral surface of the inner and outer peripheral surfaces opposed to each other to be extended axially, wherein the concave portion has an annular shape around the axis line, and a convex portion 7B formed in the other peripheral surface to be accommodated in the concave portion 7A, the ring bit 4 being latched on a tip side in the direction of the axial line of the casing pipe 1 by the latching means 7 and mounted to be moved in the direction of the axial line; and a second inner bit 9 mounted on a tip of a transmission member inserted within the casing pipe 1, having the outer diameter which can pass through the contact portion 3A of casing pipe side protruded on an inner periphery of the tip portion of the casing pipe 1 and a second contact portion 5B which can be contacted to a contact portion 4A formed at the ring bit 4 having an inner diameter smaller than that of the contact portion 3A of the casing pipe 1 side is formed on the outer peripheral surface of the second inner bit 9 toward the tip side of the direction of the axial line, wherein the second inner bit 9 can be engaged around the axis line with respect to the ring bit 4 by engaging means, and wherein the latching means 7 has a pull-out mechanism 8 which pulls out the ring bit 4 to the tip side of the direction of the axial line with respect to the casing pipe 1.

[0058] (a) to (e) in Figs. 6 show the first embodiment of the drilling method of the present invention in the case of pulling out the ring bit 4 by the second inner bit 9 in forming the drilling hole by using the drilling tool of the first embodiment. In this embodiment, first, as shown in

Figs. 1 to 3, the ring bit 4 is mounted in the casing top 3 and the inner bit 5 is inserted within the casing top 3 and the ring bit 4 through the casing pipe 1. The first and second contact portions 5A and 5B are contacted to the contact portion 3A of the casing pipe side and the contact portion 4A of the ring bit side, and the inner bit 5 is engaged with the ring bit 4 by rotating the inner bit 5 in the rotational direction T. A first hole H1 is formed by the insert 6 of the tip surfaces of the ring bit 4 and the inner bit 5 as shown in Fig. 6a. The casing pipe 1 is said in the first hole H1 with the ring bit 4 and the inner bit 5 by applying the striking force to the casing pipe 1 via the casing top 3.

[0059] After the first hole H1 has been formed to a predetermined depth, for example, the depth which reached to a hard formation through a soft formation which is easy to collapse, the inner bit 5 is rotated to a opposite side of the rotational direction T so that the protrusion 5C is broken out from the concave 4B, the inner bit 5 is pulled out from the casing pipe 1 with down-the-hole hammer 5H or transmission member. Next, the second inner bit 9 is mounted in the down-the-hole hammer 5H and inserted within the casing pipe 1, the second inner bit 9 is inserted into the inner periphery of the ring bit 4 as shown in Fig. 6(B) by rotating the protrusion 5C in the rotational direction T and positioning the protrusion 5C in the tip side of the convex wall portion 4C after the protrusion 5C is inserted into the concave 4B of the ring bit 4.

[0060] In addition, from this state, the drilling tool is slightly raised and the second inner bit 9 is advanced toward the tip side as shown in Fig. 6(C), the contact portion 4A of the ring bit side is contacted to the second contact portion 5B of the second inner bit 9 and the convex portion 7B of the outer peripheral surface of the rear end portion is contacted to the convex portion 7B of the inner peripheral surface of the tip portion of the casing top 3, the ring bit 4 is rotated in a direction opposite to the rotational direction T with the inner bit 5. Consequently, as described above, the male and female thread portions 8A and 8B of the convex portions 7B are screwed together, and the male thread portion 8B is broken out to the tip side of the female screw portion 8A, and then, the ring bit 4 is pulled out to the tip side of the casing top 3 with the second inner bit 9.

[0061] Thus, from this state, after advancing the second inner bit 9 and the ring bit 4 and being contacted the second inner bit 9 and the ring bit 4 onto a hole bottom of the first hole H1, as shown in Fig. 6(D), the second hole H2 is formed in a hard bedrock in series of the tip side of the first hole H1. Accordingly, the second hole H2 formed as described above has the same drilling diameter as the first hole H1.

[0062] As described above, when the second hole H2 has been formed to a predetermined depth, in this embodiment, after the protrusion 5C is removed from the tip side of the convex wall portion 4C of the concave 4B by rotating the second inner bit 9 to the opposite side of the rotational direction T, the second inner bit 9 is pulled out

from the ring bit 4 and in addition, pulled out from the casing pipe 1 down-the-hole hammer and transmission member. Next, the member, like an anchor D is inserted within the first and second holes H1 and H2 through the casing pipe 1 as shown in Fig. 6(e).

[0063] Then, since the ring bit 4 is left in the bottom of the second hole H2 and the minimum inner diameter of the casing pipe 1 is the inner diameter of the contact portion 3A of the casing pipe side of the casing top 3, a member, like an anchor D having an outer diameter smaller than the inner diameter of the contact portion 3A of the casing pipe side and larger than the inner diameter of the contact portion 4A of the ring bit side can be inserted into the first hole H1 and the second hole H2. Furthermore, accordingly after the member, like an anchor is inserted as described above, the casing pipe 1 is pulled out with casing top 3 from the first hole H1, whereby the casing pipe 1 may be reused.

[0064] As shown above, according to the above-described tool and the method, after the first hole H1 is formed as preventing the collapse of the overburden with the casing pipe 1 and reaches the bedrock, the ring bit 4 is pulled out to the tip side and the second hole H2 having the same diameter as the first hole H1 can be formed by the ring bit 4 and the second inner bit 9. Therefore, the second hole H2 can be efficiently formed without advancing the casing pipe 1 and a large diameter can be secured for the second hole H2.

[0065] Moreover, similarly to the drilling method of this embodiment, even in case that the member, like an anchor D is built up in the second hole H2 formed as described above, since the ring bit 4 is pulled out to the tip side and removed from the casing pipe 1, the member, like an anchor D having an outer diameter larger than the inner diameter of the ring bit 4 can be inserted to the second hole H2 to be built up. In other words, if comparing with the case that the member, like an anchor having the same outer diameter is built up, since the outer diameter of the casing pipe 1 or the ring bit 4, that is, the diameters of the holes H1 and H2 can be reduced smaller than that of conventional holes, it is economy. On the contrary, if the outer diameter of the member, like an anchor D is the same as the diameters of the holes H1 and H2, the thickness between the outer diameter of the casing pipe 1 and the inner diameter of the ring bit 4 can be enlarged. Therefore, since the area of the contact portion 3A of the casing pipe side or the area of the contact portion 4A of the ring bit side can be significantly secured, the improvement of the life thereof can be achieved, for example, it is available to pull out and reuse the casing pipe 1.

[0066] In addition, in the drilling tool, when the second hole H2 is formed as described above, the ring bit 4 can be certainly pulled out to the tip side by the pull-out mechanism. Further, when the first hole H1 is formed with the casing pipe 1, the ring bit 4 is certainly latched in the tip side by the latching means 7 by means of the concave and convex portions 7A and 7B formed on the inner and outer peripheral surfaces of the casing top 3 and the ring

bit 4, which are opposed to each other to prevent the omission. Accordingly, the drilling can be achieved smoothly without the omission of ring bit 4.

[0067] Moreover, in the drilling tool of this embodiment, since the pull-out mechanisms 8 with which the latching means 7 is equipped are the male and female thread portions 8A and 8B which are threaded in the convex portion 7 formed on both the inner and outer peripheral surfaces, the rotational direction of the male and female thread portions 8A and 8B when the ring bit 4 is pulled out is set to be opposed to the rotational direction T at the time of drilling to prevent dropout of the ring bit 4 more certainly. In addition, since the male and female thread portions 8A and 8B can be formed easily and the other member is not required. Further, since the ring bit 4 can be mounted simply onto the casing pipe 1, more economic advantage can be achieved.

[0068] Furthermore, in the drilling method of the first embodiment, as described above, after the inner bit 5 is inserted within the ring bit 4 and the first hole H1 is formed, the second inner bit 9 is inserted within the ring bit 4 and the second hole H2 is formed. After then, the member, like an anchor D is inserted and built up within the second hole H2, similarly to the drilling method of the second embodiment of the present invention, the first hole H1 is formed with the casing pipe 1 (Fig. 7A) and the inner bit 5 and the transmission member are pulled out from the casing pipe 1 (Fig. 7B). Next, the member, like an anchor D is inserted directly into the casing pipe 1 without forming the second hole H2 by inserting the second inner bit 9, and then, the ring bit 4 is pulled out to the tip side in the direction of the axis line O with the casing pipe by the pull-out mechanism and the member, like an anchor D may be said within the first hole H1 (Fig. 7C).

[0069] Even in the method of the second embodiment, since there can be inserted and built up the said member D having an outer diameter smaller than the inner diameter of the contact portion 3A of the casing pipe side and larger than the inner diameter of the contact portion 4A of the ring bit side similar to the first embodiment, same effect as the first embodiment can be achieved. Furthermore, in this case, the second contact portion 5B similar to the inner bit 5 and the protrusion 5C of the engaging means are formed in the tip portion of the member, like an anchor D, so that the pull-out of the ring bit 4 can be further certainly achieved. In addition, even in the second embodiment, after the member, like an anchor D is built up, the casing pipe 1 is pulled out from the first hole H1 and may be reused.

[0070] Further, in the drilling method of the first and second embodiments, even if there is inserted and built up the member, like an anchor D having an outer diameter smaller than the inner diameter of the contact portion 3A of the casing pipe side and larger than the inner diameter of the contact portion 4A of the ring bit side, the member, like an anchor having the outer diameter smaller than the inner diameter of the contact portion 4A of the ring bit side may be inserted. In this case, the ring bit

4 is pulled out and may be left within the holes H1 and H2, and the ring bit 4 is pulled out from the holes H1 and H2 with the casing pipe 1 without pulling out the ring bit 4, thereby being reused.

[0071] In addition, in the first embodiment, after the inner bit 5 is pulled out, instead of forming the second hole H2 having the same diameter as the first hole H1 by the inserting the second inner bit 9, the inner bit having an outer diameter smaller than the inner diameter of the contact portion 4A of the ring bit side is inserted into the ring bit 4, and then the hole having a diameter smaller than the first hole H1. After then, similarly, the member, like an anchor having the outer diameter smaller than the inner diameter of the contact portion 4A of the ring bit side is inserted and may be said in the drilling hole thereof.

[0072] Meanwhile, in the drilling tool of the present invention, for example, similar to the drilling tool of the second embodiment of the present invention shown as Fig. 8, in the latching means 11, one of the inner and outer peripheral surfaces of the ring bit 4 and the casing top 3 which are opposed to each other, a concave portion 11A is formed on one peripheral surface and the latching member 12 is annularly disposed on the other peripheral surface, so that the latching member 12 becomes a convex portion 11B which can be accommodated in the concave 11A. In this case, instead of the pull-out mechanism 8 by the male and female thread portions 8A and 8B as described in the first embodiment, the pull-out mechanism 13 may be serve as an inclined surface 13A which faces the direction to which the inner and peripheral surfaces are opposed since the latching member 12 faces the contacted direction and the mechanism is formed on a circular surface in the surfaces which face the direction of the axis line O formed in the convex portion 11A, which is contacted with the latching member 12 when the ring bit 4 is pulled out with respect to the casing top 3. Furthermore, the same reference numerals as in the first embodiment are given for the common parts in the second embodiment and third to fifth embodiments described after the description thereof will be abbreviated.

[0073] That is, in the drilling tool of the second embodiment, similarly to the first embodiment, the ring bit 4 is inserted by opposing the outer peripheral surface of the rear end portion to the inner peripheral surface of the tip portion of the casing top 3. The concave portion 11A which has an annular shape around an axis line and extends to the direction of the axis line O is formed on the inner peripheral surface (one of peripheral surfaces) of the casing top 3. A surface which is located in the tip side and faces the rear end side in the direction of the axis line O from the annular surfaces facing the direction of the axis line O of the concave portion 11A is the inclined surface 13A. However, in this embodiment, a surface facing the tip side in the direction of the axis line O opposite the inclined surface 13A also is the inclined surface facing the direction to which the inner and outer peripheral surfaces are opposed facing the rear end side in the direction

of the axis line O.

[0074] Meanwhile, in a state that the first and second contact portions 5A and 5B of the inner bit 5 are contacted to the contact portion 3A of the casing pipe side and the contact portion 4A of the ring bit side, an annular groove 11C having a sectional rectangular shape is formed on the rear end of outer peripheral surface (the other of peripheral surfaces) of the ring bit 4 so that it is located in a rear end side than the concave portion 11A. The latching member 12 inserted in the circular groove 11C such as a ring having the sectional-rectangular shape is set in the inner peripheral surface of the casing top 3 by reducing the outer diameter of it, and is elastically and closely contacted to the inner peripheral surface side of the casing top 3.

[0075] In the latching means described above, the ring bit 4 at the time of drilling is freely rotated in a state that the latching member 12 is closely contacted to the inner peripheral surface with respect to the casing top 3 by rotating the inner bit 5 engaged around the axis line O by the engaging means. In the tip side in the direction of the axis line O, the latching member 12 is accommodated within the concave portion 11A as the convex portion 11B since the outer diameter of the latching member 12 enlarge by elasticity thereof when the latching means is advanced at the position of the concave portion 11A, and the convex portion 11B is latched at the position contacted to the inclined surface 13A of the tip side, being moved in the direction of the axis line O in the range of up to the inclined surface 13A.

[0076] Accordingly, in this embodiment, the inclined surface 13A is inclined to the direction to which the inner and outer peripheral surfaces are opposed, that is, the inner peripheral side toward the direction in which the latching member 12 is contacted, that is, the tip side of the axis line O. In addition, in the pull-out mechanism 13. of this embodiment by the inclined surface 13A, for example, similarly to the drilling method of the first embodiment, the inner bit 5 is exchanged with the second inner bit 9 and inserted within the ring bit 4. Further, under a state that the convex portion 11B (latching member 12) is contacted to the inclined surface 13A, the latching member 12 is reduced the outer diameter to be guided to the inclined surface 13A and the ring bit 4 is advanced by applying the striking force or the thrust force toward the tip side to the ring bit 4 via the second contact portion 5B and the contact portion 4A of the ring bit side, so that the ring bit 4 can be pulled out to the tip side from the casing top 3.

[0077] In addition, in the latching means 7, similarly to the first embodiment, in case that the convex portion 7B is formed the tip portion of the peripheral surface of the casing pipe 1 side and the rear end portion of the peripheral surface of the ring bit 4 side of the inner and outer peripheral surfaces of the tip portion of the casing pipe 1 and the ring bit 4 opposed to each other respectively, the concave portions 7A capable of accommodating the convex portions 7B, as extended in the convex portions

7B thereof in the direction of the axis line O, are formed in the tip end portion of the peripheral surface of the casing pipe 1 side and the rear end portion of the peripheral surface of the ring bit 4 side, similar to the drilling tool of the third embodiment of the present invention shown in Fig. 9, as the pull-out mechanism 14, surfaces which face the direction of the axis line O formed in a part in which the concave and convex portions 7A and 7B may become the inclined surfaces 14A which is inclined to the direction to which the inner and outer peripheral surfaces are opposed toward the direction opposite to these surfaces.

[0078] Here, in the third embodiment, the rear end portion of the ring bit 4 is inserted within the inner peripheral surface of the tip portion of the casing top 3 similar to the first and second embodiments, and the convex portion 7B is formed in the rear end of the outer peripheral surface of the rear end portion of the ring bit 4 and the circular concave portion 7A is formed in the tip side in the direction of the axis line O in series. On the other hand, in the tip portion of the casing top 3, the convex portion 7B is formed in the tip of the inner peripheral surface thereof and the concave portion 7A is formed in the rear end side in the direction of the axis line O in series as the latching means. Accordingly, a surface which faces the tip side in the direction of the axis line O is formed in a part in which the concave and convex portions 7A and 7B of the outer peripheral surface of the ring bit 4 side. In this embodiment, as the surface heads the rear end side in the direction of the axis line O opposite to the tip side, the surface becomes the inclined surface 14A which inclines the direction to which the inner and outer peripheral surfaces are opposed, that is, the outer peripheral side. In addition, a surface which heads the rear end side in the direction of the axis line O is formed in a part in which the concave and convex portions 7A and 7B of the inner peripheral surface of the casing top 3 side. As the surface which heads the tip side in the direction of the axis line O opposite to the rear end side, the surface becomes the inclined surface 14A which faces the direction to which the inner and outer peripheral surfaces are opposed, that is, the inner peripheral side.

[0079] In the third embodiment, the ring bit 4 can be moved in the direction of the axis line O within the range of the concave portion 7B and is freely rotated, and the ring bit 4 is latched in the tip side in the direction of the axis line O at a portion at which both convex portions 7B are contacted. In addition, the pull-out mechanism 14 with which the latching means is equipped, in a state that both convex portions 7B are contacted and the ring bit is latched, since a surface extended from the convex portion 7B to the concave portion 7A heads the tip side each other becomes the inclined surface 14A, the second inner bit 9 or the member, like an anchor D is inserted similar to the second embodiment and the striking force or the thrust force toward the tip side is applied to the ring bit 4 with respect to the casing pipe 1, being guided to the inclined surface 14A, so that the rear end portion of the ring bit 4 can be relatively reduced the outer diameter

and the tip portion of the casing top 3 can be relatively enlarged the inner diameter. By this configuration, the ring bit 4 can be pulled out to the tip side of the casing pipe 1.

[0080] Accordingly, even in the second and third embodiments, the same effect as the first embodiment can be achieved. In addition, since operating the pull-out of the ring bit 4 is not complicated as screwly providing the male and female thread portions 8A and 8B by the rotation of the ring bit 4 similar to the pull-out means 8 of the first embodiment, and the ring bit 4 is pulled out by inserting the second inner bit 9 or the member, like an anchor D, the advantage that the ring bit 4 can be further certainly pulled out easily is achieved. Here, in the second embodiment, when the ring bit 4 is mounted onto the tip of the casing top 3, the outer diameter of the latching member 12 is reduced, the rear end portion of the ring bit 4 is inserted in the inner periphery of the tip portion of the casing top 3. In addition, in the third embodiment, for example, after the tip portion of the casing top 3 is enlarged by heating, it is preferable that the rear end portion of the ring bit 4 is inserted in the inner periphery thereof.

[0081] Furthermore, in the drilling tools of the first to third embodiments, as described above, even if the rear end portion of the ring bit 4 is inserted in the inner periphery of the casing top 3 and is opposed to the inner peripheral surface of the tip portion of the casing top 3, on the contrary, the tip portion of the casing top 3 (casing pipe 1) is smaller than the rear end portion of the ring bit 4, and then, the tip portion of the casing top 3 is inserted in the inner periphery of the rear end portion of the ring bit 4, whereby the inner peripheral surface of the ring bit 4 and the outer peripheral surface of the casing top 3 can be configured to be opposed to each other.

[0082] However, in that case, in the rear end portion of the circular ring bit 4, the thickness or the length becomes bigger, so that the mass thereof is increased, for example, when the striking force is transmitted to the ring bit 4 being not contact with the bottom of the hole, big inertia is occurred. Thus, since the ring bit 4 may be fallen off, it is preferable that the ring bit 4 is mounted by inserting the rear end portion thereof in the inner periphery of the tip portion of the casing top 3 as described in the first to third embodiments.

[0083] Further, as described above again, when the ring bit 4 is inserted so that the outer peripheral surface thereof is opposed to the inner peripheral surface of the tip portion of the casing top 3 (casing pipe 1), in case that the engaging means which engages the inner bit to the ring bit 4 around the axis line is constituted the protrusion 5C formed in the outer periphery of the inner bit 5 and extended in the direction of the axis line O, and the concave 4B formed to accommodate the protrusion 5C in the inner periphery of the ring bit 4 as described above, it is preferable that a part of the concave 4B of the engaging means in the ring bit 4, and at lest one of the concave and convex portions 7A and 7B, or at least a part of the concave portion 11A and the convex portion

11B in the latching means 7 and 11 is formed to be overlapped. That is, by this configuration, since the length of the ring bit 4 in which the concave 4B, and the concave and convex portions 7A, 7B, 11A and 11B of the latching means are formed can be further shorter, it is possible to prevent the dropout of the ring bit 4 more certainly.

[0084] In addition, in the first to third embodiments, the concave 4B formed in the inner periphery of the ring bit 4 as the engaging means as described above is broader than the protrusion 5C of the inner bit 5 in the direction of the around axis O and in an opening of the rear end of the concave 4B, the convex wall portion 4C is formed in the rotational direction of the inner bit 5 at the time of drilling. Further, the first and second contact portions 5A and 5B of the inner bit 5 are contacted to the contact portion 3A of the casing pipe side and the contact portion 4A of the ring bit side at the time of drilling. In a state that a space L2 between the rear end of the protrusion 5C and the tip wall surface of the convex wall portion 4C is smaller than an L1 between the convex portions 7B in the latching means 7 of the first embodiment, an L1 between the tips of the convex portion 11B (latching member 12) and inclined surface 13A of the concave portion 11A in the latching means 11 as shown in Fig. 8 in the second embodiment, and an L1 between both ends of the inclined surface 14A of the concave and convex portions 7A and 7B in the latching means as shown in Fig. 9 in the third embodiment, respectively.

[0085] Accordingly, in the first to third embodiments, in a state that the first and second contact portions 5A and 5B are contacted to the contact portion 3A of the casing pipe side and the contact portion 4A of the ring bit side, even if the striking force is transmitted to the ring bit 4 not being contact with the bottom or the ring bit 4 is drawn out to the tip side, for example, as shown in Fig. 4, before the convex portions 7A of the latching means 7 or the inclined surfaces 14A of the pull-out mechanism 14, or the convex portion 11B of the latching means 11 and the inclined surface 13A of the pull-out mechanism 13 are contacted each other, since the convex wall portion 4C is contacted to the rear end of the protrusion 5C, the life of the tool can be extended by preventing latching means or pull-out mechanism the ring bit 4 from being damaged, and the dropout of the ring bit 4 can be more certainly prevented.

[0086] Meanwhile, in the first to third embodiments, even the configuration that if all the latching means 7 and 11 has the pull-out mechanisms 8, 13 and 14, and can pull out the ring bit 4 to the tip side, at least a part of the groove 4B of the engaging means in the ring bit 4 described above, and at least one of the concave and convex portions 7A, 7B, 11A and 11B formed the ring bit 4 side in the latching means 7 and 11 is overlapped, or the configuration that in a state that the first contact portion 5A of the inner bit 5 is contacted to the contact portion 3A of the casing pipe side, the convex portions 7B and 11B in the latching means 7 and 11 are accommodated within the concave portions 7A and 11A which accom-

modate the convex portions 7B and 11B at both ends of the direction of the axis line O at intervals can be applied to the drilling tool having the latching means 7 and 11 which are equipped with the pull-out mechanisms 8, 3 and 14 as shown above.

[0087] In the fourth and fifth embodiments of the present invention shown in Figs. 10 and 11, in case that the latching means 11 and 17 in the second and third embodiments are equipped without the pull-out means 13 and 14, such configuration is applied thereto, and the same reference numerals are given to parts common to the second and third embodiments. That is, in the fourth and fifth embodiments, instead of the inclined surface 13A constituted by the pull-out mechanism 13 in the second embodiment or the inclined surface 14A constituted by the pull-out mechanism 14 in the third embodiment, they serve as a flat annular surface 15 perpendicular to the axis line O. Accordingly, in the fourth embodiment, in a state that the latching member 12 which serves as the convex portion 11B is contacted to the flat surface of the concave portion 11A, the ring bit 4 is latched to the tip side and in the fifth embodiment, in a state that the flat surfaces 15 in a part where the concave and convex portions 7A and 7B contact each other, the ring bit 4 is latched to the tip side, but even if the thrust force or the striking force is applied to the ring bit 4 toward the tip side in the state, the ring bit 4 is not pulled out in the tip side.

[0088] However, even in the fourth and fifth embodiments as described above, since the mass and inertia of the ring bit 4 can be reduced or the damage by the collision of the flat surface 15 and the convex portion 11B or the flat surfaces 15 can be prevented regardless of the pull-out mechanisms 13 and 14 by adopting the configuration described above, smooth drilling can be achieved or the extension of the life of the tool can be promoted by preventing the unnecessary pull-out or the dropout of the ring bit 4 similar to the first to third embodiments. In addition, in the first embodiment where the pull-out mechanism 8 is included by the male and female thread portions 8A and 8B, as described above, the ring bit 4 can be provided at the time of drilling without pulling out the ring bit 4a and even in such case, the same effect can be achieved by adopting the configuration.

Claims

1. A drilling tool, comprising:

a cylindrical casing pipe (1);
 an annular ring bit (4) inserted in a tip portion of the cylindrical casing pipe to be rotatable around an axis line (0) of the casing pipe, wherein the ring bit is inserted such that an outer peripheral surface thereof is opposed to an inner peripheral surface of the tip portion of the casing pipe;
 latching means (7, 11) constituted by a concave portion (7A, 11A) formed in at least one periph-

5
 eral surface of the inner and outer peripheral surfaces opposed to each other to be extended axially, wherein the concave portion has an annular shape around the axis line, and a convex portion (7B, 11B) formed in the other peripheral surface to be accommodated in the concave portion, the ring bit being latched on a tip side in the direction of the axial line of the casing pipe by the latching means and mounted to be moved in the direction of the axial line; and
 an inner bit (5) mounted on a tip of a transmission member inserted within the casing pipe,

10
 wherein a first contact portion (5A) which can be contacted to a contact portion (3A) of the casing pipe side protruded on an inner periphery of the tip portion of the casing pipe toward the tip side of the direction of the axial line and a second contact portion (5B) which can be contacted to a contact portion (4A) of the ring bit side formed at the ring bit and having an inner diameter smaller than that of the contact portion of the casing pipe side toward the tip side of the direction of the axial line are formed on the outer peripheral surface of the inner bit,
 15
 wherein the inner bit can be engaged around the axis line with respect to the ring bit by engaging means, and
 20
 wherein the latching means has a pull-out mechanism (8, 13, 14) which pulls out the ring bit to the tip side of the direction of the axial line with respect to the casing pipe.

2. The drilling tool according to claim 1,
 25
 wherein, in the latching means, the annular convex portions are formed in a tip portion of a peripheral surface of the casing pipe side and a rear end portion of a peripheral surface of the ring bit side and the concave portions accommodating the convex portions in the other peripheral surfaces are formed in a rear end portion of a peripheral surface of the casing pipe side and a tip portion of the peripheral surface of the ring bit side along the direction of the axial line, out of the inner and outer peripheral surfaces, and
 30
 wherein the pull-out mechanism (8) comprises a female thread portion (8A) and a male thread portion (8B) formed on the inner and outer peripheral surfaces of the convex portion to be threaded with each other.

3. The drilling tool according to claim 1,
 35
 wherein, in the latching means, the concave portion is formed on one peripheral surface, and a latching member urged toward the one peripheral surface side is annularly disposed on the other peripheral surface to be the convex portion out of the inner and outer peripheral surfaces, out of the inner and outer peripheral surfaces, and
 40
 45
 50
 55

wherein, in the pull-out mechanism (13), an inclined surface (13A) is formed on an annular surface which is contacted to the latching member when the ring bit is pulled out with respect to the tip portion of the casing pipe and is directed toward a direction that the inner and outer peripheral surfaces oppose as being directed toward a direction that the latching member is contacted onto the annular surface.

4. The drilling tool according to claim 1,
wherein, in the latching means, the convex portions are formed on the tip portion of the peripheral surface of the casing pipe side and the rear end portion of the peripheral surface of the ring bit side, and the concave portions accommodating the convex portions in the other peripheral surfaces are formed in a rear end portion of a peripheral surface of the casing pipe side and a tip portion of the peripheral surface of the ring bit side along the direction of the axial line, out of the inner and outer peripheral surfaces, and
wherein, in the pull-out mechanism (14), an inclined surface (14A) is formed at a surface toward the direction of the axial line which is formed at a portion where the concave portion and the convex portion of each of the inner and outer peripheral surfaces are connected and is directed toward a direction that the inner and outer peripheral surfaces are opposed as being directed toward the direction of the axial line opposite to the direction that the inclined surface is directed.

5. The drilling tool according to any one of claims 1 to 4, wherein the ring bit is inserted by opposing the outer peripheral surface thereof to the inner peripheral surface of the tip portion of the casing pipe, wherein in the engaging means, a protrusion (5C) extended in the direction of the axial line is formed on the outer periphery of the inner bit and a groove (4B) accommodating the protrusion is formed on the inner periphery of the ring bit to be opened to a rear end of the ring bit, and wherein the groove of the engaging means and at least one of the concave portion and the convex portion formed on the outer peripheral surface of the ring bit in the latching means are formed so that at least a part thereof is overlapped in the direction of the axial line.

6. The drilling tool according to any one of claims 1 to 5, wherein in the engaging means, a protrusion (5C) extended in the direction of axis line is formed on an outer periphery of the inner bit and a groove (4B) accommodating the protrusion and having a width circumferentially larger than that of the protrusion is formed on the inner periphery of the ring bit to be opened to the rear end of the ring bit, wherein a convex wall portion (4C) being contacted

5 to the rear end of the protrusion accommodated in the groove toward the tip side in the direction of the axial line is formed in a rear end opening of the groove at a side of rotational direction of the inner bit upon drilling, and

wherein in a state that the first contact portion is contacted to a contact portion of the casing pipe side and the convex wall portion is contacted to the rear end of the protrusion, the convex portions of the latching means are accommodated within the concave portions at both ends in the direction of the axial line with interval therebetween.

7. A drilling tool, comprising:

15 a cylindrical casing pipe (1);
an annular ring bit (4) inserted in a tip portion of the cylindrical casing pipe to be rotatable around an axis line (0) of the casing pipe, wherein the ring bit is inserted such that an outer peripheral surface thereof is opposed to an inner peripheral surface of the tip portion of the casing pipe; latching means (7, 11) constituted by a concave portion (7A, 11A) formed in at least one peripheral surface of the inner and outer peripheral surfaces opposed to each other to be extended axially, wherein the concave portion has an annular shape around the axis line, and a convex portion (7B, 11B) formed in the other peripheral surface to be accommodated in the concave portion, the ring bit being latched on a tip side in the direction of the axial line of the casing pipe by the latching means and mounted to be moved in the direction of the axial line; and
an inner bit (5) mounted on a tip of a transmission member inserted within the casing pipe,

30 wherein a first contact portion (5A) which can be contacted to a contact portion (3A) of the casing pipe side protruded on an inner periphery of the tip portion of the casing pipe toward the tip side of the direction of the axial line and a second contact portion (5B) which can be contacted to a contact portion of the ring bit side formed at the ring bit and having an inner diameter smaller than that of the contact portion of the casing pipe side toward the tip side of the direction of the axial line are formed on the outer peripheral surface of the inner bit,

35 wherein the inner bit can be engaged around the axis line with respect to the ring bit by engaging means, wherein, in the engaging means, a protrusion (5C) extended in the direction of the axial line is formed on an outer periphery of the inner bit and a groove (4B) accommodating the protrusion is formed on the inner periphery of the ring bit to be opened to the rear end of the ring bit, and

40 wherein the groove of the engaging means and at least one of the concave portion and the convex por-

tion formed on the ring bit side in the latching means are formed so that at least a part thereof is overlapped in the direction of the axial line.

8. A drilling tool, comprising:

a cylindrical casing pipe (1);
 an annular ring bit (4) inserted in a tip portion of the cylindrical casing pipe to be rotatable around an axis line (0) of the casing pipe, wherein the ring bit is inserted such that an outer peripheral surface thereof is opposed to an inner peripheral surface of the tip portion of the casing pipe; 10
 latching means (7, 11) constituted by a concave portion (7A, 11A) formed in at least one peripheral surface of the inner and outer peripheral surfaces opposed to each other to be extended axially, wherein the concave portion has an annular shape around the axis line, and a convex portion (7B, 11B) formed in the other peripheral surface to be accommodated in the concave portion, the ring bit being latched on a tip side in the direction of the axial line of the casing pipe by the latching means and mounted to be moved in the direction of the axial line; and 15
 an inner bit (5) mounted on a tip of a transmission member inserted within the casing pipe,

wherein a first contact portion (5A) which can be contacted to a contact portion (3A) of the casing pipe side protruded on an inner periphery of the tip portion of the casing pipe toward the tip side of the direction of the axial line and a second contact portion (5B) which can be contacted to a contact portion of the ring bit side formed at the ring bit and having an inner diameter smaller than that of the contact portion of the casing pipe side toward the tip side of the direction of the axial line are formed on the outer peripheral surface of the inner bit, 20
 30
 35

wherein the inner bit can be engaged around the axis line with respect to the ring bit by engaging means, wherein in the engaging means, a protrusion (5C) extended in the direction of the axis line is formed on an outer periphery of the inner bit and a groove (4B) accommodating the protrusion and having a width circumferentially larger than that of the protrusion is formed on the inner periphery of the ring bit to be opened to the rear end of the ring bit, 40
 45
 50

wherein a convex wall portion (4C) being contacted to the rear end of the protrusion accommodated in the groove toward the tip side in the direction of the axial line is formed in a rear end opening of the groove at a side of rotational direction of the inner bit upon drilling, and 55
 55

wherein in a state that the first contact portion is contacted to a contact portion of the casing pipe side and the convex wall portion is contacted to the rear end of the protrusion, the convex portions of the

latching means are accommodated within the concave portions at both ends in the direction of the axial line with interval therebetween.

5 9. A drilling method using the drilling tool according to any one of claims 1 to 6, comprising the steps of:

applying to the inner bit (5), the striking force onto the tip side in the direction of the axial line and the torque around the axis line, to form a hole (H1) having a predetermined depth while transmitting the striking force to the casing pipe (1) and the ring bit via the first and second contact portions (5A, 5B), the contact portion of the casing pipe side and the contact portion of the ring bit side, and transmitting the torque only to the ring bit by engaging means; 10
 retreating the inner bit and a transmission member to pull out from the casing pipe; 15
 mounting a second inner bit (9) having the outer diameter smaller than the inner diameter of the contact portion of the casing pipe and having the second contact portion and the engaging means without the first contact portion onto the tip of the transmission member; 20
 inserting the second inner bit in the inner periphery of the ring bit through the casing pipe; 25
 pulling out the ring bit to the tip side in the direction of the axial line with respect to the casing pipe by the pull-out mechanism (8, 13, 14); and 30
 applying to the second inner bit, the striking force onto the tip side in the direction of the axial line and the torque around the axis line to form a second hole (H2) at a tip end side of the first hole while transmitting the striking force to the ring bit via the second contact portion and the contact portion of the ring bit side and transmitting the torque to the ring bit by the engaging means.

40
 45
 50
 55
 10. The drilling method according to claim 9, further comprising the steps of:

retreating after the second hole (H2) is formed, the second inner bit (9) and the transmission member to pull out from the casing pipe (1) in a state that the ring bit (4) is left within the second hole, and 10
 inserting the member (D), like an anchor having the outer diameter smaller than the inner diameter of the contact portion of the casing pipe and larger than the inner diameter of the contact portion of the ring bit within the casing pipe to said within the hole.

11. A drilling method using the drilling tool according to any one of claims 1 to 6, comprising the steps of:

applying to the inner bit (5), the striking force onto the tip side in the direction of the axial line and the torque around the axis line via the transmission member, to form a hole (H1) having a predetermined depth while transmitting the striking force to the casing pipe (1) and the ring bit (4) via the first and second contact portions (5A, 5B), the contact portion of the casing pipe side and the contact portion of the ring bit side, and transmitting the torque only to the ring bit by engaging means; 5
retreating the inner bit and a transmission member to pull out from the casing pipe; 10
pulling out the ring bit to the tip side in the direction of the axial line with respect to the casing pipe by the pull-out mechanism (8, 13, 14); and inserting the member, like an anchor (D) having the outer diameter smaller than the inner diameter of the contact portion of the casing pipe and larger than the inner diameter of the contact portion of the ring bit within the casing pipe to said within the hole. 15
20

Patentansprüche

1. Bohrwerkzeug, umfassend:

ein zylindrisches Gehäuserohr (1);
einen kranzförmigen Ringbohreinsatz (4), der in 30
einen Spitzenabschnitt des zylindrischen Gehäuserohrs so eingesetzt ist, dass er um eine Achsenlinie (O) des Gehäuserohrs drehbar ist, wobei der Ringbohreinsatz so eingesetzt ist, dass eine äußere Umfangsoberfläche hiervon einer inneren Umfangsoberfläche des Spitzenabschnitts des Gehäuserohrs gegenüberliegt; 35
Arretiermittel (7, 11), die von einem konkaven Abschnitt (7A, 11A), der in zum mindesten einer Umfangsoberfläche der inneren und äußeren Umfangsoberflächen, die einander gegenüberliegen, so ausgebildet ist, dass sie sich axial erstreckt, wobei der konkav Abschnitt eine Ringform um die Achsenlinie aufweist, sowie einen konvexen Abschnitt (7B, 11B), der in der anderen Umfangsoberfläche so ausgebildet ist, dass er in den konkaven Abschnitt einpasst, wobei der Ringbohreinsatz an einer Spitzenseite in 40
Richtung der Achsenlinie des Gehäuserohrs durch das Arretiermittel arretiert ist und so befestigt ist, dass er in der Richtung der Achsenlinie bewegt werden kann; und 45
einen inneren Bohreinsatz (5), der an einer Spitzenseite eines Transmissionsmittels befestigt ist, das innerhalb des Gehäuserohrs eingesetzt ist, 50
55

wobei ein erster Kontaktabschnitt (6A), der mit einem Kontaktabschnitt (3A) der Seite des Gehäuserohrs,

die an einem inneren Umfang des Spitzenabschnitts des Gehäuserohrs auf die Spitzenseite der Richtung der Achsenlinie hervorsteht, in Kontakt stehen kann, sowie ein zweiter Kontaktabschnitt (5B), der mit einem Kontaktabschnitt (4A) der Seite des Ringbohreinsatzes, die an dem Ringbohreinsatz ausgebildet ist und einen inneren Durchmesser aufweist, der kleiner als der innere Durchmesser des Kontaktabschnitts der Seite des Gehäuserohrs auf die Spitzenseite der Richtung der Achsenlinie ausgebildet ist, an der äußeren Umfangsoberfläche des inneren Bohreinsatzes ausgebildet sind, wobei der innere Bohreinsatz um die Achsenlinie in Bezug auf den Ringbohreinsatz durch Eingriffsmittel in Eingriff stehen kann, und wobei das Arretiermittel einen Herausziehmechanismus (8, 13, 14) aufweist, der den Ringbohreinsatz zur Spitzenseite der Richtung der Achsenlinie in Bezug auf das Gehäuserohr herauszieht. 25

2. Bohrwerkzeug gemäß Anspruch 1, wobei in dem Arretiermittel die ringförmigen konkaven Abschnitte in einem Spitzenabschnitt einer Umfangsoberfläche des Gehäuserohrs ausgebildet sind und ein rückwärtiger Endabschnitt einer Umfangsoberfläche der Seite des Ringbohreinsatzes und die in die konkaven Abschnitte in den anderen Umfangsoberflächen aufgenommenen konkaven Abschnitte in einem rückwärtigen Endabschnitt einer Umfangsoberfläche der Seite des Gehäuserohrs ausgebildet sind und ein Spitzenabschnitt der Umfangsoberfläche der Seite des Ringbohreinsatzes entlang der Richtung der Achsenlinie aus den inneren und äußeren Umfangsoberflächen heraus ausgebildet sind, und wobei der Herausziehmechanismus (8) einen weiblichen Gewindeabschnitt (8A) sowie einen männlichen Gewindeabschnitt (8B) umfasst, die an den inneren und äußeren Umfangsoberflächen des konvexen Abschnitts so ausgebildet sind, dass sie miteinander im Gewindeeingriff stehen können. 30

3. Bohrwerkzeug gemäß Anspruch 1, wobei in dem Arretiermittel der konkav Abschnitt an einer Umfangsoberfläche ausgebildet ist und ein Arretierelement, das auf die Seite der einen Umfangsoberfläche gedrückt wird, ringförmig an der anderen Umfangsoberfläche so angeordnet ist, dass es der konvexe Abschnitt der inneren und äußeren Umfangsoberflächen der inneren und äußeren Umfangsoberflächen ist, und wobei in dem Herausziehmechanismus (13) eine geneigte Oberfläche (13A) an einer Ringoberfläche ausgebildet ist, die mit dem Arretierelement dann in Kontakt steht, wenn der Ringbohreinsatz in Bezug auf den Spitzenabschnitt des Gehäuserohrs herausgezogen wird und auf eine Richtung hin ausgerichtet wird, welche den inneren und äußeren Umfangsoberflächen so gegenüber liegt, dass sie auf eine 35
40
45
50
55

Richtung hin ausgerichtet sind, in der das Arretier-
element auf die Ringoberfläche in Kontakt kommt.

4. Bohrwerkzeug gemäß Anspruch 1,
wobei in dem Arretiermittel die konvexen Abschnitte
an dem Spitzenabschnitt der Umfangsoberfläche
der Seite des Gehäuserohrs ausgebildet sind und
der rückwärtige Endabschnitt der Umfangsoberflä-
che der Seite des Ringbohreinsatzes ausgebildet ist,
und die konkaven Abschnitte, die die konvexen Ab-
schnitte in den anderen Umfangsoberflächen auf-
nehmen, in einem rückwärtigen Endabschnitt einer
Ufangsoberfläche der Seite des Gehäuserohrs und
einem Spitzenabschnitt der Umfangsoberfläche
der Seite des Ringbohreinsatzes entlang der Rich-
tung der Achsenlinie aus den inneren und äußeren
Ufangsoberflächen heraus ausgebildet sind, und
wobei in dem Herausziehmechanismus (14) eine ge-
neigte Oberfläche (14A) an einer Oberfläche auf die
Richtung der Achsenlinie, die an einem Abschnitt
ausgebildet ist, an dem der konkave Abschnitt und
der konvexe Abschnitt sowie die inneren als auch
der äußeren Ufangsoberflächen miteinander ver-
bunden sind und auf einer Richtung ausgerichtet
sind, bei der sich die inneren und äußeren Ufangs-
oberflächen so gegenüberliegen, dass sie auf eine
Richtung der Achsenlinie entgegengesetzt zur Rich-
tung, in der die geneigte Oberfläche ausgerichtet ist,
auf die Richtung der Achsenlinie hin ausrichtet ist.

5. Bohrwerkzeug gemäß einem der Ansprüche 1 bis 4,
wobei der Ringbohreinsatz durch gegenüberliegen-
des Anordnen der äußeren Ufangsoberfläche des
Ringbohreinsatzes zur inneren Ufangsoberfläche
des Spitzenabschnitts des Gehäuserohrs eingesetzt
wird,
wobei ein dem Eingriffsmittel ein Vorsprung (5C),
der in der Richtung der Achsenlinie erstreckt ist, am
äußeren Umfang des inneren Bohreinsatzes ausge-
bildet ist, sowie eine Nut (4B), die den Vorsprung
aufnimmt, an dem inneren Umfang des Ringboh-
reinsatzes so ausgebildet ist, dass sie zu einem rück-
wärtigen Ende des Ringbohreinsatzes geöffnet ist,
und
wobei die Nut des Eingriffselementes und zumindest
entweder der konkave Abschnitt und/oder der kon-
vexe Abschnitt, die an der äußeren Ufangsober-
fläche des Ringbohreinsatzes im Arretiermittel aus-
gebildet sind, so ausgebildet sind, dass zumindest
ein Teil hiervon in Richtung der Achsenlinie über-
lappt ist.

6. Bohrwerkzeug gemäß einem der Ansprüche 1 bis 5,
wobei in dem Eingriffselement ein Vorsprung (5C),
der in der Richtung der Achsenlinie erstreckt ist, an
einem äußeren Umfang des inneren Bohreinsatzes
ausgebildet ist, sowie eine Nut (4B), die den Vor-
sprung aufnimmt und eine Breite aufweist, die in Um-
fangsrichtung größer ist als die Breite des Vor-
sprungs ist, an dem inneren Umfang des Ringbohr-
einsatzes so ausgebildet ist, dass sie zum rückwär-
tigen Ende des Ringbohreinsatzes geöffnet ist,
wobei ein konkaver Wandabschnitt (4C), der mit dem
rückwärtigen Ende des Vorsprungs in Kontakt steht,
in der Nut auf die Spitzenseite in Richtung der Ach-
senlinie aufgenommen ist und in einer rückwärtigen
Endöffnung der Nut an einer Seite in Drehrichtung
des inneren Bohreinsatzes beim Bohren ausgebildet
ist, und
wobei in einem Zustand, bei dem der erste Kontakt-
abschnitt mit einem Kontaktabschnitt der Seite des
Gehäuserohrs in Kontakt steht und der konvexe
Wandabschnitt in Kontakt mit dem rückwärtigen En-
de des Vorsprungs steht, die konkaven Abschnitte
des Arretiermittels innerhalb der konkaven Abschnitte
an beiden Enden in Richtung der Achsenlinie mit
einem Intervall zwischen ihnen aufgenommen sind.

7. Bohrwerkzeug, umfassend:

ein zylindrisches Gehäuserohr (1);
einen kranzförmigen Ringbohreinsatz (4), der in
einen Spitzenabschnitt des zylindrischen Ge-
häuserohrs so eingesetzt ist, dass er um eine
Achsenlinie (0) des Gehäuserohrs drehbar ist,
wobei der Ringbohreinsatz so eingesetzt ist,
dass dessen äußere Ufangsoberfläche einer
inneren Ufangsoberfläche e des Spitzenab-
schnitts des Gehäuserohrs gegenüberliegt;
Arretiermittel (7, 11), die aus einem konkaven
Abschnitt (7A, 11A), der in zumindest einer U-
fangsoberfläche der inneren und äußeren U-
fangsoberflächen, die einander gegenüberste-
hen, dass sie sich axial erstrecken, wobei der
konkave Abschnitt eine Ringform um die Ach-
senlinie herum aufweist und einen konvexen
Abschnitt (7B, 11B), der in der anderen U-
fangsoberfläche so ausgebildet ist, dass er in
dem konkaven Abschnitt aufgenommen ist, zu-
sammengesetzt ist, wobei der Ringbohreinsatz
an einer Spitzenseite der Achsenlinie des Ge-
häuserohrs durch das Arretiermittel arretiert ist
und so befestigt ist, dass er in Richtung der Ach-
senlinie bewegt werden kann; und
einen inneren Bohreinsatz (5), der an einer Spitz-
e eines Transmissionselementes befestigt ist,
das innerhalb des Gehäuserohrs eingesetzt ist,
wobei ein erster Kontaktabschnitt (5A), der mit einem
Kontaktabschnitt (3A) der Seite des Gehäuserohrs,
welche an einem inneren Umfang des Spitzenab-
schnitts des Gehäuserohrs auf die Spitzenseite in
Richtung der Achsenlinie hervorsteht, in Kontakt ste-
hen kann, sowie ein zweiter Kontaktabschnitt (5B),
der mit einem Kontaktabschnitt der Seite des Ring-
bohreinsatzes, welche an dem Ringbohreinsatz aus-

gebildet ist und einen Innendurchmesser aufweist, der kleiner als der des Kontaktabschnitts der Seite des Gehäuserohrs, auf die Spitzenseite der Richtung der Achsenlinie in Kontakt stehen kann, an der äußeren Umfangsoberfläche des inneren Bohreinsatzes ausgebildet sind, wobei der innere Bohreinsatz um die Achsenlinie in Bezug auf den Ringbohreinsatz durch Eingriffsmittel in Eingriff stehen kann, wobei in dem Eingriffsmittel ein Vorsprung (5C), der in der Richtung der Achsenlinie erstreckt ist, an einem äußeren Umfang des inneren Bohreinsatzes ausgebildet ist, sowie eine Nut (4B), die den Vorsprung aufnimmt, an einem inneren Umfang des Ringbohreinsatzes so ausgebildet ist, dass sie zum rückwärtigen Ende des Ringbohreinsatzes geöffnet ist, und wobei die Nut des Eingriffselementes und zumindest entweder der konkav Abschnitt und/oder der konvexe Abschnitt, die an der Seite des Ringbohreinsatzes ausgebildet sind, in dem Arretiermittel so ausgebildet sind, dass zumindest ein Teil hiervon in Richtung der Achsenlinie überlappt ist.	5	des Gehäuserohrs auf die Spitzenseite der Richtung der Achsenlinie hervorsteht, in Kontakt stehen kann, sowie ein zweiter Kontaktabschnitt (5B), der mit einem Kontaktabschnitt der Seite des Ringbohreinsatzes, der an dem Ringbohreinsatz ausgebildet ist und einen Innendurchmesser aufweist, der kleiner als der des Kontaktabschnitts der Seite des Gehäuserohrs, auf die Spitzenseite der Richtung der Achsenlinie in Kontakt kommen kann, an der äußeren Umfangsoberfläche des inneren Bohreinsatzes ausgebildet sind, wobei der innere Bohreinsatz um die Achsenlinie in Bezug auf den Ringbohreinsatz durch Eingriffsmittel in Eingriff gebracht werden kann, wobei in dem Eingriffsmittel ein Vorsprung (5C), der in der Richtung der Achsenlinie erstreckt ist, an einem äußeren Umfang des inneren Bohreinsatzes ausgebildet ist, sowie eine Nut (4B), die den Vorsprung aufnimmt und eine Breite aufweist, die in Umfangsrichtung größer als die des Vorsprungs ist, an dem inneren Umfang des Ringbohreinsatzes so ausgebildet ist, dass sie zum rückwärtigen Ende des Ringbohreinsatzes geöffnet ist, wobei ein konvexer Wandabschnitt (4C), der mit dem rückwärtigen Ende des Vorsprungs, der in der Nut aufgenommen ist, auf die Spitzenseite in Richtung der Achsenlinie in Kontakt kommen soll, in einer rückwärtigen Endöffnung der Nut an einer Seite der Drehrichtung des inneren Bohreinsatzes bei einem Bohren ausgebildet ist, und wobei in einem Zustand, bei dem der erste Kontaktabschnitt mit einem Kontaktabschnitt der Seite des Gehäuserohrs in Kontakt gelangen soll und der konvexe Wandabschnitt in Kontakt mit dem rückwärtigen Ende des Vorsprungs gelangt, die konvexen Abschnitte des Arretiermittels innerhalb der konkaven Abschnitte an beiden Enden in Richtung der Achsenlinie mit einem dazwischen angeordneten Intervall aufgenommen sind.
8. Bohrwerkzeug, umfassend:	25	
ein zylindrisches Gehäuserohr (1); einen kranzförmigen Ringbohreinsatz (4), der in einen Spitzenschnitt des zylindrischen Gehäuserohrs so eingesetzt ist, dass er um eine Achsenlinie (0) des Gehäuserohrs drehbar ist, wobei der Ringbohreinsatz so eingesetzt ist, dass dessen äußere Umfangsoberfläche einer inneren Umfangsoberfläche des Spitzenschnitts des Gehäuserohrs gegenüberliegt; Arretiermittel (7, 11), die von einem konkaven Abschnitt (7A, 11A), der in zumindest einer Umfangsoberfläche der inneren und äußeren Umfangsoberflächen, die einander gegenüberstehen, dass sie sich axial erstrecken, ausgebildet ist, wobei der konkav Abschnitt eine Ringform um die Achsenlinie herum aufweist, sowie einem konvexen Abschnitt (7B, 11B), der in der anderen Umfangsoberfläche so ausgebildet ist, dass er in dem konkaven Abschnitt aufgenommen ist, zusammengesetzt sind, wobei der Ringbohreinsatz an einer Spitzenseite in Richtung der axialen Linie des Gehäuserohrs durch das Arretiermittel arretiert ist und so befestigt ist, dass er in Richtung der Achsenlinie bewegt werden kann; und einen inneren Bohreinsatz (5), der an einer Spitzenseite eines Transmissionsmittels, das innerhalb des Gehäuserohrs eingesetzt ist, befestigt ist,	30	
wobei ein erster Kontaktabschnitt (5A), der mit einem Kontaktabschnitt (3A) der Seite des Gehäuserohrs, der an einem inneren Umfang des Spitzenschnitts	35	
	40	
	45	
	50	
	55	
9. Bohrverfahren unter Verwendung des Bohrwerkzeugs gemäß einem der Ansprüche 1 bis 6, umfassend die folgenden Schritte:		
Aufbringen einer Anschlagkraft auf die Spitzenseite des inneren Bohreinsatzes (5) in der Richtung der Achsenlinie und des Drehmoments um die Achsenlinie herum, um ein Loch (H1) auszubilden, das eine vorab festgelegte Tiefe aufweist, während die Anschlagkraft auf das Gehäuserohr (1) und den Ringbohreinsatz über die ersten und zweiten Kontaktabschnitte (5A, 5B), den Kontaktabschnitt der Seite des Gehäuserohrs und den Kontaktabschnitt der Seite des Ringbohreinsatzes übertragen wird, und das Drehmoment nur durch das Eingriffselement auf den Ringbohreinsatz übertragen wird;		
Zurückziehen des inneren Bohreinsatzes und		

eines Transmissionselements, um aus dem Gehäuserohr herausgezogen zu werden; Befestigen eines zweiten inneren Bohreinsatzes (9) mit einem äußeren Durchmesser, der kleiner als der innere Durchmesser des Kontaktabschnitts des Gehäuserohrs ist und einen zweiten Kontaktabschnitt und das Eingriffselement ohne den ersten Kontaktabschnitt aufweist, an der Spitze des Transmissionsmittels; Einsetzen des zweiten inneren Bohreinsatzes in den inneren Umfang des Ringbohreinsatzes durch das Gehäuserohr hindurch; 5 Zurückziehen des inneren Bohreinsatzes und eines Transmissionselements, um aus dem Gehäuserohr herausgezogen zu werden; Herausziehen des Ringbohreinsatzes zur Spitzenseite in Richtung der Achsenlinie in Bezug auf das Gehäuserohr mittels des Herausziehmechanismus (8, 13, 14); und 10 Einsetzen des Elements wie eines Ankers (D) mit einem äußeren Durchmesser, der kleiner als der innere Durchmesser des Kontaktabschnitts des Gehäuserohrs ist, und größer als der innere Durchmesser des Kontaktabschnitts des Ringbohreinsatzes innerhalb des Gehäuserohrs, innerhalb des Lochs. 15

Aufbringen der Anschlagkraft auf die Spitzenseite des zweiten inneren Bohreinsatzes in Richtung der Achsenlinie und des Drehmoments um die Achsenlinie herum, um ein zweites Loch (H2) an einer Spitzenendseite des ersten Lochs auszubilden, während die Anschlagkraft auf den Ringbohreinsatz über den zweiten Kontaktabschnitt und den Kontaktabschnitt der Seite des Ringbohreinsatzes übertragen wird, und das Drehmoment auf den Ringbohreinsatz durch das Eingriffselement übertragen wird. 20

10. Bohrverfahren gemäß Anspruch 9, des Weiteren umfassend die folgenden Schritte: 30

nach dem Ausbilden des zweiten Lochs (H2) Herausziehen des zweiten inneren Bohreinsatzes (9) und des Transmissionsmittels, um diese aus dem Gehäuserohr (1) in einem Zustand herauszuziehen, bei dem der Ringbohreinsatz (4) innerhalb des zweiten Lochs verbleibt; und 35 Einsetzen des Elements (D) wie eines Ankers mit einem äußeren Durchmesser, der kleiner als der innere Durchmesser des Kontaktabschnitts des Gehäuserohrs und größer als der innere Durchmesser des Kontaktabschnitts des Ringbohreinsatzes innerhalb des Gehäuserohrs ist, innerhalb des Lochs. 40

11. Bohrverfahren unter Verwendung des Bohrwerkzeugs gemäß einem der Ansprüche 1 bis 6, umfassend die folgenden Schritte: 45

Aufbringen der Anschlagkraft auf die Spitzenseite des inneren Bohreinsatzes (5) in Richtung der Achsenlinie und des Drehmoments um die Achsenlinie über das Transmissionsmittel, um ein Loch (H1) auszubilden, das eine vorab festgelegte Tiefe aufweist, während die Anschlagskraft auf das Gehäuserohr (1) und den Ringbohreinsatz (4) über die ersten und zweiten Kontaktabschnitte (5A, 5B), den Kontaktabschnitt 50

der Seite des Gehäuserohrs und den Kontaktabschnitt der Seite des Ringbohreinsatzes übertragen wird, und das Drehmoment nur vom Eingriffselement auf den Ringbohreinsatz übertragen wird; Zurückziehen des inneren Bohreinsatzes und eines Transmissionselements, um aus dem Gehäuserohr herausgezogen zu werden; Herausziehen des Ringbohreinsatzes zur Spitzenseite in Richtung der Achsenlinie in Bezug auf das Gehäuserohr mittels des Herausziehmechanismus (8, 13, 14); und 55 Einsetzen des Elements wie eines Ankers (D) mit einem äußeren Durchmesser, der kleiner als der innere Durchmesser des Kontaktabschnitts des Gehäuserohrs ist, und größer als der innere Durchmesser des Kontaktabschnitts des Ringbohreinsatzes innerhalb des Gehäuserohrs, innerhalb des Lochs.

Revendications

1. Outil de perçage, comprenant:

un tube de revêtement cylindrique (1); un foret à bague annulaire (4) inséré dans une partie de pointe du tube de revêtement cylindrique pour pouvoir tourner autour d'une ligne axiale (0) du tube de revêtement, où le foret à bague est inséré de telle sorte qu'une surface périphérique externe de celui-ci soit opposée à une surface périphérique interne de la partie de pointe du tube de revêtement; un moyen de verrouillage (7, 11) constitué par une partie concave (7A, 11A) formée dans au moins une surface périphérique parmi les surfaces périphériques interne et externe opposées l'une à l'autre pour s'étendre axialement, où la partie concave a une forme annulaire autour de la ligne axiale, et une partie convexe (7B, 11 B) formée dans l'autre surface périphérique pour être accueillie dans la partie concave, le foret à bague étant verrouillé côté pointe dans la direction de la ligne axiale du tube de revêtement par le moyen de verrouillage et monté pour être déplacé dans la direction de la ligne axiale; et un foret interne (5) monté sur une pointe d'un organe de transmission inséré dans le tube de revêtement,

où une première partie de contact (5A) qui peut se mettre en contact avec une partie de contact (3A) côté tube de revêtement faisant saillie sur une périphérie interne de la partie de pointe du tube de revêtement vers le côté pointe de la direction de la ligne axiale et une deuxième partie de contact (5B)

qui peut se mettre en contact avec une partie de contact (4A) côté foret à bague formée au niveau du foret à bague et ayant un diamètre interne plus petit que celui de la partie de contact côté tube de revêtement vers le côté pointe de la direction de la ligne axiale sont formées sur la surface périphérique externe du foret interne, 5

où le foret interne peut être engagé autour de la ligne axiale par rapport au foret à bague par un moyen d'engagement, et 10

où le moyen de verrouillage a un mécanisme de retrait (8, 13, 14) qui retire le foret à bague vers le côté pointe de la direction de la ligne axiale par rapport au tube de revêtement. 15

2. Outil de perçage selon la revendication 1, où, dans le moyen de verrouillage, les parties convexes annulaires sont formées dans une partie de pointe d'une surface périphérique côté tube de revêtement et une partie d'extrémité arrière d'une surface périphérique côté foret à bague et les parties concaves accueillant les parties convexes dans les autres surfaces périphériques sont formées dans une partie d'extrémité arrière d'une surface périphérique côté tube de revêtement et une partie de pointe de la surface périphérique côté foret à bague le long de la direction de la ligne axiale, parmi les surfaces périphériques interne et externe, et 20

où le mécanisme de retrait (8) comprend une partie de filet femelle (8A) et une partie de filet mâle (8B) formées sur les surfaces périphériques interne et externe de la partie convexe à visser entre elles. 25

3. Outil de perçage selon la revendication 1, où, dans le moyen de verrouillage, la partie concave est formée sur une surface périphérique parmi les surfaces périphériques interne et externe, et un organe de verrouillage poussé vers le côté de surface périphérique est disposé de manière annulaire sur l'autre surface périphérique parmi les surfaces périphériques interne et externe pour servir de partie convexe, et 30

où dans le mécanisme de retrait (13), une surface inclinée (13A) est formée sur une surface annulaire qui est en contact avec l'organe de verrouillage lorsque le foret à bague est retiré par rapport à la partie de pointe du tube de revêtement et est dirigée vers une direction à laquelle les surfaces périphériques interne et externe sont opposées comme étant dirigée vers une direction dans laquelle l'organe de verrouillage est en contact sur la surface annulaire. 35

4. Outil de perçage selon la revendication 1, où, dans le moyen de verrouillage, les parties convexes sont formées sur la partie de pointe de la surface périphérique côté tube de revêtement et la partie d'extrémité arrière de la surface périphérique côté foret à bague, et les parties concaves accueillant les 40

parties convexes dans les autres surfaces périphériques sont formées dans une partie d'extrémité arrière d'une surface périphérique côté tube de revêtement et une partie de pointe de la surface périphérique côté foret à bague le long de la direction de la ligne axiale, parmi les surfaces périphériques interne et externe, et 45

où, dans le mécanisme de retrait (14), une surface inclinée (14A) est formée au niveau d'une surface vers la direction de la ligne axiale qui est formée au niveau d'une partie où la partie concave et la partie convexe de chacune des surfaces périphériques interne et externe sont reliées et est dirigée vers une direction à laquelle les surfaces périphériques interne et externe sont opposées comme étant dirigée vers la direction de la ligne axiale opposée à la direction vers laquelle la surface inclinée est dirigée. 50

5. Outil de perçage selon l'une quelconque des revendications 1 à 4, où le foret à bague est inséré en opposant la surface périphérique externe de celui-ci à la surface périphérique interne de la partie de pointe du tube de revêtement, 55

où dans le moyen d'engagement, une protubérance (5C) qui s'étend dans la direction de la ligne axiale est formée sur la périphérie externe du foret interne et une rainure (4B) accueillant la protubérance est formée sur la périphérie interne du foret à bague devant s'ouvrir sur une extrémité arrière du foret à bague, et

où la rainure du moyen d'engagement et au moins l'une de la partie concave et de la partie convexe formées sur la surface périphérique externe du foret à bague dans le moyen de verrouillage sont formées de sorte qu'au moins une partie correspondante soit recoupée dans la direction de la ligne axiale.

6. Outil de perçage selon l'une quelconque des revendications 1 à 5, où dans le moyen d'engagement, une protubérance (5C) qui s'étend dans la direction de la ligne axiale est formée sur une périphérie externe du foret interne et une rainure (4B) accueillant la protubérance et ayant une largeur circonférentiellement plus grande que celle de la protubérance est formée sur la périphérie interne du foret à bague devant s'ouvrir sur l'extrémité arrière du foret à bague, et

où une partie de paroi convexe (4C) en contact avec l'extrémité arrière de la protubérance accueillie dans la rainure vers le côté pointe dans la direction de la ligne axiale est formée dans une ouverture d'extrémité arrière de la rainure au niveau d'un côté de la direction de rotation du foret interne lors du perçage, et

où dans un état où la première partie de contact se met en contact avec une partie de contact côté tube de revêtement et la partie de paroi convexe se met

en contact avec l'extrémité arrière de la protubérance, les parties convexes du moyen de verrouillage sont accueillies dans les parties concaves au niveau des deux extrémités dans la direction de la ligne axiale avec un intervalle entre celles-ci.

5

7. Outil de perçage, comprenant:

un tube de revêtement cylindrique (1);
 un foret à bague annulaire (4) inséré dans une partie de pointe du tube de revêtement cylindrique pour pouvoir tourner autour d'une ligne axiale (0) du tube de revêtement, où le foret à bague est inséré de telle sorte qu'une surface périphérique externe de celui-ci soit opposée à une surface périphérique interne de la partie de pointe du tube de revêtement;
 un moyen de verrouillage (7, 11) constitué par une partie concave (7A, 11A) formée dans au moins une surface périphérique parmi les surfaces périphériques interne et externe opposées l'une à l'autre pour s'étendre axialement, où la partie concave a une forme annulaire autour de la ligne axiale, et une partie convexe (7B, 11B) formée dans l'autre surface périphérique pour être accueillie dans la partie concave, le foret à bague étant verrouillé sur un côté de pointe dans la direction de la ligne axiale du tube de revêtement par le moyen de verrouillage et monté pour être déplacé dans la direction de la ligne axiale; et
 un foret interne (5) monté sur une pointe d'un organe de transmission inséré dans le tube de revêtement,

10

15

20

25

30

35

où une première partie de contact (5A) qui peut se mettre en contact avec une partie de contact (3A) côté tube de revêtement faisant saillie sur une périphérie interne de la partie de pointe du tube de revêtement vers le côté pointe de la direction de la ligne axiale et une deuxième partie de contact (5B) qui peut se mettre en contact avec une partie de contact côté foret à bague formé au niveau du foret à bague et ayant un diamètre interne plus petit que celui de la partie de contact côté tube de revêtement vers le côté de pointe de la direction de la ligne axiale sont formées sur la surface périphérique externe du foret interne,
 où le foret interne peut être engagé autour de la ligne axiale par rapport au foret à bague par un moyen d'engagement,
 où, dans le moyen d'engagement, une protubérance (5C) qui s'étend dans la direction de la ligne axiale est formée sur la périphérie externe du foret interne et une rainure (4B) accueillant la protubérance est formée sur la périphérie interne du foret à bague de manière à s'ouvrir vers une extrémité arrière du foret à bague, et

40

45

50

55

où la rainure du moyen d'engagement et au moins l'une de la partie concave et de la partie convexe formées sur le côté du foret à bague dans le moyen de verrouillage sont formées de sorte qu'au moins une partie correspondante soit recoupée dans la direction de la ligne axiale.

8. Outil de perçage, comprenant:

un tube de revêtement cylindrique (1);
 un foret à bague annulaire (4) inséré dans une partie de pointe du tube de revêtement cylindrique pour pouvoir tourner autour d'une ligne axiale (0) du tube de revêtement, où le foret à bague est inséré de telle sorte qu'une surface périphérique externe correspondante soit opposée à une surface périphérique interne de la partie de pointe du tube de revêtement;
 un moyen de verrouillage (7, 11) constitué par une partie concave (7A, 11A) formée dans au moins une surface périphérique parmi les surfaces périphériques interne et externe opposées l'une à l'autre pour s'étendre axialement, où la partie concave a une forme annulaire autour de la ligne axiale, et une partie convexe (7B, 11B) formée dans l'autre surface périphérique pour être accueillie dans la partie concave, le foret à bague étant verrouillé sur un côté de pointe dans la direction de la ligne axiale du tube de revêtement par le moyen de verrouillage et monté pour être déplacé dans la direction de la ligne axiale; et
 un foret interne (5) monté sur une pointe d'un organe de transmission inséré dans le tube de revêtement,

où une première partie de contact (5A) qui peut se mettre en contact avec une partie de contact (3A) côté tube de revêtement faisant saillie sur une périphérie interne de la partie de pointe du tube de revêtement vers le côté pointe de la direction de la ligne axiale et une deuxième partie de contact (5B) qui peut se mettre en contact avec une partie de contact côté foret à bague formée au niveau du foret à bague et ayant un diamètre interne plus petit que celui de la partie de contact côté tube de revêtement vers le côté de pointe de la direction de la ligne axiale sont formés sur la surface périphérique externe du foret interne,
 où le foret interne peut être engagé autour de la ligne axiale par rapport au foret à bague par un moyen d'engagement,
 où dans le moyen d'engagement, une protubérance (5C) qui s'étend dans la direction de la ligne axiale est formée sur une périphérie externe du foret interne et une rainure (4B) accueillant la protubérance et ayant une largeur circonférentiellement plus grande que celle de la protubérance est formée sur la péri-

phérie interne du foret à bague devant s'ouvrir sur l'extrémité arrière du foret à bague, où une partie de paroi convexe (4C) en contact avec l'extrémité arrière de la protubérance accueillie dans la rainure vers le côté de pointe dans la direction de la ligne axiale est formée dans une ouverture d'extrémité arrière de la rainure au niveau d'un côté de la direction de rotation du foret interne lors du perçage, et où dans un état où la première partie de contact se met en contact avec une partie de contact côté tube de revêtement et la partie de paroi convexe se met en contact avec l'extrémité arrière de la protubérance, les parties convexes du moyen de verrouillage sont accueillies dans les parties concaves au niveau des deux extrémités dans la direction de la ligne axiale avec un intervalle entre celles-ci.

9. Procédé de perçage utilisant l'outil de perçage selon l'une quelconque des revendications 1 à 6, comprenant les étapes consistant à:

appliquer au foret interne (5), la force de frappe sur le côté de pointe dans la direction de la ligne axiale et le couple autour de la ligne axiale, pour former un trou (H1) ayant une profondeur pré-déterminée tout en transmettant la force de frappe au tube de revêtement (1) et le foret à bague à travers les première et deuxième parties de contact (5A, 5B), la partie de contact côté tube de revêtement et la partie de contact côté foret à bague, et en transmettant le couple uniquement au foret à bague par un moyen d'engagement; 25
retraiter le foret interne et un organe de transmission pour retrait du tube de revêtement; monter un deuxième foret interne (9) ayant le diamètre externe plus petit que le diamètre interne de la partie de contact du tube de revêtement et ayant la deuxième partie de contact et le moyen d'engagement sans la première partie de contact sur la pointe de l'organe de transmission; 30
insérer le deuxième foret interne dans la périphérie interne du foret à bague à travers le tube de revêtement; 45
retirer le foret à bague vers le côté de pointe dans la direction de la ligne axiale par rapport au tube de revêtement par le mécanisme de retrait (8, 13, 14); et 50
appliquer au deuxième foret interne, la force de frappe sur le côté de pointe dans la direction de la ligne axiale et le couple autour de la ligne d'axe pour former un deuxième trou (H2) au niveau d'un côté d'extrémité de pointe du premier trou tout en transmettant la force de frappe au foret à bague à travers la deuxième partie de contact et la partie de contact côté foret à bague 55

et en transmettant le couple au foret à bague par le moyen d'engagement.

10. Procédé de perçage selon la revendication 9, comprenant en plus les étapes consistant à:

retraiter après que le deuxième trou (H2) est formé, le deuxième foret interne (9) et l'organe de transmission pour le retrait du tube de revêtement (1) dans un état où le foret à bague (4) est laissé dans le deuxième trou, et insérer l'organe (D), comme un ancrage ayant le diamètre externe plus petit que le diamètre interne de la partie de contact du tube de revêtement et plus grand que le diamètre interne de la partie de contact du foret à bague dans le tube de revêtement dans ledit trou.

11. Procédé de perçage utilisant l'outil de perçage selon l'une quelconque des revendications 1 à 6, comprenant les étapes consistant à:

appliquer au foret interne (5), la force de frappe sur le côté de pointe dans la direction de la ligne axiale et le couple autour de la ligne d'axe à travers l'organe de transmission, pour former un trou (H1) ayant une profondeur pré-déterminée tout en transmettant la force de frappe au tube de revêtement (1) et au foret (4) à bague à travers les première et deuxième parties de contact (5A, 5B), la partie de contact côté tube de revêtement et la partie de contact côté foret à bague, et en transmettant le couple uniquement au foret à bague par un moyen d'engagement; 25
retraiter le foret interne et un organe de transmission à retirer du tube de revêtement; retirer le foret à bague vers le côté de pointe dans la direction de la ligne axiale par rapport au tube de revêtement par le mécanisme de retrait (8, 13, 14); et 30
insérer l'organe, comme un ancrage (D) ayant le diamètre externe plus petit que le diamètre interne de la partie de contact du tube de revêtement et plus grand que le diamètre interne de la partie de contact du foret à bague dans le tube de revêtement dans ledit trou.

Fig. 1

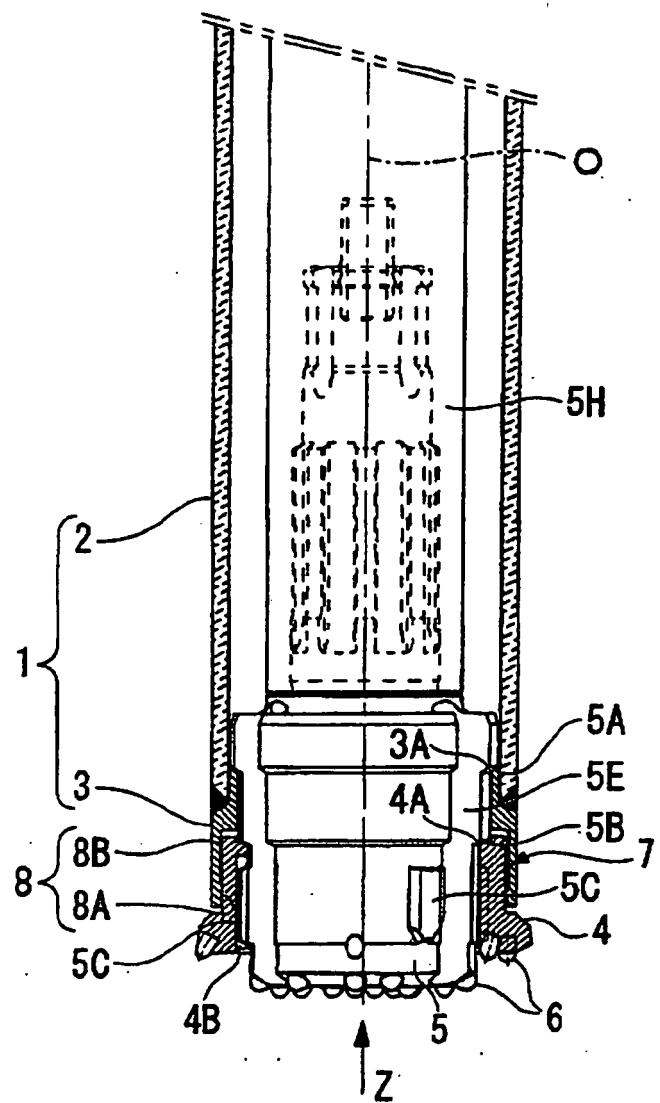


Fig. 2

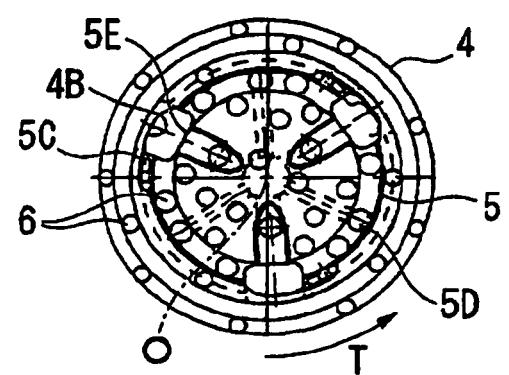


Fig. 3

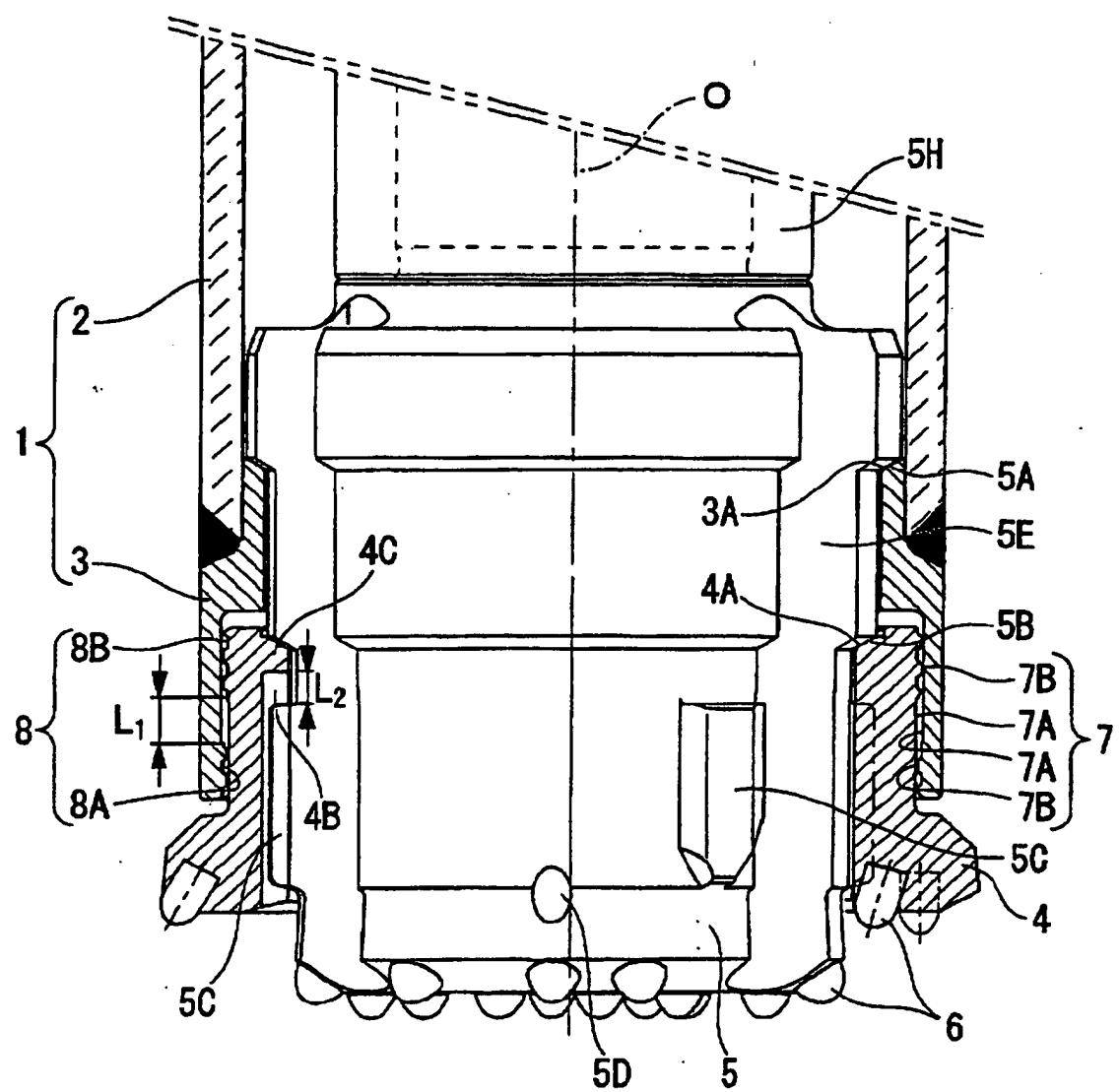


Fig. 4

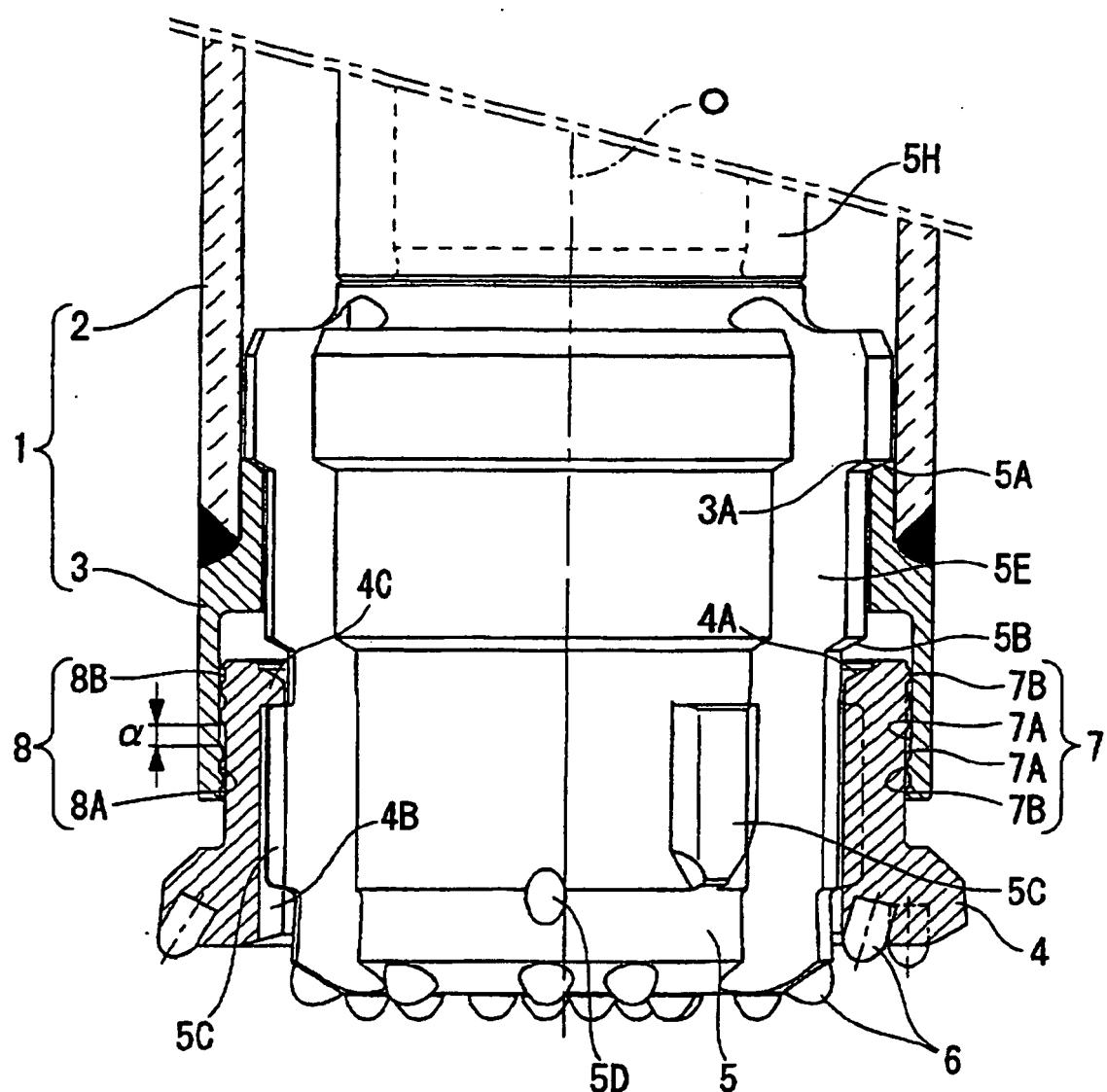


Fig. 5

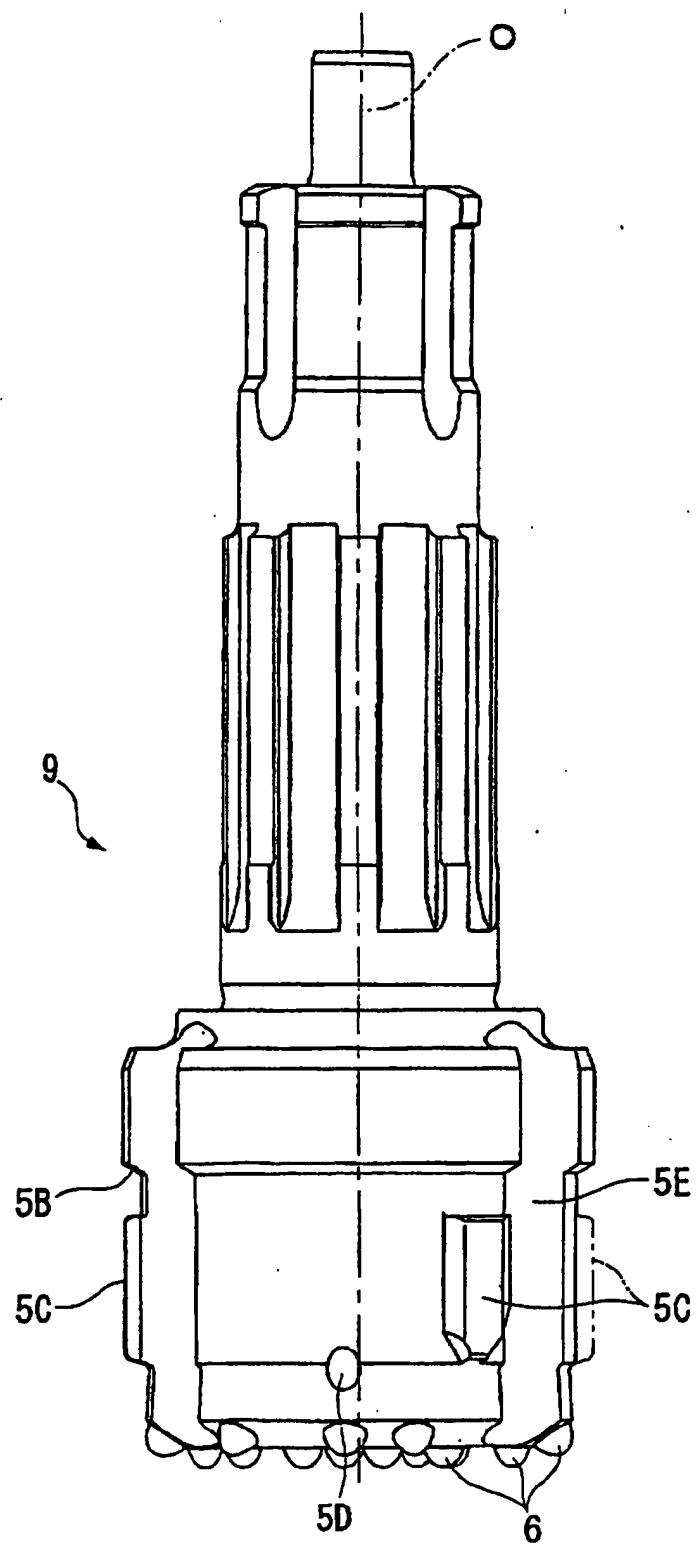


Fig. 6

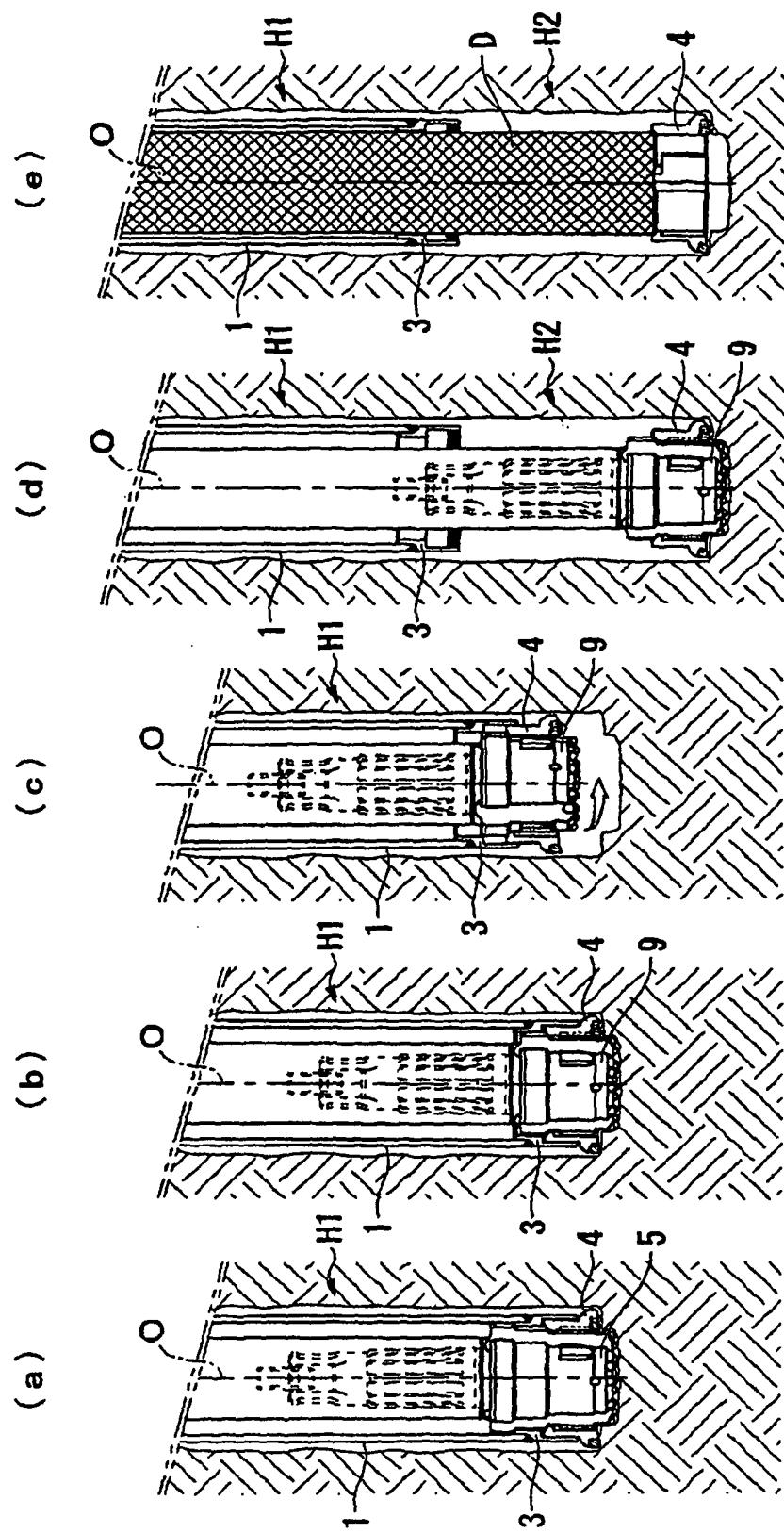


Fig. 7

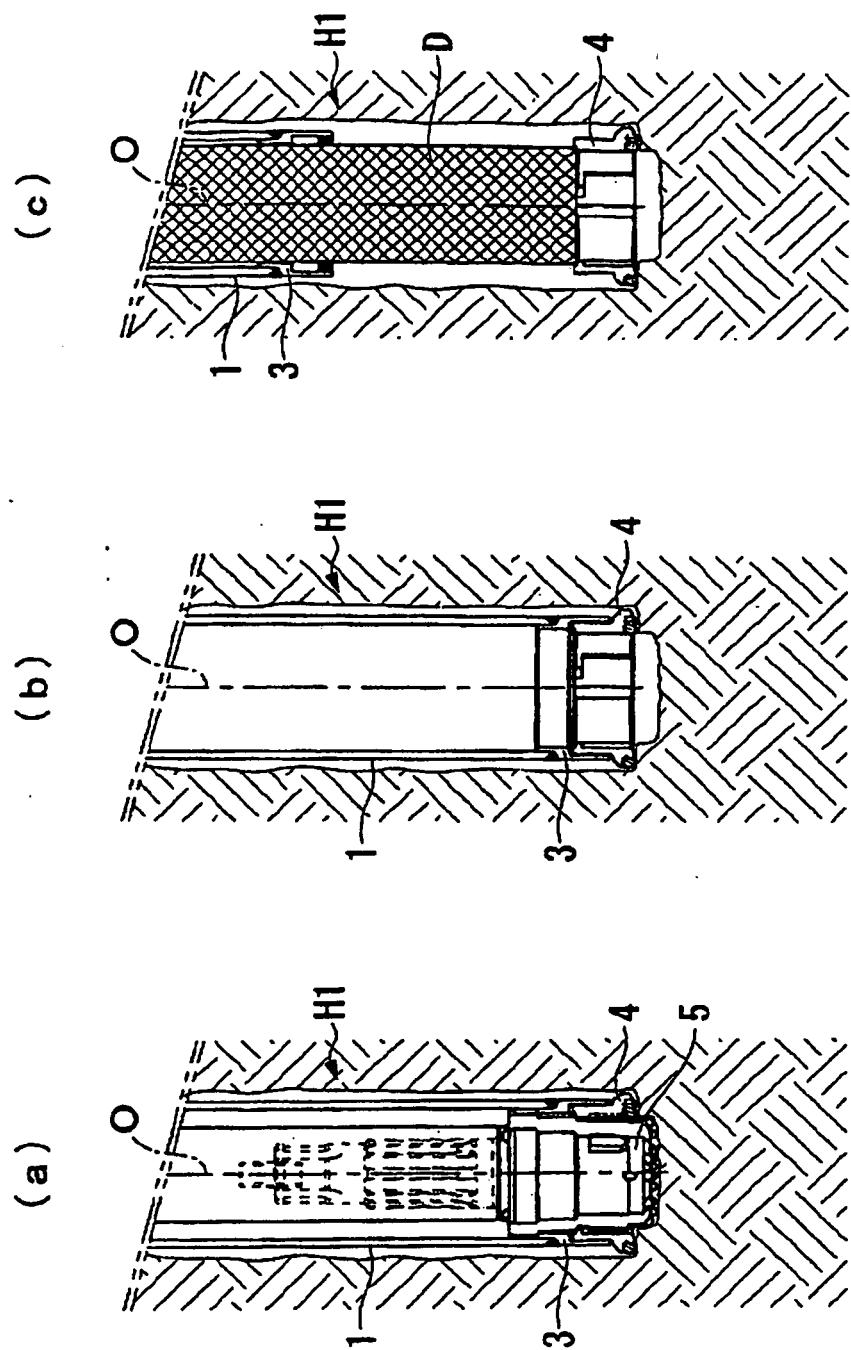


Fig. 8

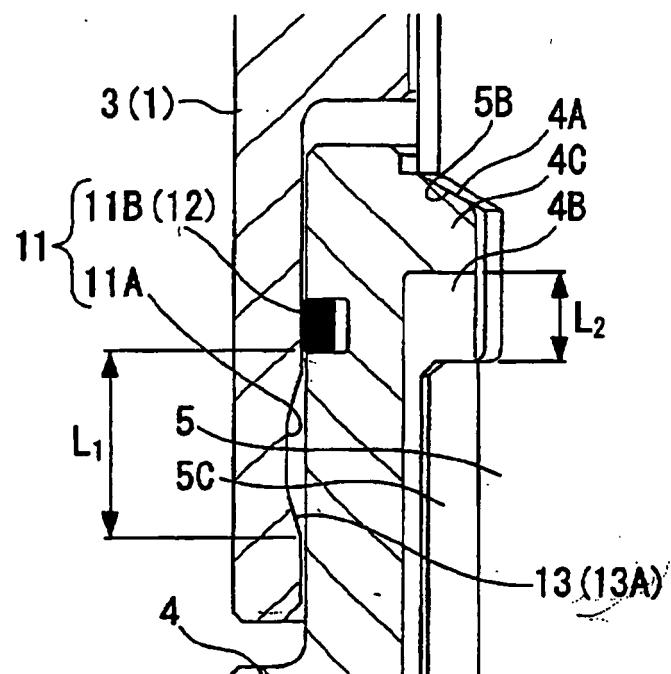


Fig. 9

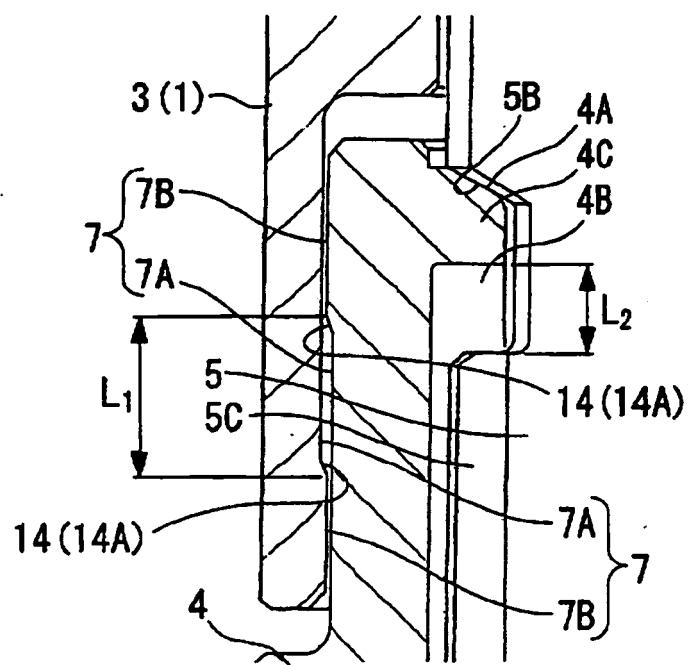


Fig. 10

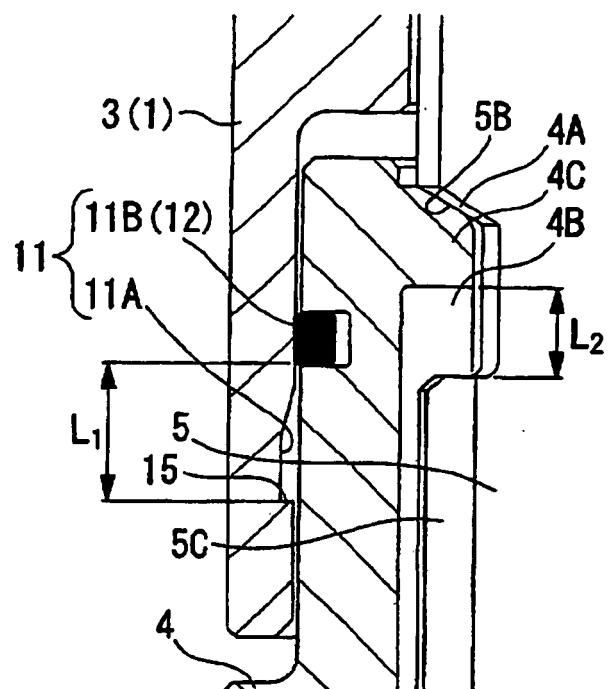


Fig. 11

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 9158656 A [0002] [0003] [0004] [0012] [0013]
- JP 10510601 T [0002] [0004] [0012] [0013]
- JP 11173057 A [0002] [0005] [0013]
- US 5472057 A [0006]
- CA 2496199 A1 [0007]