
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
1 

83
7 

75
5

A
1

��&������������
(11) EP 1 837 755 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 
26.09.2007 Bulletin 2007/39

(21) Application number: 07103017.5

(22) Date of filing: 23.02.2007

(51) Int Cl.:
G06F 9/44 (2006.01)

(84) Designated Contracting States: 
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI 
SK TR
Designated Extension States: 
AL BA HR MK YU

(30) Priority: 22.03.2006 JP 2006078280

(71) Applicant: Kabushiki Kaisha Toshiba
Tokyo 105-8001 (JP)

(72) Inventor: Hirayama, Noriyuki
Tokyo 105-8001 (JP)

(74) Representative: Henkel, Feiler & Hänzel
Patentanwälte 
Maximiliansplatz 21
80333 München (DE)

(54) Information processing apparatus

(57) According to one embodiment, an information
processing apparatus includes memory (502) in which
first firmware is stored, a controller (501) to execute the
firmware, a storage device (103) in which update data
corresponding to second firmware that can be used to
update the first firmware stored in memory, and a

processing unit (101) configured to (a) transfer the up-
date data, and (b) indicate which regions of the memory
require updating, and an updating unit (501) configured
to rewrite a region in the memory using the update data
in response to the indication of which regions of the mem-
ory require updating.



EP 1 837 755 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

[0001] The invention relates to an information process-
ing apparatus that updates firmware stored in a memory.
[0002] Firmware that controls an information process-
ing apparatus may be stored in memory, such as non-
volatile memory. To improve functions and to remove
bugs, an updater corresponding to new firmware is pro-
vided to a user to update the firmware stored in the non-
volatile memory (Jpn. Pat. Appln. KOKAI Publication No.
2003-173260).
[0003] When an updater containing the entire firmware
is provided to the user to rewrite the entire nonvolatile
memory, regions that otherwise need not be rewritten
are also rewritten. Accordingly, even if only a few regions
need to be rewritten, the entire nonvolatile memory is
rewritten, thus requiring extra time for an update process.
The number of times that the nonvolatile memory is re-
written also adds to reduction in the life of the memory.
[0004] An updater may be provided which contains
separate files corresponding to the respective update tar-
get regions of new firmware so that only the update target
regions in the nonvolatile memory need to be rewritten.
However, this requires a plurality of updaters depending
on the versions of the firmware that may be stored in the
nonvolatile memory.
[0005] An object of the present invention is to provide
an information processing apparatus which makes it pos-
sible to increase the life of a nonvolatile memory in which
firmware is stored, the apparatus also enabling a reduc-
tion in time and effort required to create an updater.
[0006] According to one embodiment of the invention,
an information processing apparatus includes memory
in which first firmware is stored, a controller to execute
the first firmware; a storage device in which update data
corresponding to second firmware that can be used to
update the first firmware stored in memory; a processing
unit to selectively transfer the update data as needed to
cause updating of said first firmware; and an updating
unit that is configured to rewrite a region in the memory
with the update data transferred if it is different from cor-
responding data already in said region of the memory to
which the data transferred is to be written. The informa-
tion processing apparatus may also include a bus over
which data is transferred, and may further include an ex-
pansion device connected to the bus and in which the
memory may be provided. Another embodiment of the
invention includes a method of selectively updating first
firmware with second firmware in a manner that more
efficiently updates only those portions of the first firmware
that require updating.
[0007] The invention can be more fully understood
from the following detailed description when taken in con-
junction with the accompanying drawings, in which:

FIG. 1 is an exemplary perspective view showing the
appearance of a computer according to an embod-
iment of the present invention;

FIG. 2 is an exemplary block diagram showing the
system configuration of the computer in FIG. 1;
FIG. 3 is an exemplary diagram showing the struc-
ture of a TS packet constituting broadcast program
data received by the computer in FIG. 1;
FIG. 4 is an exemplary diagram illustrating a process
of decrypting broadcast content, the process being
executed by the computer in FIG. 1;
FIG. 5 is an exemplary block diagram showing the
configuration of a copyright protection LSI provided
in the computer in FIG. 1;
FIG. 6 is an exemplary diagram showing a method
for creating an updater that updates firmware stored
in a flash EEPROM in the copyright protection LSI;
FIG. 7 is an exemplary diagram showing an example
of a rewrite table contained in the updater;
FIG. 8 is an exemplary block diagram showing a con-
figuration for updating firmware; and
FIG. 9 is an exemplary flowchart showing an exam-
ple of a method for updating firmware.

[0008] Various embodiments according to the inven-
tion will be described hereinafter with reference to the
accompanying drawings.
[0009] FIG. 1 is a perspective view showing that a dis-
play unit of the notebook-type personal computer 10 is
open. The computer 10 is composed of a computer main
body 11 and a display unit 12. A display composed of a
thin film transistor liquid crystal display (TFT-LCD) 17 is
incorporated into the display unit 12. An LCD display
screen 17 is part of the display unit 12.
[0010] In one embodiment, the display unit 12 is
mounted so as to be pivotable between an open position
and a closed position. The computer main body 11 has
a thin-box-shaped housing including a keyboard 13, a
power button 14, an input operation panel 15, a touch
pad 16, and speakers 18A and 18B arranged on its top
surface. The power button 14 is used to power on or off
the computer 10.
[0011] The input operation panel 15 is an input device
that inputs an event corresponding to a depressed button
to the apparatus. The input operation panel 15 comprises
one or more buttons required to actuate function(s). The
group of buttons can include a TV actuation button 15A
and a DVD/CD actuation button 15B. The TV actuation
button 15A actuates a TV function for reproducing and
recording TV broadcast program data. When a user de-
presses the TV actuation button 15A, a TV application
program for executing the TV function is executed.
[0012] In addition to a main general-purpose operating
system, a sub operating system dedicated to processing
audio/video (AV) data is installed in the computer 10. The
TV application program runs under the sub operating sys-
tem.
[0013] When the user depresses the power button 14,
the main operating system is executed. In contrast, in
one embodiment, when the user depresses the TV ac-
tuation button 15A, the sub operating system is executed

1 2 



EP 1 837 755 A1

3

5

10

15

20

25

30

35

40

45

50

55

instead of the main operating system to automatically
execute the TV application program. The sub operating
system has only the minimum functions required to ex-
ecute the AV function. Thus, the time required to boot
the sub operating system is much shorter than that re-
quired to boot the main operating system. Thus, simply
by depressing the TV actuation button 15A, the user can
immediately view or record TV programs.
[0014] In some implementations, the computer 10 can
receive and reproduce both terrestrial digital TV broad-
casting and terrestrial analog TV broadcasting. The com-
puter main body 11 has an antenna terminal 19 for ter-
restrial digital TV broadcasting and an antenna terminal
20 for terrestrial analog TV broadcasting provided on its
right side. For terrestrial digital TV broadcasting, the con-
tent of broadcast program data can be encrypted. To deal
with encrypted broadcast program data, the computer
main body 11 has a built-in storage section in which de-
vice identification information is pre-stored. The storage
section is included in a dedicated LSI for protecting the
copyright of digital broadcast program data. The device
identification information is used as a device key (Kd)
required to decrypt the decrypted broadcast program da-
ta. The device identification information is an ID required
to identify the computer 10. The device identification in-
formation is composed of information that identifies the
type of computer 10 and/or its manufacturer. In one im-
plementation, the device identification information is
comprises of a pair of a type ID that identifies the type of
the computer 10 and the device key Kd corresponding
to the type ID. In another implementation, the device iden-
tification information comprises a pair of a manufacturer
ID that identifies the manufacturer of computer 10 and
the device key Kd corresponding to the manufacturer ID.
The type ID and manufacturer ID are hereinafter collec-
tively referred to as a device ID.
[0015] In terrestrial digital TV broadcasting, a stream
obtained by multiplexing a plurality of broadcasting pro-
gram data is broadcast via a broadcasting wave. In one
embodiment, the stream comprises program contents
encrypted by an encryption key (Ks), common informa-
tion (entitlement control message "ECM") obtained by
using a work key (Kw: second encrypting key) to encrypt
Ks, and some pieces of individual information (entitle-
ment management message "EMM") obtained by using
device identification information (device key [Kd]) corre-
sponding to proper individual receivers to encrypt Kw.
Each EMM comprises the corresponding device ID.
[0016] The computer 10 uses the ECM and EMM con-
tained in the broadcast program data and the device key
(Kd) built into the computer main body 11 to generate a
encryption key (Ks) for decrypting the encrypted program
contents. In this case, the device key (Kd) is used to
decrypt the EMM containing the device ID in order to
generate Kw. Generated Kw is used to decrypt the ECM
in order to generate Ks.
[0017] As described above, in one embodiment, the
computer 10 and the device key (Kd) in the storage sec-

tion in the dedicated LSI are built into the computer 10.
The dedicated LSI cannot be externally accessed. Thus,
the device key (Kd) can be easily prevented from leaking
without using any special tamper resistant techniques.
Thus, the copyright of broadcast program data can be
protected without any dedicated IC card such as a BS
Conditional Access System (B-CAS) card.
[0018] The DVD/CD actuation button 15B is used to
reproduce video content recorded on DVD or CD. When
the user depresses the DVD/CD actuation button 15B, a
video reproduction application program is executed to
reproduce the video content. In one implementation, the
video reproduction application program is run under a
sub operating system. When the user depresses the
DVD/CD actuation button 15B, the sub operating system
is executed instead of the main operating system to au-
tomatically execute the video reproduction application
program.
[0019] Now, one embodiment of the system configu-
ration of the computer 10 will be described with reference
to FIG. 2.
[0020] As shown in FIG. 2, components of the compu-
ter 10 may include, but is not limited to, a CPU 101, a
north bridge 102, a main memory 103, a south bridge
104, a graphics controller 105, an audio controller 106,
a transition minimized differential signaling (TMDS) cir-
cuit 107, a video processor 108, BIOS-ROM 109, a LAN
controller 110, a hard disk drive (HDD) 111, a DVD drive
112, a card controller 113, a wireless LAN controller 114,
an IEEE 1394 controller 115, an embedded controller/
keyboard controller (EC/KBC) IC 116, a digital TV broad-
casting reception processing section 117, and an analog
TV broadcasting reception processing section 118.
[0021] The CPU 101 is a processor that controls the
operation of the computer 10. CPU 101 executes various
systems and application programs such as the main op-
erating system/sub operating system and TV application
program which are loaded from the hard disk drive (HDD)
111 into the main memory 103. The CPU 101 executes
a system basic input output system (BIOS) stored in the
BIOS-ROM 109. The system BIOS is a program for con-
trolling hardware.
[0022] The north bridge 102 is a bridge device that
connects a local bus for the CPU 101 and the south bridge
104 together. The north bridge 102 also contains a mem-
ory controller that controls accesses to the main memory
103. The north bridge 102 also has a function for com-
municating with the graphics controller 105 via an Accel-
erated Graphics Port (AGP) bus, a serial bus that com-
plies with the PCI Express standard, or the like.
[0023] The graphics controller 105 is a display control-
ler that controls LCD 17 used as a display monitor for the
computer 10. Video data generated by the graphics con-
troller 105 is sent to the video processor 108 via the
TMDS circuit 107. The video processor 108 executes a
video process (image quality adjusting process) for im-
proving the quality of video data from the graphics con-
troller 105. In one embodiment, the video data is sent to

3 4 



EP 1 837 755 A1

4

5

10

15

20

25

30

35

40

45

50

55

LCD 17. In another embodiment, the video data is trans-
mitted to an external TV 1 and an external HDMI monitor
via interfaces 3 and 4.
[0024] The south bridge 104 controls devices on Low
Pin Count (LPC) bus and devices on a Peripheral Com-
ponent Interconnect (PCI) bus along which data is trans-
ferred. The south bridge 104 also contains an Integrated
Drive Electronics (IDE) controller that controls the HDD
111 and the DVD drive 112. The south bridge 104 further
has a function for executing communication with the au-
dio controller 106.
[0025] The audio controller 106 is a sound source de-
vice and outputs audio data to be reproduced, to speak-
ers 18A and 18B or an external 5.1-channel speaker sys-
tem.
[0026] The card controller 113 controls a PC card, Se-
cure Digital (SD) card, or the like. The wireless LAN con-
troller 114 is a wireless communication device that exe-
cutes radio communication that complies with, for exam-
ple, the IEEE 802.11 standard. The IEEE 1394 controller
115 communicates with external equipment via a serial
bus that complies with the IEEE 1394 standards. The
embedded controller/keyboard controller (EC/KBC) IC
116 is a one-chip microcomputer in which an embedded
controller for power management and a keyboard con-
troller for controlling the keyboard (KB) 13 and touch pad
16 are integrated. The embedded controller/keyboard
controller (EC/KBC) IC 116 has a function for powering
on or off the computer 10 in response to the user’s op-
eration of the power button 14. The embedded controller/
keyboard controller IC (EC/KBC) 116 can further power
on the computer 10 in response to the user’s operation
of the TV actuation button 15A and/or DVD/CD actuation
button 15B.
[0027] The digital TV broadcast reception processing
section 117 is a device that receives digital broadcast
programs such as those associated with a terrestrial dig-
ital TV broadcast. The digital TV broadcasting reception
processing section 117 is connected to the antenna ter-
minal 19. As shown in FIG. 2, the digital TV broadcast
reception processing section 117 comprises a digital TV
tuner 201, an orthogonal frequency division multiplexing
(OFDM) demodulator 202, and a copyright protection LSI
203. The digital TV tuner 201 and OFDM demodulator
202 function as a tuner module that receives broadcast
program data for terrestrial digital TV broadcast. Terres-
trial digital TV broadcasting can utilize MPEG-2 as a com-
pressive encoding scheme for broadcast program data
(video and audio). Available video formats can include
standard definition (SD) and High Definition (HD).
[0028] The tuner module, comprised of the digital TV
tuner 201 and OFDM 202, receives a broadcast signal
for a particular channel included in TV broadcast signals
input through the antenna terminal 19. The tuner module
then extracts a transport stream (TS) from the received
TV broadcast signal. The transport stream is obtained
by multiplexing a plurality of compressively encoded
broadcast program data. Terrestrial digital TV broadcast-

ing multiplexes a plurality of programs for each channel
(for example, a physical channel).
[0029] In one embodiment, the transport stream con-
tains broadcast content encrypted by the encryption key
(Ks) as well as the EMM, ECM, and the like. The transport
stream is comprised of a plurality of consecutive TS pack-
et groups. Each TS packet has a fixed length of 188 bytes
as shown in FIG. 3. The TS packet is comprised of a
header and a payload. The header is sized to have a
fixed length of 4 bytes. The header contains a 13-bit pack-
et ID (PID). The PID is a packet identifier used to identify
the corresponding TS packet. Specifically, the PID is
used to identify a program, a content type (audio/video),
the EMM/ECM, or control information such as a program
table. The TS packet groups belonging to the same
broadcast program have a PID specified by the program
table for that broadcast program.
[0030] The copyright protection LSI 203 is a dedicated
LSI that protects the copyright of broadcast contents
(rights management and protection [RMP]). The copy-
right protection LSI 203 pre-stores the device ID and de-
vice key Kd corresponding to the computer 10. The cop-
yright protection LSI 203 uses ECM and EMM contained
in the transport stream as well as the device key (Kd) to
generate an encryption key (Ks). The copyright protec-
tion LSI 203 uses the encryption key (Ks) to decrypt
broadcasting contents to cancel the encryption of the
broadcasting contents.
[0031] The copyright protection LSI 203 also has a PID
filtering function for extracting the TS packet group con-
taining the PID corresponding to the target broadcast pro-
gram, from the decrypted transport stream. The PID fil-
tering function enables only the TS packet group corre-
sponding to the broadcast program to be viewed or re-
corded, to be sent to the TV application program. This
eliminates the need for the PID filtering process, which
is otherwise executed by the TV application program.
The load on the TV application program can thus be re-
duced. The amount of data flowing over the PCI bus can
be reduced by allowing the copyright protection LSI 203
to execute the PID filtering process.
[0032] The copyright protection LSI 203 has a function
for encrypting the TS packet group extracted by the PID
filtering function. The encryption is executed using the
encryption key retained by the copyright protection LSI
203 and TV application program as a common key. The
encryption enables the encrypted program content to be
transferred to the main memory 103 via the PCI bus.
Thus, even if the program content is illegally extracted
via the PCI bus, the extracted content can be prevented
from being reproduced.
[0033] The analog TV broadcast reception processing
section 118 is a device that receives analog broadcast
programs such as for terrestrial analog TV broadcasting.
The analog TV broadcast reception processing section
118 is connected to the antenna terminal 20. As shown
in the figure, the analog TV broadcast reception process-
ing section 118 includes an analog TV tuner 301 and an

5 6 



EP 1 837 755 A1

5

5

10

15

20

25

30

35

40

45

50

55

MPEG-2 encoder 302. The analog TV tuner 301 is a tuner
module that receives analog broadcast programs and
receives a broadcast signal for a particular channel in-
cluded in TV broadcast signals input through the antenna
terminal 20. The broadcast program data received by the
analog TV tuner 301 is sent to the MPEG-2 encoder 302,
which compressively encodes the broadcast program
data using an encoding scheme that complies with the
MPEG-2 standard. The MPEG-2 encoder 302 thus mul-
tiplexes the compressively encoded video data and audio
to generate a program stream (PS).
[0034] Now, with reference to FIG. 4, description will
be given of a mechanism for encrypting and decrypting
broadcast content.
[0035] A broadcasting station is provided with an en-
cryption processing section 401 and encrypting sections
402 and 403. The broadcasting station manages the de-
vice ID and device key Kd for each proper receiver type
and for each manufacturer. The encryption processing
section 401 uses the encryption key Ks to encrypt broad-
cast program data (for example, program content). The
encrypting section 402 uses the work key Kw to encrypt
the encryption key Ks, thus generating an ECM which
comprises the encrypted encryption key Ks. The encrypt-
ing section 403 uses a plurality of device keys Kd corre-
sponding to the respective device IDs to encrypt the work
key Kw. The encrypting section 403 thus generates a
plurality of EMMs containing the respective encrypted
work keys Kw. In this case, each EMM is additionally
provided with the corresponding device ID. The encryp-
tion key Ks and work key Kw are encrypted using, for
example, the Advanced Encryption Standard (AES).
[0036] The copyright protection LSI 203 of the compu-
ter 10 includes an EMM decrypting section 411, an ECM
decrypting section 412, and a decryption section 413.
The EMM decrypting section 411 uses the device key Kd
stored in the copyright protection LSI 203 to decrypt the
EMM, thus generating a work key Kw. In this case, the
EMM decrypting section 411 identifies one of a plurality
of EMMs which correspond to the device ID of the com-
puter 10. The EMM decrypting section 411 then uses the
device key Kd to decrypt the identified EMM. The ECM
decrypting section 412 uses the work key Kw generated
to decrypt an ECM, thus generating a encryption key Ks.
The decryption section 413 uses the encryption key Ks
to decrypt the program contents.
[0037] Now, with reference to FIG. 5, description will
be given of one embodiment of the copyright protection
LSI 203.
[0038] As shown in the figure, the copyright protection
LSI 203 comprises an RMP controller 501, a flash EEP-
ROM 502, RAM 503, a decoder 504, a time stamp adding
section 505, a PID filter section 506, an encrypting sec-
tion 507, and a PCI interface section 508.
[0039] The RMP controller 501 is a microcomputer that
controls the operation of the copyright protection LSI 203.
The RMP controller 501 executes a process for gener-
ating an encryption key Ks.

[0040] In one embodiment, the flash EEPROM 502 is
a nonvolatile memory which stores the device key Kd
together with the device ID and which also stores
firmware that operates the RMP controller 501. In other
embodiments, the flash EEPROM 502 may be replaced
with one or more of the following: a RAM, a ROM, an
optical storage device, a magnetic storage medium, a
hard disk, and a volatile memory device.
[0041] RAM 503 is used as a work memory for the
RMP controller 501. In other embodiments, RAM 503
may be replaced with one or more of the following: a flash
EEPROM, a volatile memory device, a non-volatile mem-
ory device, a ROM, a magnetic storage medium, an op-
tical storage disk, and a hard disk.
[0042] The decoder 504 uses the encryption key Ks
generated by the RMP controller 501 to decrypt an en-
crypted transport stream (TS). A decrypted TS packet is
sent to the time stamp adding section 505, which adds
a 4-byte time stamp to the leading end of the decrypted
188-byte TS packet to generate a 192-byte packet. The
time stamp indicates the temporal order of TS packets.
By allowing the time stamp adding section 505 to convert
the TS packet into a 192-byte packet with a time stamp,
it is possible to allow the encrypting section 507 to effi-
ciently execute an encrypting process.
[0043] The PID filter section 506 is a filter circuit that
monitors the PID of the TS packet to extract only the TS
packet group required to reproduce the program to be
viewed. In other words, on the basis of the PID of each
of the TS packet groups contained in the decrypted trans-
port stream, the PID filter section 506 extracts one of the
TS packet groups contained in the transport stream
which corresponds to broadcast program data to be
viewed. The program to be viewed is indicated by CPU
101. Each packet extracted by the PID filter section 506
is sent to the encrypting section 507.
[0044] The encrypting section 507 encrypts each 192-
byte packet. In one embodiment, the encryption is exe-
cuted using the same AES scheme as that used for the
ECM and EMM. In one implementation, the encrypting
section 507 uses an encryption key of block size 128 bits
to encrypt the 192-byte packet for each 128-bit block.
For example, the 192-byte packet is divided into 12
blocks each of length 128 bits, which are individually en-
crypted. Each encrypted TS packet with a time stamp is
sent to the PCI interface section 508.
[0045] A calculating circuit in the encrypting section
507 which corresponds to the AES scheme is also utilized
for calculations required to decrypt the ECM and EMM.
Specifically, the RMP controller 501 receives the EMM
from the PID filter section 506. The RMP controller 501
then inputs the EMM and the device key Kd to the en-
crypting section 507 to allow the encrypting section 507
to decrypt the EMM. This enables the RMP controller 501
to acquire the work key Kw from the encrypting section
507. The RMP controller 501 also receives the ECM from
the PID filter section 506. The RMP controller 501 then
inputs the ECM and the work key Kw to the encrypting

7 8 



EP 1 837 755 A1

6

5

10

15

20

25

30

35

40

45

50

55

section 507 to allow the encrypting section 507 to decrypt
the ECM. This enables the RMP controller 501 to acquire
the encryption key Ks from the encrypting section 507.
[0046] Because the RMP controller 501 uses the en-
crypting section 507 to decrypt the EMM and ECM, the
circuit implementation is simplified. In particular, there is
no need to mount a calculating circuit for AES encryption
in the RMP controller 501.
[0047] For the firmware, carried out by the RMP con-
troller 501 in the copyright protection LSI 203 to execute
a predetermined process, a new version may be provided
in order to improve its functions. Updating of the firmware
will be described below.
[0048] First, creation of one embodiment of an updater
will be described with reference to FIG. 6. A new version
of firmware is created which is to be actually written to
the flash EEPROM 502. Then, a binary file is created
which contains encrypted code for the new firmware.
[0049] The firmware is encrypted by block encryption
such as a cipher block chain (CBC) mode of the advanced
encryption standard (AES). In one embodiment, the block
encryption encrypts and decrypts each data of a fixed
length called a block. In other embodiments, the block
encryption encrypts and decrypts a region of the flash
EEPROM 502 which may be of any size including, but
not limited to, 1 bit, 1 byte, 800 bytes, 10 megabytes, or
1 gigabyte. The AES encrypts and decrypts each block
of block length 128 bits. In some embodiments, the AES
allows the key length to be selected from 128, 192, and
256 bits.
[0050] In the CBC mode, an encrypted plain text block
is superimposed on the next plain text block by an XOR
calculation. The result is then encrypted using a common
key. To encrypt the first block, the last block of the pre-
ceding encrypted text or an externally provided initial vec-
tor is utilized. For decryption, the preceding encrypted
block is used for data obtained by decrypting a block, to
obtain a plain text block.
[0051] Then, the apparatus determines whether or not
each block for block encryption is different from the old
version. If the block is different from the old version, the
flash EEPROM 502 needs to be rewritten. In one em-
bodiment, after all the regions are checked, a table is
created which shows whether or not to rewrite the mem-
ory for each block. Blocks that need to be rewritten cor-
respond to one or more addresses in the flash EEPROM
502. FIG. 7 shows an example of a rewrite table.
[0052] The binary file, update module, and header file
are then coupled together by compressing them in a self-
decompressing .exe format. An updater is thus created.
The header file contains firmware version information,
key information required to decrypt the binary file, and
the rewrite table.
[0053] To update firmware, the user can download the
updater from an appropriate Web server via the Internet.
The user then stores the updater in the hard disk drive
103 and executes the downloaded updater. In other em-
bodiments, the updater may be stored on one or more

of the following: a RAM, a volatile memory, a non-volatile
memory, an optical storage disk, and a magnetic storage
medium.
[0054] One embodiment of an update process will be
described with reference to the block diagram in FIG. 8
and the flowchart in FIG. 9.
[0055] The user executes an updater 600 stored in the
hard disk drive 103. The updater 600 is decompressed
to expand a firmware (FW) update program 601, a binary
file 602, a rewrite table 603, and version information 604
into the main memory 103. The FW update program 601
is automatically executed by the CPU 101. In the copy-
right protection LSI 203, an operation of updating
firmware is performed by the update module 612 expand-
ed in RAM 503.
[0056] CPU 101 requests, via the PCI bus, the RMP
controller 501 to transfer version information on the
firmware (step S11). Upon acquiring the request for
transfer of version information (step S31), the RMP con-
troller 501 transfers the version information on firmware
611 stored in the flash EEPROM 502 (step S32).
[0057] Upon acquiring the version information (step
S12), the CPU 101 compares the version information 604
in the update file with the version information acquired.
The CPU 101 thus determines whether or not the version
in the update file is newer than the firmware stored in the
flash EEPROM 502 (step S13). If the version in the up-
date file is the same as or older than the firmware (No in
step S13), the update process ends (step S24).
[0058] If the version in the update file is new (Yes in
step S13), the CPU 101 uses a challenge response
scheme or the like to transfer key information 605 to the
RMP controller 501 via the PCI bus (step S12). The key
information 605 is used to decrypt the binary data con-
tained in the header file. The RMP controller 501 acquires
the key information transferred by the program (step
S33).
[0059] The CPU 101 reads data of the block length
size for a block encrypting process from a binary file 602
starting from the leading end of unread regions (step
S15). The CPU 101 transfers the read data to the RMP
controller 501 via the PCI bus as binary data (step S16).
[0060] The RMP controller 501 acquires and stores
the binary data transferred by the CPU 101, in RAM 503
(step S34). The RMP controller 501 then uses the key
information acquired in step S33 and the initial vector or
the binary data in the preceding block to decrypt the bi-
nary data (step S35). The decryption is carried out using
the encrypting section 507.
[0061] CPU 101 refers to the rewrite table 603, con-
tained in the header file, to determine whether or not the
data obtained by decrypting the binary data transferred
to the RMP controller 501 is a rewrite target for rewrite
of the flash EEPROM 502 (step S17). This may depend
on the version of the firmware stored in the flash EEP-
ROM 502. Thus, whether or not the data is to be rewritten
is determined depending on the version of the firmware
acquired in step S12.

9 10 



EP 1 837 755 A1

7

5

10

15

20

25

30

35

40

45

50

55

[0062] If the data is to be rewritten (Yes in step S17),
rewrite information containing a rewrite flag (enable) and
an address in the flash memory is transferred to the RMP
controller 501.
[0063] If the data is not to be rewritten (No in step S17),
rewrite information containing a rewrite flag (disable) is
transferred to the RMP controller 501.
[0064] Then, the RMP controller 501 acquires the re-
write information (step S36). The RMP controller 501 de-
termines whether or not the rewrite flag indicates "enable"
(step S37). If the rewrite flag indicates "enable" (Yes in
step S37), the RMP controller 501 uses the decrypted
data to rewrite the region of the flash EEPROM 502 which
corresponds to the transferred address (step S38).
[0065] After the processing in step S38 or if the rewrite
flag does not indicate "enable" (No in step S37), the RMP
controller 501 transfers a rewrite end signal to notify the
CPU 101 that the rewrite has ended (step S39). If the
rewrite flag does not indicate "enable", that is, the rewrite
flag indicates "disable", then the rewrite end signal is
transferred without rewriting the flash EEPROM 502.
[0066] Upon acquiring the rewrite end signal (step
S20), the CPU 101 determines whether or not the trans-
ferred binary data corresponds to the final block of the
binary file 602 (step S21).
[0067] If the binary data does not correspond to the
final block (No in step S21), CPU 101 transfers the next
block transfer signal to the RMP controller 501 (step S22).
The RMP controller subsequently sequentially executes
the processing from step S15 to step S21. If the binary
data corresponds to the final block (Yes in step S21), a
reset signal is transferred to the RMP controller 501 (step
S23) to end the process (step S24). Upon acquiring the
signal (step S40), the RMP controller 501 determines
whether or not the signal acquired is a reset signal (step
S41). If the signal acquired is not a reset signal (No in
step S41), the RMP controller 501 waits for the data in
the next block to be transferred. If the signal acquired is
a reset signal (Yes in step S41), the RMP controller 501
transfers the updated firmware to the memory and then
executes it.
[0068] As described above, for regions that need not
be rewritten, the copyright protection LSI 203 executes
only decryption and skips writing to the flash EEPROM
502. The firmware can thus be updated by using one
encrypted binary file and rewriting only the regions to be
rewritten.
[0069] When the entire firmware is encrypted as one
file to rewrite the entire flash EEPROM 502, regions that
otherwise need not be rewritten are also rewritten. Ac-
cordingly, even if only a few regions are to be rewritten,
the entire nonvolatile memory is rewritten, thus requiring
extra time for the update process. The number of times
that the flash EEPROM 502 is rewritten also adds to re-
duction of the life of the memory. However, by skipping
the regions that need not be rewritten, while rewriting
only the rewrite target regions, as described above, it is
possible to reduce the time required for the update proc-

ess. Further, the life of the flash EEPROM 502 may be
extended.
[0070] Separate encrypted files may be provided
which correspond to the respective update target regions
of the firmware, with only the update target regions in the
flash EEPROM 502 rewritten. However, this requires a
plurality of binary files depending on the versions of the
firmware that may be stored in the flash EEPROM 502.
The time and effort required to create binary files increas-
es with the degree of distribution of the update target
regions. However, in one embodiment, only one binary
file is needed thus reducing the time and effort required
to create the binary file.
[0071] Data that cannot be easily embedded in the bi-
nary file can be easily rewritten by applying the above
embodiment to update the firmware. The data includes
a checksum and an update date in the flash EEPROM.
In one implementation, a checksum value can be em-
bedded in the binary file by creating a binary file, calcu-
lating a checksum, and recreating a binary file. However,
this requires a large amount of time and effort because
two binary files need to be created.
[0072] For example, to update the firmware to rewrite
the checksum value in addition to the binary data, the
following procedure may be used.
[0073] For preparation, a checksum portion is provided
in the binary file as dummy data, and the binary file is
encrypted. After the binary file is created, the checksum
is calculated with its value held in the firmware update
program.
[0074] To execute FW updating to rewrite appropriate
regions of the flash EEPROM, only decryption is execut-
ed on the checksum portion and rewriting it is skipped.
The checksum value may be rewritten after the binary
file has been written to the flash EEPROM.

Claims

1. An information processing apparatus characterized
by comprising:

memory (502) in which first firmware is stored;
a controller (501) to execute the firmware;
a storage device (103) in which update data cor-
responding to second firmware that can be used
to update the first firmware stored in memory
(502); and
a processing unit (101) configured to (a) transfer
the update data, and (b) indicate which regions
of the memory (502) require updating; and
an updating unit (501) configured to rewrite a
region in the memory (502) using the update da-
ta in response to the indication of which regions
of the memory (502) require updating.

2. The information processing apparatus according to
claim 1, characterized in that the update data cor-

11 12 



EP 1 837 755 A1

8

5

10

15

20

25

30

35

40

45

50

55

responding to the second firmware is stored in one
or more regions.

3. The information processing apparatus according to
claim 1, characterized in that the storage device
(103) stores information indicating whether or not to
rewrite the memory (502) for each region.

4. The information processing apparatus according to
claim 3, characterized in that the processing unit
(101) is configured to transfer the information indi-
cating whether or not to rewrite the memory (502).

5. The information processing apparatus according to
claim 4, characterized in that the updating unit
(501) comprises a rewriting unit to rewrite the mem-
ory (502) if the information indicates that the memory
(502) is to be rewritten.

6. The information processing apparatus according to
claim 1, characterized in that the memory (502)
comprises nonvolatile memory.

7. The information processing apparatus according to
claim 1, characterized by further comprising a de-
coder that decrypts the update data, wherein the up-
date data is obtained from the encrypted second
firmware.

8. The information processing apparatus according to
claim 7, characterized in that the update data is
grouped into a plurality of blocks which are encrypted
using a block encryption scheme.

9. An expansion device configured to connect to an ex-
pansion slot in an information processing apparatus,
the expansion device characterized by comprising:

a nonvolatile memory (502) in which firmware is
stored;
a controller (501) that executes the firmware;
and
an updating unit (501) for updating the firmware
in the nonvolatile memory (502) using update
data having a plurality of blocks corresponding
to the second firmware, the updating unit (501)
receiving the update data from the information
processing apparatus for each of the blocks, and
rewriting a region of the nonvolatile memory
(502) in response to an indication that the region
requires updating.

10. The expansion device according to claim 9, charac-
terized in that the updating unit (501) acquires in-
formation indicating whether or not to rewrite the
nonvolatile memory (502) for each block and rewrites
an appropriate region in the nonvolatile memory
(502) if the information indicates that the nonvolatile

memory (502) is to be rewritten.

11. The expansion device according to claim 10, char-
acterized in that the update data is obtained by en-
crypting the second firmware, and the expansion de-
vice further comprises a decoder that decrypts the
update data.

12. The expansion device according to claim 10, char-
acterized in that the update data is grouped into a
plurality of blocks which are encrypted using a block
encryption scheme.

13. A method for updating firmware in an expansion de-
vice, characterized by comprising:

providing update data corresponding to a sec-
ond firmware for updating a first firmware stored
in a plurality of regions of a memory (502);
transferring the update data to the memory
(502); and
rewriting one or more of the plurality of regions
in the memory (502) using the update data in
response to an indication that one or more of
the plurality of regions requires updating.

14. The method for updating firmware according to claim
13, characterized in that data corresponding to
whether or not to rewrite the one or more regions of
the memory (502) is transferred, and rewriting at
lease one region of the memory (502) if the data
corresponding to whether or not to rewrite indicates
that the memory (502) is to be rewritten.

15. The method for updating firmware according to claim
13, characterized in that the update data is ob-
tained by using a block encryption scheme to encrypt
the second firmware.

16. The method for updating firmware according to claim
15, characterized in that the update data is
grouped into a plurality of blocks which are encrypted
using the block encryption scheme.

13 14 



EP 1 837 755 A1

9



EP 1 837 755 A1

10



EP 1 837 755 A1

11



EP 1 837 755 A1

12



EP 1 837 755 A1

13



EP 1 837 755 A1

14



EP 1 837 755 A1

15



EP 1 837 755 A1

16



EP 1 837 755 A1

17



EP 1 837 755 A1

18



EP 1 837 755 A1

19

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2003173260 A [0002]


	bibliography
	description
	claims
	drawings
	search report

