(11) EP 1 842 936 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

10.10.2007 Bulletin 2007/41

(51) Int Cl.: C22C 32/00^(2006.01) C22C 38/00^(2006.01)

C22C 38/16 (2006.01)

(21) Application number: 07105839.0

(22) Date of filing: 10.04.2007

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Designated Extension States:

AL BA HR MK YU

(30) Priority: 07.04.2006 JP 2006105801

(71) Applicant: Tungaloy Corporation Kawasaki-shi, Kanagawa 212-8503 (JP) (72) Inventors:

 Okazaki, Takashi Kawasaki-shi Kanagawa 212-8503 (JP)

 Matsumoto, Masaaki Kawasaki-shi Kanagawa 212-8503 (JP)

(74) Representative: Ziebig, Marlene et al Gulde Hengelhaupt Ziebig & Schneider Wallstrasse 58/59 10179 Berlin (DE)

(54) Frictional material

(57) As the railroad speed becomes higher, frictional materials having magnetic properties, frictional properties, and a resistance to melting and depositing more excellent than those of conventional frictional materials are desired. The present invention provides a frictional material comprising a metal matrix and hard particles, wherein the frictional material contains: 1 to 5% by weight of Cu; 0.1 to 1.0% by weight of P; 1 to 5% by weight of at least one soft metal selected from the group consisting of Bi, Sb, In, and Ag; 1 to 6% by weight of hard particles

of at least one member selected from the group consisting of zircon ($ZrSiO_4$) and zirconia (ZrO_2); and the balance comprising Fe and an unavoidable impurity. The frictional material of the present invention has excellent magnetic properties and excellent frictional properties as well as excellent resistance to melting and depositing, and exhibits excellent damping properties particularly when used as a magnetic rail brake.

Description

BACKGROUND OF THE INVENTION

5 Field of the Invention

[0001] The present invention relates to a frictional material for use in a means for arbitrarily controlling the rotation or movement of various machines, specifically a clutch or brake. More particularly, the present invention is concerned with a frictional material advantageously used in a magnetic rail brake or electromagnetic clutch.

Background Art

10

20

30

35

40

45

50

55

[0002] A frictional material generally used in a magnetic rail brake is obtained by mixing metal powder forming a matrix with hard particles and sintering the resultant mixture. Examples of conventional frictional materials for magnetic rail brake include a sintered material comprised of a wear-resistant material comprised of at least one member selected from the group consisting of Al₂O₃, ZrO₂, Al₂TiO₅, Y₂O₃, SiC, Si₃N₄, WC, Cr₃C₂, and TiC, and powder of at least one member selected from the group consisting of nodular cast iron, graphite, iron sulfide, manganese sulfide, lead, and molybdenum sulfide (see, for example, Patent document 1).

[0003] [Patent document 1] Japanese Unexamined Patent Publication No. Hei 11-78882

[0004] When a magnetic rail brake operates, a frictional material is pressed against a rail and, simultaneously, the magnetic force causes tension between the frictional material and the rail, so that the friction of the frictional material against the rail causes the train to slow down. In a magnetic field generated from an electromagnet in the magnetic rail brake, the higher the magnetic flux density of the frictional material, the stronger the magnetic force, or the stronger the tension between the frictional material and the rail, that is, the magnetic rail brake increases in damping force. The frictional material has a high coefficient of friction and hence, when the frictional material is unlikely to be melted and deposited, the frictional material achieves higher frictional force, thus increasing the damping force. Further, when the frictional material has excellent wear resistance, the frequency of replacement of the frictional material by another can be reduced. Therefore, it is desired that the frictional material for use in magnetic rail brake has excellent frictional properties evaluated in terms of a wear resistance and a coefficient of friction, excellent resistance to melting and depositing, and excellent magnetic properties evaluated in terms of a magnetic flux density. Accordingly, an object of the present invention is to provide a frictional material having excellent frictional properties and excellent resistance to melting and depositing as well as excellent magnetic properties.

SUMMARY OF THE INVENTION

[0005] The present inventors have made extensive and intensive studies on frictional materials. As a result, they have succeeded in obtaining a frictional material having excellent frictional properties and excellent resistance to melting and depositing as well as excellent magnetic properties. Specifically, the present invention is directed to a frictional material comprising a metal matrix and hard particles, wherein the frictional material contains: 1 to 5% by weight of Cu; 0.1 to 1.0% by weight of P; 1 to 5% by weight of at least one soft metal selected from the group consisting of Bi, Sb, In, and Ag; 1 to 6% by weight of hard particles of at least one member selected from the group consisting of zircon (ZrSiO₄) and zirconia (ZrO₂); and the balance comprising Fe and an unavoidable impurity.

DETAILED DESCRIPTION OF THE INVENTION

[0006] The frictional material of the present invention comprises a metal matrix comprised mainly of Fe containing Cu, P, and Bi, Sb, In, or Ag, and hard particles of at least one member selected from zircon and zirconia.

[0007] In the frictional material of the present invention, when the Cu content is less than 1% by weight, the resistance to melting and depositing is lowered. On the other hand, when the Cu content is more than 5% by weight, the coefficient of friction is lowered, and further the relative Fe content is reduced, so that the magnetic flux density is lowered. Therefore, the Cu content must be 1 to 5% by weight. It is preferred that the Cu content is 2 to 4% by weight.

[0008] In the frictional material of the present invention, when the P content is less than 0.1% by weight, the resistance to melting and depositing is lowered. On the other hand, when the P content is more than 1.0% by weight, the coefficient of friction is lowered, and further the relative Fe content is reduced, so that the magnetic flux density is lowered. Therefore, the P content must be 0.1 to 1.0% by weight. It is preferred that the P content is 0.3 to 0.5% by weight.

[0009] When the content of at least one soft metal selected from the group consisting of Bi, Sb, In, and Ag in the frictional material of the present invention is less than 1% by weight, the resistance to melting and depositing is lowered. On the other hand, when the soft metal content is more than 5% by weight, the coefficient of friction is lowered, and

2

further the relative Fe content is reduced, so that the magnetic flux density is lowered. Therefore, the soft metal content must be 1 to 5% by weight. It is preferred that the soft metal content is 1.5 to 3.0% by weight.

[0010] When the content of hard particles of at least one member selected from the group consisting of zircon and zirconia in the frictional material of the present invention is less than 1% by weight, both the coefficient of friction and the resistance to melting and depositing are lowered. On the other hand, when the hard particle content is more than 6% by weight, the relative Fe content is reduced, so that the magnetic flux density is lowered. Therefore, the hard particle content must be 1 to 6% by weight. It is preferred that the hard particle content is 2 to 4% by weight.

[0011] As an example of a method for producing the frictional material of the present invention, there can be mentioned the following method.

Commercially available Fe powder having an average particle size of 60 to 140 μ m, Cu powder having an average particle size of 30 to 70 μ m, Fe-P powder having an average particle size of 60 to 140 μ m, Cu-P powder having an average particle size of 60 to 140 μ m, Bi powder having an average particle size of 40 to 100 μ m, Bi powder having an average particle size of 50 to 150 μ m, Ag powder having an average particle size of 50 to 150 μ m, Ag powder having an average particle size of 50 to 15 μ m, ZrSiO₄ powder having an average particle size of 100 to 400 μ m, C powder having an average particle size of 400 to 800 μ m, MoS₂ powder having an average particle size of 3 to 10 μ m, C powder having an average particle size of 50 to 350 μ m, and SiC powder having an average particle size of 2 to 8 μ m are prepared. These powders are weighed and mixed to achieve a desired composition. The resultant mixture is subjected to cold molding under a pressure of 196 and 490 MPa. The cold-molded mixture is placed in a sintering furnace and sintered in a hydrogen gas atmosphere under conditions such that the sintering temperature is 900 to 1,100°C and the sintering time is 0.5 to 2 hours, thus producing the frictional material of the present invention. When the sintering is performed while uniaxial pressing under a pressure of 0.49 to 3.92 MPa, the resultant frictional material advantageously has an improved wear resistance.

[0012] With respect to the frictional material of the present invention, for increasing the tension between the frictional material and a rail, it is preferred that the frictional material has a magnetic flux density of 1.38 to 1.42 T in a magnetic field at a strength of 50 kA/m.

Further, with respect to the frictional material of the present invention, for further increasing the tension between the frictional material and a rail, it is more preferred that the frictional material has a magnetic flux density of 2.05 to 2.09 T in a magnetic field at a strength of 400 kA/m.

[0013] Examples of uses of the frictional material of the present invention include means for arbitrarily controlling the rotation or movement of various machines, such as machine tools, construction machineries, agricultural machineries, automobiles, two-wheeled vehicles, railroads, aircrafts, or marine structures, specifically, so-called clutches and brakes. Of these, more preferred are uses of the frictional material as a magnetic rail brake or an electromagnetic clutch, which fully utilize excellent magnetic properties of the frictional material, i.e., high magnetic flux density, and especially, the most preferred is use of the frictional material as a magnetic rail brake.

[0014] The frictional material of the present invention has excellent frictional properties including wear resistance and coefficient of friction, excellent resistance to melting and depositing, and excellent magnetic properties including magnetic flux density. When the frictional material of the present invention is used as a frictional material for clutch or brake in various machines, such as machine tools, construction machineries, agricultural machineries, automobiles, two-wheeled vehicles, railroads, aircrafts, or marine structures, the frictional material not only exhibits excellent damping properties but also extends the use life. The frictional material of the present invention has excellent magnetic properties and hence, when used as a frictional material for magnetic rail brake or electromagnetic clutch, the frictional material exhibits especially excellent damping properties and extends the use life.

Example 1

Lxample

20

30

35

40

45

50

55

[0015] Commercially available Fe powder having an average particle size of 100 μ m, Cu powder having an average particle size of 49 μ m, Fe-P powder having an average particle size of 100 μ m, Cu-P powder having an average particle size of 70 μ m, Sb powder having an average particle size of 70 μ m, Bi powder having an average particle size of 70 μ m, Sb powder having an average particle size of 70 μ m, Ag powder having an average particle size of 10 μ m, ZrSiO₄ powder having an average particle size of 200 μ m, ZrO₂ powder having an average particle size of 600 μ m, MoS₂ powder having an average particle size of 7 μ m, C powder having an average particle size of 200 μ m, and SiC powder having an average particle size of 5 μ m were prepared. These raw material powders were weighed and mixed to achieve compositions shown in Table 1. The resultant mixture was subjected to cold molding under a pressure of 392 MPa, and then placed in a sintering furnace. The mixture was sintered using a hot press in a hydrogen gas atmosphere at a sintering temperature of 1,000°C under a pressure for uniaxial pressing of 1.5 MPa for one hour as a sintering time.

[0016]

[Table 1]

		Composition (wt%)											
5		Fe	Cu	Р	Bi	Sb	Ag	ZrSiO ₄	ZrO ₂	MoS ₂	С	SiC	Total
	Example 1	91.7	2.9	0.5	2.0	-	-	3.0	-	-	-	-	100
	Example 2	93.6	1.0	0.5	2.0	-	-	3.0	-	-	-	-	100
	Example 3	89.8	4.8	0.5	2.0	-	-	3.0	-	-	-	-	100
10	Example 4	92.1	2.9	0.1	2.0	-	-	3.0	-	-	-	-	100
	Example 5	91.2	2.9	1.0	2.0	-	-	3.0	-	-	-	-	100
	Example 6	92.6	2.9	0.5	1.0	-	-	3.0	-	-	-	-	100
15	Example 7	88.8	2.8	0.5	5.0	-	-	3.0	-	-	-	-	100
	Example 8	88.8	2.8	0.5	3.0	1.0	1.0	3.0	-	-	-	-	100
	Example 9	93.6	2.9	0.5	2.0	-	-	1.0	-	-	1	-	100
00	Example 10	88.88	2.8	0.5	2.0	-	-	6.0	-	-	-	-	100
20	Example 11	91.7	2.9	0.5	2.0	-	-	1.0	2.0	-	-	-	100
	Comparative Example 1	94.5	-	0.5	2.0	-	-	3.0	-	-	1	-	100
25	Comparative Example 2	86.9	7.6	0.5	2.0	-	-	3.0	-	-	-	-	100
	Comparative Example 3	92.2	2.9	-	2.0	-	-	3.0	-	-	-	-	100
30	Comparative Example 4	90.3	2.9	1.9	2.0	-	-	3.0	-	-	-	-	100
	Comparative Example 5	93.6	2.9	0.5	-	-	-	3.0	-	-	-	-	100
35	Comparative Example 6	85.9	2.7	0.4	8.0	-	-	3.0	-	-	-	-	100
	comparative Example 7	94.6	2.9	0.5	2.0	-	-	-	-	-	-	-	100
40	Comparative Example 8	86.9	2.7	0.5	2.0	-	-	8.0	-	-	-	-	100
	Comparative Example 9	77.0	3.0	-	3.0	-	-	-	-	3.0	7.0	10.0	100
45	Comparative Example 10	93.5	5.0	-	-	-	-	-	-	0.5	0.5	0.5	100

[0017] A sample obtained by sintering was machined into a test specimen having a size: $10 \text{ mm} \times 10 \text{ mm} \times 8 \text{ mm}$, and a magnetic flux density of the sample was measured using a magnetic property tester (BH analyzer). The results are shown in Table 2. Further, an abrasion test shown below was conducted to measure a coefficient of friction, an abrasion wear, and an amount of melting and deposition. The results are also shown in Table 2.

[0018] Abrasion test

50

55

Test machine: Inertia abrasion tester

Moment of inertia: 7.35 kgm²
Speed: 33 m/s
Contact pressure: 980 kPa

Test specimen size: $25\text{mm} \times 25\text{mm} \times 10 \text{ mm}$

Brake starting temperature: 100°C or lower

[0019]

5 [Table 2]

		Magnetic	properties	Frictional	properties	Resistance to melting and depositing	Overall judgment (Good, Bad)
10 15		Magnetic flu: In magnetic field at strength of 50 kA/m	In magnetic field at strength of 400 kA/m	Coefficient of friction (-)	Abrasion wear (mm)	Amount of melting and deposition (Large, Medium, Small, None)	
	Example 1	1.41	2.09	0.40	0.339	Small	Good
	Example 2	1.42	2.09	0.39	0.345	Small	Good
	Example 3	1.40	2.08	0.40	0.320	Small	Good
20	Example 4	1.41	2.09	0.39	0.365	Small	Good
	Example 5	1.40	2.05	0.39	0.335	Small	Good
	Example 6	1.41	2.08	0.40	0.350	Small	Good
25	Example 7	1.38	2.06	0.40	0.426	None	Good
	Example 8	1.39	2.07	0.40	0.402	Small	Good
	Example 9	1.39	2.08	0.39	0.389	Small	Good
20	Example 10	1.40	2.09	0.38	0.418	Small	Good
30	Example 11	1.38	2.06	0.40	0.311	None	Good
	Example 12	1.41	2.09	0.40	0.352	Small	Good
35	Comparative Example 1	1.39	2.09	0.39	0.366	Large	Bad
	Comparative Example 2	1.36	2.02	0.36	0.388	Large	Bad
40	Comparative Example 3	1.40	2.07	0.38	0.335	Large	Bad
40	Comparative Example 4	1.39	2.03	0.37	0.412	Medium	Bad
45	Comparative Example 5	1.41	2.09	0.40	0.338	Large	Bad
43	Comparative Example 6	1.34	2.01	0.35	0.456	Small	Bad
50	Comparative Example 7	1.41	2.07	0.34	0.433	Large	Bad
50	Comparative Example 8	1.35	2.00	0.40	0.310	Small	Bad
	Comparative Example 9	1.23	1.85	0.40	0.341	Small	Bad
55	Comparative Example 10	1.42	2.09	0.32	0.620	Large	Bad

[0020] Table 2 indicates: that the higher the magnetic flux density, the more excellent the magnetic properties; that the higher the coefficient of friction or the smaller the abrasion wear, the more excellent the frictional properties; and that the smaller the amount of melting and deposition, the more excellent the welding resistance. As can be seen from Table 2, in the Examples of the present invention, the balance between the magnetic properties, frictional properties, and resistance to melting and depositing is excellent and therefore, overall judgments better than those of the Comparative Examples were obtained.

Claims

10

- 1. A frictional material comprising a metal matrix and hard particles, wherein said frictional material contains:
 - 1 to 5% by weight of Cu;

0.1 to 1.0% by weight of P;

1 to 5% by weight of at least one soft metal selected from the group consisting of Bi, Sb, In, and Ag;

1 to 6% by weight of hard particles of at least one member selected from the group consisting of zircon ($ZrSiO_4$) and zirconia (ZrO_2); and

the balance comprising Fe and an unavoidable impurity.

20

15

- 2. The frictional material according to claim 1, which has a magnetic flux density of 1.38 to 1.42 T in a magnetic field at a strength of 50 kA/m.
- 3. The frictional material according to claim 1 or 2, which has a magnetic flux density of 2.05 to 2.09 T in a magnetic field at a strength of 400 kA/m.
 - **4.** Use of the frictional material according to any one of claims 1 to 3 as a frictional material for magnetic rail brake or electromagnetic clutch.

30

25

35

40

45

50

55

EUROPEAN SEARCH REPORT

Application Number EP 07 10 5839

		ERED TO BE RELEVANT	 			
ategory	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)		
(JP 59 197549 A (MIT 9 November 1984 (19 * abstract; table 1		1-4	INV. C22C32/00 C22C38/16 C22C38/00		
١	EP 0 620 286 A1 (HI 19 October 1994 (19 * claims 1-20; tabl	94-10-19)	1-4	622630700		
`	JP 2000 277315 A (T DEV) 6 October 2000 * abstract *	OYOTA CENTRAL RES & (2000-10-06)	1-4			
١	US 2001/052373 A1 (20 December 2001 (2 * abstract; claims		1-4			
`	JP 63 092842 A (TOY 23 April 1988 (1988 * abstract *		1-4			
\	JP 09 301256 A (TOS 25 November 1997 (1 * abstract *	HIBA TUNGALOY CO LTD) 997-11-25)	1-4	TECHNICAL FIELDS SEARCHED (IPC)		
1	US 4 050 619 A (TAF 27 September 1977 (* claims 1-6; table	1977-09-27)	1-4			
	_					
	The present search report has	·				
	Place of search	Date of completion of the search	_	Examiner		
	Munich	18 July 2007	Cat	Catana, Cosmin		
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure		E : earlier patent do after the filing de her D : document cited L : document cited t	T: theory or principle underlying the i E: earlier patent document, but public after the filing date D: document cited in the application L: document cited for other reasons :: member of the same patent family			

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 07 10 5839

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

18-07-2007

	tent document in search report		Publication date		Patent family member(s)		Publication date
JP 5	59197549	A	09-11-1984	JP JP	1016906 1530534		28-03-19 15-11-19
EP 0	0620286	A1	19-10-1994	DE DE JP JP US	69414902 69414902 2914076 6271956 5589652	T2 B2 A	14-01-19 22-04-19 28-06-19 27-09-19 31-12-19
JP 2	2000277315	Α	06-10-2000	NONE			
US 2	2001052373	A1	20-12-2001	DE JP	10127891 2001354951		07-03-20 25-12-20
JP 6	3092842	Α	23-04-1988	NONE			
JP 9	301256	Α	25-11-1997	NONE			
us 4	1050619	Α	27-09-1977	CA	1063333	 A1	02-10-19

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP HEI1178882 A [0003]