Field of the Invention
[0001] This invention relates generally to heat exchangers having a plurality of parallel
tubes extending between a first header and a second header, also sometimes referred
to as manifolds, and, more particularly, to providing fluid expansion within the header
of a heat exchanger for improving distribution of two-phase flow through the parallel
tubes of the heat exchanger, for example a heat exchanger in a refrigerant compression
system.
US - A 5 320 165 discloses a heat exchanger according to the preamble of claim 1.
Background of the Invention
[0002] Refrigerant vapor compression systems are well known in the art. Air conditioners
and heat pumps employing refrigerant vapor compression cycles are commonly used for
cooling or cooling/heating air supplied to a climate controlled comfort zone within
a residence, office building, hospital, school, restaurant or other facility. Refrigeration
vapor compression systems are also commonly used for cooling air or other secondary
fluid to provide a refrigerated environment for food items and beverage products within,
for instance, display cases in supermarkets, convenience stores, groceries, cafeterias,
restaurants and other food service establishments.
[0003] Conventionally, these refrigerant vapor compression systems include a compressor,
a condenser, an expansion device, and an evaporator connected in refrigerant flow
communication. The aforementioned basic refrigerant system components are interconnected
by refrigerant lines in a closed refrigerant circuit and arranged in accord with the
vapor compression cycle employed. An expansion device, commonly an expansion valve
or a fixed-bore metering device, such as an orifice or a capillary tube, is disposed
in the refrigerant line at a location in the refrigerant circuit upstream, with respect
to refrigerant flow, of the evaporator and downstream of the condenser. The expansion
device operates to expand the liquid refrigerant passing through the refrigerant line
running from the condenser to the evaporator to a lower pressure and temperature.
In doing so, a portion of the liquid refrigerant traversing the expansion device expands
to vapor. As a result, in conventional refrigerant vapor compression systems of this
type, the refrigerant flow entering the evaporator constitutes a two-phase mixture.
The particular percentages of liquid refrigerant and vapor refrigerant depend upon
the particular expansion device employed and the refrigerant in use, for example R12,
R22, R134a, R404A, R410A, R407C, R717, R744 or other compressible fluid.
[0004] In some refrigerant vapor compression systems, the evaporator is a parallel tube
heat exchanger. Such heat exchangers have a plurality of parallel refrigerant flow
paths therethrough provided by a plurality of tubes extending in parallel relationship
between an inlet header and an outlet header. The inlet header receives the refrigerant
flow from the refrigerant circuit and distributes it amongst the plurality of flow
paths through the heat exchanger. The outlet header serves to collect the refrigerant
flow as it leaves the respective flow paths and to direct the collected flow back
to the refrigerant line for a return to the compressor in a single pass heat exchanger
or through an additional bank of heat exchange tubes in a multi-pass heat exchanger.
[0005] Historically, parallel tube heat exchangers used in such refrigerant compression
systems have used round tubes, typically having a diameter of ½ inch, 3/8 inch or
7 millimeters. More recently, flat, rectangular or oval shape, multi-channel tubes
are being used in heat exchangers for refrigerant vapor compression systems. Each
mutli-channel tube has a plurality of flow channels extending longitudinally in parallel
relationship the length of the tube, each channel providing a small cross-sectional
flow area refrigerant path. Thus, a heat exchanger with multi-channel tubes extending
in parallel relationship between the inlet and outlet headers of the heat exchanger
will have a relatively large number of small cross-sectional flow area refrigerant
paths extending between the two headers. In contrast, a parallel tube heat exchanger
with conventional round tubes will have a relatively small number of large flow area
flow paths extending between the inlet and outlet headers.
[0006] Non-uniform distribution, also referred to as maldistibution, of two-phase refrigerant
flow is a common problem in parallel tube heat exchangers which adversely impacts
heat exchanger efficiency. Two-phase maldistribution problems are caused by the difference
in density of the vapor phase refrigerant and the liquid phase refrigerant present
in the inlet header due to the expansion of the refrigerant as it traversed the upstream
expansion device.
[0007] One solution to control refrigeration flow distribution through parallel tubes in
an evaporative heat exchanger is disclosed in
U.S. Patent No. 6,502,413, Repice et al. In the refrigerant vapor compression system disclosed therein, the high pressure
liquid refrigerant from the condenser is partially expanded in a conventional in-line
expansion device upstream of the heat exchanger inlet header to a lower pressure refrigerant.
Additionally, a restriction, such as a simple narrowing in the tube or an internal
orifice plate disposed within the tube, is provided in each tube connected to the
inlet header downstream of the tube inlet to complete the expansion to a low pressure,
liquid/vapor refrigerant mixture after entering the tube.
[0008] Another solution to control refrigeration flow distribution through parallel tubes
in an evaporative heat exchanger is disclosed in Japanese Patent No.
JP4080575, Kanzaki et al. In the refrigerant vapor compression system disclosed therein, the high pressure
liquid refrigerant from the condenser is also partially expanded in a conventional
in-line expansion device to a lower pressure refrigerant upstream of a distribution
chamber of the heat exchanger. A plate having a plurality of orifices therein extends
across the chamber. The lower pressure refrigerant expands as it passes through the
orifices to a low pressure liquid/vapor mixture downstream of the plate and upstream
of the inlets to the respective tubes opening to the chamber.
[0009] Japanese Patent No.
6241682, Massaki et al., discloses a parallel flow tube heat exchanger for a heat pump wherein the inlet
end of each multichannel tube connecting to the inlet header is crushed to form a
partial throttle restriction in each tube just downstream of the tube inlet. Japanese
Patent No.
JP8233409, Hiroaki et al., discloses a parallel flow tube heat exchanger wherein a plurality of flat, multi-channel
tubes connect between a pair of headers, each of which has an interior which decreases
in flow area in the direction of refrigerant flow as a means to uniformly distribute
refrigerant to the respective tubes. Japanese Patent No.
JP2002022313, Yasushi, discloses a parallel tube heat exchanger wherein refrigerant is supplied to the
header through an inlet tube that extends along the axis of the header to terminate
short of the end the header whereby the two phase refrigerant flow does not separate
as it passes from the inlet tube into an annular channel between the outer surface
of the inlet tube and the inside surface of the header. The two phase refrigerant
flow thence passes into each of the tubes opening to the annular channel.
[0010] Obtaining uniform refrigerant flow distribution amongst the relatively large number
of small cross-sectional flow area refrigerant flow paths is even more difficult than
it is in conventional round tube heat exchangers and can significantly reduce heat
exchanger efficiency.
Summary of the Invention
[0011] It is a general object of the invention to reduce maldistribution of fluid flow in
a heat exchanger having a plurality of multi-channel tubes extending between a first
header and a second header.
[0012] It is an object of one aspect of the invention to reduce maldistribution of refrigerant
flow in a refrigerant vapor compression system heat exchanger having a plurality of
multi-channel tubes extending between a first header and a second header.
[0013] It is an object of one aspect of the invention to distribute refrigerant to the individual
channels of an array of mutli-channel tubes in a relatively uniform manner.
[0014] It is an object of another aspect of the invention to provide for distribution and
expansion of the refrigerant in a refrigerant vapor compression system heat exchanger
having a plurality of multi-channel tubes as the refrigerant flow passes from a header
to the individual channels of an array of mutli-channel tubes.
[0015] In one aspect of the present invention a heat exchanger is provided having a header
defining a chamber for collecting a fluid, at least one multi-channel heat exchange
tube defining a plurality of discrete fluid flow channels extending longitudinally
therethrough and having an inlet opening to said plurality of discrete fluid flow
channels; and one or a plurality of connector(s) having an inlet end and an outlet
end and defining a fluid flow path extending from said inlet end to said outlet end,
said inlet end in fluid flow communication with the chamber of said header through
a first opening and said outlet end in fluid communication with the inlet opening
of one or all of said multi-channel heat exchange tube(s) through a second opening,
said first opening being at least one flow restricting expansion orifice having a
relatively small cross-sectional flow area. In an embodiment, the flow path through
the connector may be divergent in the direction of fluid flow therethrough. The first
opening has a relatively small flow area so as to provide a flow restriction through
which fluid passes in flowing from the chamber of the header to the flow paths of
the heat exchanger
[0016] In another aspect of the invention, a refrigerant vapor compression system includes
a compressor, a condenser and an evaporative heat exchanger as described above connected
in refrigerant flow communication whereby high pressure refrigerant vapor passes from
the compressor to the condenser, high pressure refrigerant liquid passes from the
condenser to the evaporative heat exchanger, and low pressure refrigerant vapor passes
from the evaporative heat exchanger to the compressor.
Brief Description of the Drawings
[0017] For a further understanding of these and objects of the invention, reference will
be made to the following detailed description of the invention which is to be read
in connection with the accompanying drawing, where:
[0018] Figure 1 is a perspective view of an embodiment of a heat exchanger in accordance
with the invention;
[0019] Figure 2 is a perspective view, partly sectioned, taken along line 2-2 of Figure
1;
[0020] Figure 3 is a sectioned elevation view taken along line 3-3 of Figure 2;
[0021] Figure 4 is a sectioned view taken along line 4-4 of Figure 3;
[0022] Figure 5 is a sectioned view taken along line 5-5 of Figure 3;
[0023] Figure 6 is a perspective view, partly sectioned, of an another embodiment of a heat
exchanger in accordance with the invention;
[0024] Figure 7 is a sectioned view taken along line 7-7 of Figure 6;
[0025] Figure 8 is a sectioned view taken along line 8-8 of Figure 7;
[0026] Figure 9 is a schematic illustration of a refrigerant vapor compression system incorporating
the heat exchanger of the invention;
[0027] Figure 10 is a schematic illustration of another refrigerant vapor compression system
incorporating the heat exchanger of the invention;
[0028] Figure 11 is an elevation view, partly in section, of an embodiment of a multi-pass
evaporator in accordance with the invention; and
[0029] Figure 12 is an elevation view, partly in section, of an embodiment of a multi-pass
condenser in accordance with the invention.
Detailed Description of the Invention
[0030] The heat exchanger 10 of the invention will be described in general herein with reference
to the illustrative single pass, parallel-tube embodiment of a mutli-channel tube
heat exchanger as depicted in Figure 1. In the illustrative embodiment of the heat
exchanger 10 depicted in Figure 1, the heat exchange tubes 40 are shown arranged in
parallel relationship extending generally vertically between a generally horizontally
extending inlet header 20 and a generally horizontally extending outlet header 30.
However, the depicted embodiment is illustrative and not limiting of the invention.
It is to be understood that the invention described herein may be practiced on various
other configurations of the heat exchanger 10. For example, the heat exchange tubes
may be arranged in parallel relationship extending generally horizontally between
a generally vertically extending inlet header and a generally vertically extending
outlet header. As a further example, the heat exchanger could have a toroidal inlet
header and a toroidal outlet header of a different diameter with the heat exchange
tubes extend either somewhat radially inwardly or somewhat radially outwardly between
the toroidal headers. The heat exchange tubes may also be arranged in parallel tube,
multi-pass embodiments, as will be discussed in further detail later herein with reference
to Figures 11 and 12.
[0031] Referring now to Figures 1 - 5 in particular, the heat exchanger 10 includes an inlet
header 20, an outlet header 30, and a plurality of longitudinally extending multi-channel
heat exchanger tubes 40 thereby providing a plurality of fluid flow paths between
the inlet header 20 and the outlet header 30. Each heat exchange tube 40 has an inlet
43 at one end in fluid flow communication to the inlet header 20 through a connector
50 and an outlet at its other end in fluid flow communication to the outlet header
30. Each heat exchange tube 40 has a plurality of parallel flow channels 42 extending
longitudinally, i.e. along the axis of the tube, the length of the tube thereby providing
multiple, independent, parallel flow paths between the inlet of the tube and the outlet
of the tube. Each multi-channel heat exchange tube 40 is a "flat" tube of, for instance,
rectangular or oval cross-section, defining an interior which is subdivided to form
a side-by-side array of independent flow channels 42. The flat, multi-channel tubes
40 may, for example, have a width of fifty millimeters or less, typically twelve to
twenty-five millimeters, and a height of about two millimeters or less, as compared
to conventional prior art round tubes having a diameter of ½ inch, 3/8 inch or 7 mm.
The tubes 40 are shown in drawings hereof, for ease and clarity of illustration, as
having twelve channels 42 defining flow paths having a circular cross-section. However,
it is to be understood that in commercial applications, such as for example refrigerant
vapor compression systems, each multi-channel tube 40 will typically have about ten
to twenty flow channels 42, but may have a greater or a lesser multiplicity of channels,
as desired. Generally, each flow channel 42 will have a hydraulic diameter, defined
as four times the flow area divided by the perimeter, in the range from about 200
microns to about 3 millimeters. Although depicted as having a circular cross-section
in the drawings, the channels 42 may have a rectangular, triangular, trapezoidal cross-section
or any other desired non-circular cross-section.
[0032] Each of the plurality of heat exchange tubes 40 of the heat exchanger 10 has its
inlet end 43 inserted into a connector 50, rather than directly into the chamber 25
defined within the inlet header 20. Each connector 50 has an inlet end 52 and an outlet
end 54 and defines a fluid flow path 55 extending from the inlet end 52 to the outlet
end 54. The inlet end 52 is in fluid flow communication with the chamber 25 of the
inlet header 20 through a first opening 51. The outlet end 54 is in fluid communication
through a second opening 53 with the inlet openings 41 of the channels 42 at the inlet
end of the associated heat transfer tube 40 received therein. The first opening 51
at the inlet end 52 of each connector 50 has a relatively small cross-sectional flow
area. Therefore, the connectors 50 provide a plurality of flow restrictions, at least
one associated with each heat transfer tube 40, that provide uniformity in pressure
drop in the fluid flowing from the chamber 25 of the header 20 into the fluid flow
path 55 within the connector 50, thereby ensuring a relatively uniform distribution
of fluid amongst the individual tubes 40 operatively associated with the header 20.
[0033] In the embodiment depicted in Figures 1, 2 and 3, the inlet header 20 comprises a
longitudinally elongated, hollow, closed end cylinder having a circular cross-section.
The inlet end 52 of each connector 50 is mated with a corresponding slot 26 provided
in and extending through the wall of the inlet header 20 with the inlet end 52 of
the connector 50 inserted into its corresponding slot. Each connector may be brazed,
welded, soldered, adhesively bonded, diffusion bonded or otherwise secured in a corresponding
mating slot in the wall of the header 20. However, the inlet header 20 is not limited
to the depicted configuration. For example, the header 20 might comprise a longitudinally
elongated, hollow, closed end cylinder having an elliptical cross-section or a longitudinally
elongated, hollow, closed end pipe having a square, rectangular, hexagonal, octagonal,
or other cross-section.
[0034] In the embodiment depicted in Figures 6, 7 and 8, the inlet header 20 comprises a
longitudinally elongated, hollow, closed end, half cylinder shell having a generally
semi-circular cross-section and a block-like insert 58 that is brazed, welded, adhesively
bonded or otherwise secured to the open face of the half cylinder shell. In this embodiment,
instead of a plurality of connectors 50, the longitudinally, extending block-like
insert 58 forms a single connector 50. A plurality of longitudinally spaced, parallel
flow paths 55 is formed within the block-like structure of the connector 50. Each
flow path 55 has an inlet end 52 having at least one relatively small flow area inlet
opening 51 in fluid communication with a fluid chamber 25 defined within the header
20 and an outlet end 54 having an opening 53 adapted to receive the inlet end 42 of
a heat exchange tube 40. Therefore, in this embodiment, a plurality of heat exchange
tubes 40 are connected to the header by means of a single block-like connector 50.
The block-like insert 58 provides a connector 50 having a plurality of flow restrictions,
with at least one relatively small flow area opening 51 in operative association with
each heat transfer tube 40, that provide uniformity in pressure drop in the fluid
flowing from the chamber 25 of the header 20 into the fluid flow path 55 within the
connector 50, thereby ensuring a relatively uniform distribution of fluid amongst
the individual tubes 40 operatively associated with the header 20.
[0035] In the embodiment depicted in Figures 2, 3 and 5, only one first opening 51 of relatively
small flow area is provided in the inlet end 52 of each connector 50. However, it
is to be understood that, if desired, more than one first opening 51 of relatively
small flow area may be provided at the inlet end 52 of the connector 50. For example,
when the heat exchange tubes are relatively wide and/or have a relatively large number
of channels, it may be desirable to have two, three or even more relatively small
flow area first openings 51 disposed at spaced intervals in the inlet end 52 of the
connector 50, such as illustrated in Figures 6, 7 and 8, to ensure uniform distribution
of fluid flow to the multiplicity of flow channels 42 of the tube 40 inserted in the
outlet end 54 of the connector 50.
[0036] The fluid flow path 55 extending from the inlet opening 51 at the inlet end 52 of
the connector 50 to the outlet opening 53 at the outlet end 54 of the connector 50
may, as best depicted in Figure 3 and in Figure 7, diverge in the direction of fluid
flow from the inlet opening 51 to the outlet opening 53. A divergent flow path assists
in distributing the fluid flowing through the flow path 55 uniformly amongst the various
flow channels 42 of the heat exchange tube 40 inserted into the outlet end 54 of the
connector 50, particularly in refrigerant flow applications wherein the fluid is a
liquid refrigerant and vapor refrigerant mixture or expands to a liquid refrigerant/vapor
refrigerant mixture as the fluid passes through the relatively small flow area opening
or openings 51.
[0037] Referring now to Figures 9 and 10, there is depicted schematically a refrigerant
vapor compression system 100 having a compressor 60, the heat exchanger 10A, functioning
as a condenser, and the heat exchanger 10B, functioning as an evaporator, connected
in a closed loop refrigerant circuit by refrigerant lines 12, 14 and 16. As in conventional
refrigerant vapor compression systems, the compressor 60 circulates hot, high pressure
refrigerant vapor through refrigerant line 12 into the inlet header 120 of the condenser
10A, and thence through the heat exchanger tubes 140 of the condenser 10A wherein
the hot refrigerant vapor condenses to a liquid as it passes in heat exchange relationship
with a cooling fluid, such as ambient air which is passed over the heat exchange tubes
140 by a condenser fan 70. The high pressure, liquid refrigerant collects in the outlet
header 130 of the condenser 10A and thence passes through refrigerant line 14 to the
inlet header 20 of the evaporator 10B. The refrigerant thence passes through the heat
exchanger tubes 40 of the evaporator 10B wherein the refrigerant is heated as it passes
in heat exchange relationship with air to be cooled which is passed over the heat
exchange tubes 40 by an evaporator fan 80. The refrigerant vapor collects in the outlet
header 30 of the evaporator 10B and passes therefrom through refrigerant line 16 to
return to the compressor 60 through the suction inlet thereto. Although the exemplary
refrigerant vapor compression cycles illustrated in Figures 9 and 10 are simplified
air conditioning cycles, it is to be understood that the heat exchanger of the invention
may be employed in refrigerant vapor compression systems of various designs, including,
without limitation, heat pump cycles, economized cycles and refrigeration cycles.
[0038] In the embodiment depicted in Figure 9, the condensed refrigerant liquid passes from
the condenser 10A directly to the evaporator 10B without traversing an expansion device.
Thus, in this embodiment the refrigerant typically enters the inlet header 20 of the
evaporative heat exchanger 10B as a high pressure, liquid refrigerant, not as a fully
expanded, low pressure, refrigerant liquid/vapor mixture, as in conventional refrigerant
compression systems. Thus, in this embodiment, expansion of the refrigerant occurs
within the evaporator 10B of the invention as the refrigerant passes through the relatively
small area opening or openings 51 at the inlet end 52 into the flow path 55 of the
connector 50, thereby ensuring that expansion occurs only after the distribution has
been achieved in a substantially uniform manner.
[0039] In the embodiment depicted in Figure 10, the condensed refrigerant liquid passes
through an expansion valve 50 operatively associated with the refrigerant line 14
as it passes from the condenser 10A to the evaporator 10B. In the expansion valve
50, the high pressure, liquid refrigerant is partially expanded to lower pressure
and lower temperature, liquid refrigerant or a liquid/vapor refrigerant mixture. In
this embodiment, the final expansion of the refrigerant is completed within the evaporator
10B as the refrigerant passes through the relatively small flow area opening or openings
51 at the inlet end 52 into the flow path 55 of the connector 50. Partial expansion
of the refrigerant in an expansion valve upstream of the inlet header 20 to the evaporator
10B may be advantageous when the cross-sectional flow area of the openings 51, can
not be made small enough to ensure complete expansion as the liquid passes through
the openings 51 or when an expansion valve is used as a flow control device.
[0040] Referring now to Figure 11, the heat exchanger 10 of the invention is depicted in
a multi-pass, evaporator embodiment. In the illustrated multi-pass embodiment, the
inlet header 20 is partitioned into a first chamber 20A and a second chamber 20B,
the outlet header is also partitioned into a first chamber 30A and a second chamber
30B, and the heat exchange tubes 40 are divided into three banks 40A, 40B and 40C.
The tubes of the first tube bank 40A have inlet ends inserted into respective connectors
50A that are open into the first chamber 20A of the inlet header 20 and outlet ends
are open to the first chamber 30A of the outlet header 30. The tubes of the second
tube bank 40B have inlet ends inserted into respective connectors 50B that are open
into the first chamber 30A of the outlet header 30 and outlet ends are open to the
second chamber 20B of the inlet header 20. The tubes of the third tube bank 40C have
inlet ends inserted into respective connectors 50C that open into the second chamber
20B of the inlet header 20 and outlet ends are open to the second chamber 30B of the
outlet header 30. In this manner, refrigerant entering the heat exchanger from refrigerant
line 14 passes in heat exchange relationship with air passing over the exterior of
the heat exchange tubes 40 three times, rather than once as in a single pass heat
exchanger. In accord with the invention, the inlet end 43 of each of the tubes of
the first, second and third tube banks 40A, 40B and 40C is inserted into the outlet
end 54 of its associated connector 50 whereby the channels 42 of each of the tubes
40 will receive a relatively uniform distribution of expanded refrigerant liquid/vapor
mixture. Distribution and expansion of the refrigerant occurs as the refrigerant passes
from the header into the connector through the relatively small cross-sectional flow
area opening 51, not only as the refrigerant passes into the first tube bank 40A,
but also as the refrigerant passes into the second tube bank 40B and into the third
tube bank 40C, thereby ensuring more uniform distribution of the refrigerant liquid/vapor
upon entering the flow channels of the tubes of each tube bank.
[0041] Referring now to Figure 12, the heat exchanger 10 of the invention is depicted in
a multi-pass, condenser embodiment. In the illustrated multi-pass embodiment, the
inlet header 120 is partitioned into a first chamber 120A and a second chamber 120B,
the outlet header 130 is also partitioned into a first chamber 130A and a second chamber
130B, and the heat exchange tubes 140 are divided into three banks 140A, 140B and
140C. The tubes of the first tube bank 140A have inlet end openings into the first
chamber 120A of the inlet header 120 and outlet end openings to the first chamber
130A of the outlet header 130. The tubes of the second tube bank 140B have inlet ends
inserted into respective connectors 50B that are open into the first chamber 130A
of the outlet header 130 and outlet ends that are open to the second chamber 120B
of the inlet header 120. The tubes of the third tube bank 140C have inlet ends inserted
into respective connectors 50C that are open into the second chamber 120B of the inlet
header 120 and outlet ends are open to the second chamber 130B of the outlet header
130. In this manner, refrigerant entering the condenser from refrigerant line 12 passes
in the heat exchange relationship with air passing over the exterior of the heat exchange
tubes 140 three times, rather than once as in a single pass heat exchanger. The refrigerant
entering the first chamber 120A of the inlet header 120 is entirely high pressure,
refrigerant vapor directed from the compressor outlet via refrigerant line 14. However,
the refrigerant entering the second tube bank and the third tube bank typically will
be a liquid/vapor mixture as refrigerant partially condenses in passing through the
first and second tube banks. In accord with the invention, the inlet end of each of
the tubes of the second and third tube banks 140B, 140C is inserted into the outlet
ends of their associated connectors 50B, 50C whereby the channels 42 of each of the
tubes will receive a relatively uniform distribution of expanded refrigerant liquid/vapor
mixture. Obviously, it has to be noted that pressure drop through the openings 51
has to be limited to not exceed a predetermined threshold for the condenser applications,
in order not to compromise the heat exchanger efficiency. Further, a person ordinarily
skilled in the art would understand that other multi-pass arrangements for condensers
and evaporators are also within the scope of the invention.
[0042] While the present invention has been particularly shown and described with reference
to the preferred mode as illustrated in the drawing, it will be understood by one
skilled in the art that various changes in detail may be effected as defined by the
claims.
1. A heat exchanger (10) comprising:
a header (20) defining a chamber (25) for collecting a fluid;
at least one multi-channel heat exchange tube (40) defining a plurality of discrete
fluid flow channels (42) extending longitudinally therethrough and having an inlet
opening (41) to said plurality of discrete fluid flow channels (42); and
one or a plurality of connector(s) (50) having an inlet end (52) and an outlet end
(54) and defining a fluid flow path (55) extending from said inlet end (52) to said
outlet end (54), said inlet end in fluid flow communication with the chamber (25)
of said header (20) through a first opening (51) and said outlet end (54) in fluid
communication with the inlet opening (41) of one or all of said multi-channel heat
exchange tube(s) (40) through a second opening (53), characterised in that said first opening (51) being at least one flow restricting expansion orifice having
a relatively small cross-sectional flow area.
2. A heat exchanger (10) as recited in claim 1 wherein the fluid flow path (55) of the
or each of said connector(s) (50) comprises a divergent fluid flow path expanding
uniformly in cross-section in the direction of fluid flow therethrough from said first
opening (51) to said second opening (53) to uniformly distribute fluid through said
flow path (55) to each discrete fluid flow channel (42) of said plurality of discrete
fluid flow channels (42).
3. A heat exchanger (10) as recited in claim 1 wherein said at least one multi-channel
heat exchange tube (40) has a flattened, non-round cross-section.
4. A heat exchanger (10) as recited in claim 3 wherein said at least one multi-channel
heat exchange tube (40) has a flattened, rectangular cross-section.
5. A heat exchanger (10) as recited in claim 3 wherein said at least one multi-channel
heat exchange tube (40) has a flattened, generally oval cross-section.
6. A heat exchanger (10) as recited in claim 1 wherein each of said plurality of discrete
fluid flow channels (42) defines a flow path having a non-circular cross-section.
7. A heat exchanger (10) as recited in claim 6 wherein each of said plurality of discrete
fluid flow channels (42) defines a flow path (55) selected from a group of a rectangular,
triangular or trapezoidal cross-section.
8. A heat exchanger (10) as recited in claim 1 wherein each of said plurality of discrete
fluid flow channels (42) defines a flow path (55) having a circular cross-section.
9. A heat exchanger (10) as recited in claim 1 wherein said first opening (51) comprises
a plurality of openings (51).
10. A refrigerant vapor compression system (100) comprising:
a compressor (60), a condenser (10A) and an evaporative heat exchanger (10B) as recited
in claim 1 connected in fluid flow communication in a refrigerants circuit whereby
high pressure refrigerant vapor passes from said compressor (60) to said condenser
(10A), high pressure refrigerant passes from said condenser (10A) to said evaporative
heat exchanger (10B), and low pressure refrigerant vapor passes from said evaporative
heat exchanger (10B) to said compressor (60).
11. A refrigerant vapor compression system (100) as recited in claim 10 wherein said first
opening (51) of said connector (50) comprises an expansion orifice.
12. A refrigerant vapor compression system (100) as recited in claim 10 wherein the fluid
flow path (55) of the or each of said connector(s) (50) comprises a divergent fluid
flow path expanding in cross-section in the direction of fluid flow therethrough from
said first opening (51) to said second opening (53).
13. A refrigerant vapor compression system (100) as recited in claim 12 wherein staid
first opening (51) of the or each of said connectors (50) comprises an expansion orifice.
14. A refrigerant vapor compression system (100) as recited in claim 10 wherein said at
least one multi-channel heat exchange tube (40) has a fattened, non-round cross-section.
15. A refrigerant vapor compression system (100) as recited in claim 14 wherein said at
least one multi-channel heat exchange tube (40) has a flattened, rectangular cross-section.
16. A refrigerant vapor compression system (100) as recited in claim 14 wherein said at
least one multi-channel heat exchange tube (40) has a flattened, generally oval cross-section.
17. A refrigerant vapor compression system (100) as recited in claim 10 wherein each of
said plurality of discrete fluid flow channels (42) defines a flow path having a non-circular
cross-section.
18. A refrigerant vapor compression system (100) as recited in claim 10 wherein each of
said plurality of discrete fluid flow channels (42) defines a flow path and is selected
from a group of a rectangular, triangular or trapezoidal cross-section.
19. A refrigerant vapor compression system (100) as recited in claim 10 wherein each of
said plurality of discrete fluid flow channels (42) defines a flow path having a circular
cross-section.
20. A refrigerant vapor compression system (100) as recited in claim 10 wherein said heat
exchanger (10B) comprises a single-pass heat exchanger.
21. A refrigerant vapor compression system (100) as recited in claim 10 wherein said heat
exchanger (10B) comprises a multi-pass heat exchanger.
22. A heat exchanger as recited in claim 1 wherein said heat exchanger (10B) is a condenser.
23. A heat exchanger as recited in claim 1 wherein said heat exchanger (10B) is an evaporator.
1. Wärmetauscher (10), aufweisend:
ein Sammelrohr (20), das eine Kammer (25) zum Sammeln eines Fluids bildet; mindestens
ein Mehrkanal-Wärmeaustauschrohr (40), das eine Mehrzahl einzelner Fluidströmungskanäle
(42) bildet, die sich in Längsrichtung durch dieses hindurch erstrecken und eine Einlassöffnung
(41) zu der Mehrzahl der einzelnen Fluidströmungskanäle (42) aufweist; und
einen oder eine Mehrzahl von Verbindern (50) mit einem Einlassende (52) und einem
Auslassende (54) sowie zum Bilden eines von dem Einlassende (52) zu dem Auslassende
(54) verlaufenden Fluidströmungsweges (55), wobei das Einlassende durch eine erste
Öffnung (51) in Fluidströmungsverbindung mit der Kammer (25) des Sammelrohrs (20)
steht und das Auslassende (54) durch eine zweite Öffnung (53) in Fluidströmungsverbindung
mit der Einlassöffnung (41) von einem oder allen der Mehrkanal-Wärmeaustauschrohre
(40) steht,
dadurch gekennzeichnet, dass es sich bei der ersten Öffnung (51) um mindestens eine Strömungsbegrenzungs-Expansionsöffnung
mit einer relativ kleinen Strömungsquerschnittsfläche handelt.
2. Wärmetauscher (10) nach Anspruch 1,
wobei der Fluidströmungsweg (55) von dem oder jedem der Verbinder (50) einen divergierenden
Fluidströmungsweg aufweist, der in seinem Querschnitt in der Fluidströmungsrichtung
durch diesen hindurch von der ersten Öffnung (51) zu der zweiten Öffnung (53) gleichmäßig
expandiert, um das Fluid durch den Fluidströmungsweg (55) zu jedem einzelnen Fluidströmungskanal
(42) der Mehrzahl von einzelnen Fluidströmungskanälen (42) gleichmäßig zu verteilen.
3. Wärmetauscher (10) nach Anspruch 1 ,
wobei das mindestens eine Mehrkanal-Wärmeaustauschrohr (40) einen abgeflachten, nicht-runden
Querschnitt aufweist.
4. Wärmeaustauscher (10) nach Anspruch 3,
wobei das mindestens eine Mehrkanal-Wärmeaustauschrohr (40) einen abgeflachten rechteckigen
Querschnitt aufweist.
5. Wärmetauscher (10) nach Anspruch 3,
wobei das mindestens eine Mehrkanal-Wärmeaustauschrohr (40) einen abgeflachten, allgemein
ovalen Querschnitt aufweist.
6. Wärmetauscher (10) nach Anspruch 1,
wobei jeder der Mehrzahl der einzelnen Fluidströmungskanäle (42) einen Strömungsweg
mit einem nicht-kreisförmigen Querschnitt bildet.
7. Wärmetauscher (10) nach Anspruch 6,
wobei jeder der Mehrzahl der einzelnen Fluidströmungskanäle (42) einen Strömungsweg
(55) bildet, der aus einer Gruppe aus einem rechteckigen, einem dreieckigen oder einem
trapezförmigen Querschnitt ausgewählt ist.
8. Wärmetauscher (10) nach Anspruch 1,
wobei jeder der Mehrzahl der einzelnen Fluidströmungskanäle (42) einen Strömungsweg
(55) mit kreisförmigem Querschnitt bildet.
9. Wärmetauscher (10) nach Anspruch 1,
wobei die erste Öffnung (51) eine Mehrzahl von Öffnungen (51) umfasst.
10. Kältemitteldampfkompressionssystem (100), aufweisend:
einen Verdichter (60), einen Kondensator (10A) und einen Verdampfungs-Wärmetauscher
(10B) gemäß Anspruch 1, die in Fluidströmungsverbindung in einem Kältemittelkreislauf
verbunden sind, wobei unter hohem Druck stehender Kältemitteldampf von dem Verdichter
(60) zu dem Kondensator (10A) strömt, unter hohem Druck stehendes Kältemittel von
dem Kondensator (10A) zu dem Verdampfungs-Wärmetauscher (10B) strömt und unter niedrigem
Druck stehender Kältemitteldampf von dem Verdampfungs-Wärmetauscher (10B) zu dem Verdichter
(60) strömt.
11. Kältemitteldampfkompressionssystem (100) nach Anspruch 10,
wobei die erste Öffnung (51) des Verbinders (50) eine Expansionsöffnung aufweist.
12. Kältemitteldampfkompressionssystem (100) nach Anspruch 10,
wobei der Fluidströmungsweg (55) von dem oder jedem der Verbinder (50) einen divergierenden
Fluidströmungsweg aufweist, der in seinem Querschnitt in der Fluidströmungsrichtung
durch diesen hindurch von der ersten Öffnung (51) zu der zweiten Öffnung (53) expandiert.
13. Kältemitteldampfkompressionssystem (100) nach Anspruch 12,
wobei die erste Öffnung (51) von dem oder jedem der Verbinder (50) eine Expansionsöffnung
aufweist.
14. Kältemitteldampfkompressionssystem (100) nach Anspruch 10,
wobei das mindestens eine Mehrkanal-Wärmeaustauschrohr (40) einen abgeflachten, nicht-runden
Querschnitt aufweist.
15. Kältemitteldampfkompressionssystem (100) nach Anspruch 14,
wobei das mindestens eine Mehrkanal-Wärmeaustauschrohr (40) einen abgeflachten rechteckigen
Querschnitt aufweist.
16. Kältemitteldampfkompressionssystem (100) nach Anspruch 14,
wobei das mindestens eine Mehrkanal-Wärmeaustauschrohr (40) einen abgeflachten, allgemein
ovalen Querschnitt aufweist.
17. Kältemitteldampfkompressionssystem (100) nach Anspruch 10,
wobei jeder der Mehrzahl der einzelnen Fluidströmungskanäle (42) einen Strömungsweg
mit einem nicht-kreisförmigen Querschnitt bildet.
18. Kältemitteldampfkompressionssystem (100) nach Anspruch 10,
wobei jeder der Mehrzahl der einzelnen Fluidströmungskanäle (42) einen Strömungsweg
(55) bildet und aus einer Gruppe aus einem rechteckigen, einem dreieckigen oder einem
trapezförmigen Querschnitt ausgewählt ist.
19. Kältemitteldampfkompressionssystem (100) nach Anspruch 10,
wobei jeder der Mehrzahl der einzelnen Fluidströmungskanäle (42) einen Strömungsweg
(55) mit kreisförmigem Querschnitt bildet.
20. Kältemitteldampfkompressionssystem (100) nach Anspruch 10,
wobei der Wärmetauscher (10B) einen Einzeldurchgang-Wärmetauscher umfasst.
21. Kältemitteldampfkompressionssystem (100) nach Anspruch 10, wobei der Wärmetauscher
(lOB) einen Mehrfachdurchgang-Wärmetauscher umfasst.
22. Wärmetauscher nach Anspruch 1,
wobei es sich bei dem Wärmetauscher (10B) um einen Kondensator handelt.
23. Wärmetauscher nach Anspruch 1,
wobei es sich bei dem Wärmetauscher (10B) um einen Verdampfer handelt.
1. Echangeur de chaleur (10) comprenant :
un réceptacle (20) définissant une chambre (25) permettant de collecter un fluide
;
au moins un tube d'échange de chaleur multicanal (40) définissant une pluralité de
canaux d'écoulement de fluide distincts (42) s'étendant longitudinalement au travers
et comportant une ouverture d'admission (41) vers ladite pluralité de canaux d'écoulement
de fluide distincts (42) ; et
un raccord ou une pluralité de raccords (50) comportant une extrémité d'admission
(52) et une extrémité de refoulement (54) et définissant un chemin d'écoulement de
fluide (55) s'étendant de ladite extrémité d'admission (52) à ladite extrémité de
refoulement (54), ladite extrémité d'admission étant en communication d'écoulement
de fluide avec la chambre (25) dudit réceptacle (20) par l'intermédiaire d'une première
ouverture (51) et ladite extrémité de refoulement (54) étant en communication de fluide
avec l'ouverture d'admission (41) d'un ou de la totalité desdits tube(s) d'échange
de chaleur multicanaux (40) par l'intermédiaire d'une seconde ouverture (53), caractérisé en ce que ladite première ouverture (51) est au moins un orifice de dilatation réducteur de
débit ayant une superficie d'écoulement en coupe relativement petite.
2. Echangeur de chaleur (10) selon la revendication 1, dans lequel le chemin d'écoulement
de fluide (55) du ou de chacun desdits raccord(s) (50) comprend un chemin d'écoulement
de fluide divergent se dilatant uniformément en section dans la direction d'écoulement
de fluide en travers depuis ladite première ouverture (51) vers ladite seconde ouverture
(53) pour distribuer uniformément un fluide à travers ledit chemin d'écoulement (55)
vers chaque canal d'écoulement de fluide distinct (42) de ladite pluralité de canaux
d'écoulement de fluide distincts (42)..
3. Echangeur de chaleur (10) selon la revendication 1, dans lequel ledit au moins un
tube d'échange de chaleur multicanal (40) a une section non ronde aplatie.
4. Echangeur de chaleur (10) selon la revendication 3, dans lequel ledit au moins un
tube d'échange de chaleur multicanal (40) a une section rectangulaire aplatie.
5. Echangeur de chaleur (10) selon la revendication 3, dans lequel ledit au moins un
tube d'échange de chaleur multicanal (40) a une section généralement ovale aplatie.
6. Echangeur de chaleur (10) selon la revendication 1, dans lequel chacun de ladite pluralité
de canaux d'écoulement de fluide distincts (42) définit un chemin d'écoulement ayant
une section non circulaire.
7. Echangeur de chaleur (10) selon la revendication 6, dans lequel chacun de ladite pluralité
de canaux d'écoulement de fluide distincts (42) définit un chemin d'écoulement (55)
choisi dans le groupe constitué par une section rectangulaire, triangulaire ou trapézoïdale.
8. Echangeur de chaleur (10) selon la revendication 1, dans lequel chacun de ladite pluralité
de canaux d'écoulement de fluide distincts (42) définit un chemin d'écoulement (55)
ayant une section circulaire.
9. Echangeur de chaleur (10) selon la revendication 1, dans lequel ladite première ouverture
(51) comprend une pluralité d'ouvertures (51).
10. Système de compression de vapeur à fluide frigorigène (100) comprenant :
un compresseur (60), un condenseur (10A) et un échangeur de chaleur par évaporation
(10B) tel que précisé dans la revendication 1, raccordés en communication de fluide
dans un circuit de fluide frigorigène, où une vapeur de fluide frigorigène de haute
pression passe dudit compresseur (60) audit condenseur (10A), un fluide frigorigène
de haute pression passe dudit condenseur (10A) audit échangeur de chaleur par évaporation
(10B), et une vapeur de fluide frigorigène de basse pression passe dudit échangeur
de chaleur par évaporation (10B) audit compresseur (60).
11. Système de compression de vapeur à fluide frigorigène (100) selon la revendication
10, dans lequel ladite première ouverture (51) dudit raccord (50) comprend un orifice
de détente.
12. Système de compression de vapeur à fluide frigorigène (100) selon la revendication
10, dans lequel le chemin d'écoulement de fluide (55) du ou de chacun desdits raccord(s)
(50) comprend un chemin d'écoulement de fluide divergent se dilatant en section dans
la direction d'écoulement de fluide en travers depuis ladite première ouverture (51)
vers ladite seconde ouverture (53).
13. Système de compression de vapeur à fluide frigorigène (100) selon la revendication
12, dans lequel ladite première ouverture (51) du ou de chacun desdits raccord(s)
(50) comprend un orifice de détente.
14. Système de compression de vapeur à fluide frigorigène (100) selon la revendication
10, dans lequel ledit au moins un tube d'échange de chaleur multicanal (40) a une
section non ronde aplatie.
15. Système de compression de vapeur à fluide frigorigène (100) selon la revendication
14, dans lequel ledit au moins un tube d'échange de chaleur multicanal (40) a une
section rectangulaire aplatie.
16. Système de compression de vapeur à fluide frigorigène (100) selon la revendication
14, dans lequel ledit au moins un tube d'échange de chaleur multicanal (40) a une
section généralement ovale aplatie.
17. Système de compression de vapeur à fluide frigorigène (100) selon la revendication
10, dans lequel chacun de ladite pluralité de canaux d'écoulement de fluide distincts
(42) définit un chemin d'écoulement ayant une section non circulaire.
18. Système de compression de vapeur à fluide frigorigène (100) selon la revendication
10, dans lequel chacun de ladite pluralité de canaux d'écoulement de fluide distincts
(42) définit un chemin d'écoulement (55) et est choisi dans le groupe constitué par
une section rectangulaire, triangulaire ou trapézoïdale.
19. Système de compression de vapeur à fluide frigorigène (100) selon la revendication
10, dans lequel chacun de ladite pluralité de canaux d'écoulement de fluide distincts
(42) définit un chemin d'écoulement (55) ayant une section circulaire.
20. Système de compression de vapeur à fluide frigorigène (100) selon la revendication
10, dans lequel ledit échangeur de chaleur (10B) comprend un échangeur de chaleur
à passage unique.
21. Système de compression de vapeur à fluide frigorigène (100) selon la revendication
10, dans lequel ledit échangeur de chaleur (10B) comprend un échangeur de chaleur
à passages multiples.
22. Echangeur de chaleur selon la revendication 1, dans lequel ledit échangeur de chaleur
(10B) est un condenseur.
23. Echangeur de chaleur selon la revendication 1, dans lequel ledit échangeur de chaleur
(10B) est un évaporateur.