Background of the Invention
[0001] Schizophrenia, Alzheimer's Disease, autism, depression, benign forgetfulness, childhood
learning disorders, close head injury, and attention deficit disorder are examples
of neuropsychiatric disorders. Autism, for example, is a developmental mental disorder
characterized by autistic behavior, social failure, and language delay. Alzheimer's
Disease is a form of dementia that typically involves progressive mental deterioration,
manifested by memory loss, confusion, and disorientation. Alzheimer's Disease typically
is treated by acetylcholine esterase inhibitors such as tacrine hydrochloride or donepezil.
Attention Deficit Disorder is a disorder that is most prevalent in children and is
associated with increased motor activity and a decreased attention span. Attention
Deficit Disorder commonly is treated by administration of psychostimulants such as
Ritalin or Dexedrin. Depression is a clinical syndrome that includes a persistent
sad mood or loss of interest in activities, which persists for at least two weeks
in the absence of treatment. Conventional therapeutics include serotonin uptake inhibitors
(e.g., PROZAC™), monoamine oxidase inhibitors, and tricyclic antidepressants.
[0002] The term schizophrenia represents a group of neuropsychiatric disorders characterized
by dysfunctions of the thinking process, such as delusions, hallucinations, and extensive
withdrawal of the patient's interests from other people. Approximately one percent
of the worldwide population is afflicted with schizophrenia, and this disorder is
accompanied by high morbidity and mortality rates.
[0003] Conventional antipsychotic drugs, which act on the dopamine D
2 receptor, can be used to treat the positive symptoms of schizophrenia, such as delusion
and hallucination. In general, conventional antipsychotic drugs and the new atypical
antipsychotic drugs, which act on the dopamine D
2 and 5HT
2 serotonin receptor, are limited in their ability to treat cognitive deficits and
negative symptoms such as affect blunting (i.e., lack of facial expressions), anergia,
and social withdrawal.
Summary of the Invention
[0004] The invention derives from the discovery that neuropsychiatric disorders characterized
by a deficit in neurotransmission via the NMDA receptor can be alleviated by a compound
that acts as an agonist of the glycine site on the NMDA receptor or an inhibitor of
glycine uptake. The compound is either a partial agonist such as D-cycloserine, which
can be used at a dosage of 105-500 mg, or a full agonist (e.g., D-serine or D-alanine)
that is selective for the NMDA receptor (compared to the inhibitory glycine receptor
and other receptors), or a glycine uptake inhibitor (e.g., N-methylglycine). The invention
therefore provides new methods for treating neuropsychiatric disorders in patients
(i.e., humans). Examples of disorders that can be treated by the methods of the invention
include schizophrenia, Alzheimer's Disease, autism, depression, benign forgetfulness,
childhood learning disorders, close head injury, and attention deficit disorder. The
methods entail administering to a patient diagnosed as suffering from such a neuropsychiatric
disorder a pharmaceutical composition that contains a therapeutically effective amount
of an agonist of the glycine site of the NMDA receptor or a glycine uptake inhibitor,
which agonist is relatively selective for (a) the glycine site of the NMDA receptor,
compared with (b) the inhibitory glycine receptor and other receptors. The pharmaceutical
composition may include, for example, (i) a therapeutically effective amount of D-alanine
(wherein the pharmaceutical composition is substantially free of D-cycloserine) and/or
(ii) a therapeutically effective amount of D-serine, and/or (iii) D-cycloserine in
an amount of 105-500 mg, and/or (iv) a therapeutically effective amount of N-methylglycine.
[0005] In variations of the methods described herein, D-serine, D-alanine, D-cycloserine,
and/or N-methylglycine can be substituted with a salt, ester, or alkylated form of
the amino acid, or a precursor of the amino acid that is converted (e.g., metabolized)
into the amino acid in
vivo (e.g., D-phosphoserine, L-phosphoserine, or L-phosphoserine, N,N,N-trimethylglycine
(betaine), or N,N-dimethylglycine).
[0006] Typically, a dosage of 100 µg to 100 g (e.g., 1 mg to 100 g; 1 mg to 100 mg; 10 mg
to 100 g; 10 mg to 10 g; or 10 to 500 mg) is suitable for D-alanine, D-serine, and
N-methylglycine. D-cycloserine is administered at a dosage of 105 to 500 mg. When
the patient is treated with both D-serine and D-alanine, D-serine and D-alanine can
be administered to the patient simultaneously or sequentially, e.g., by formulating
the D-serine and D-alanine as a single pharmaceutical composition or as two or more
pharmaceutical compositions. Likewise, the patient can be treated with both D-serine
and D-cycloserine, or D-serine and N-methylglycine, or D-alanine and N-methylglycine,
or D-cycloserine and N-methylglycine simultaneously or sequentially. In one, but not
the only, suitable method of treatment, the pharmaceutical composition is administered
to the patient at least once daily for at least one week. If desired, the pharmaceutical
composition can be administered to the patient in more than one dose per day (e.g.,
2, 3, or 4 doses). Generally, the patient is treated for at least one week; typically,
the patient is treated for at least several weeks (e.g., at least 4, 6, or 8 weeks)
or months (e.g., at least 4, 8, or 12 months). If necessary, the treatment can continue
indefinitely to keep the patient's symptoms under control throughout his or her life.
[0007] If desired, a pharmaceutical composition containing D-alanine (substantially free
of D-cycloserine), D-serine, D-cycloserine and/or N-methylglycine (or a modified version
thereof, as described herein) can be administered to a patient suffering from schizophrenia
along with, or in sequence with, an art-known drug for treating schizophrenia (e.g.,
olanzapine, clozapine, haloperidol, and the like). Similarly, D-alanine (typically
substantially free of D-cycloserine), D-serine, D-cycloserine and/or N-methylglycine
(or a modified version thereof, as described herein) can be used in combination with,
or in sequence with, other art-known antipsychotics (e.g., "typical," "atypical,"
and depot antipsychotics for treating schizophrenia and other psychotic conditions),
antidepressants (for treating depression), psychostimulants (for treating attention
deficit disorder, depression, or learning disorders), or Alzheimer's disease therapeutics
(for treating Alzheimer's disease). Such pharmaceutical compositions are included
within the invention. In general, the antipsychotic, antidepressant, psychostimulant,
or Alzheimer's disease therapeutic typically is administered at a dosage of 0.25-5000
mg/d (e.g., 5-1000 mg/d)). "Typical" antipsychotics are conventional antipsychotics
such as phenothiazine, butryophenones, thioxantheses, dibenzoxazepines, dihydroindolones,
and diphenylbutylpiperidines. "Atypical" antipsychotics are a new generation of antipsychotics
which generally act on the dopamine D
2 and 5HT
2 serotonin receptor and have high levels of efficacy and a benign extrapyramidal symptom
side effect profile. Examples of typical antipsychotics (and examples of suitable
daily (d) dosages) include Chlorpromazine (5-2000 mg/d, e.g., 30-800 mg/d), Thioridazine
(5-2000 mg/d, e.g., 20-800 mg/d), Mesoridazine (1-1000 mg/d, e.g., 30-400 mg/d), Fluphenazine
(0.5-200 mg/d, e.g., 1-40 mg/d), Perphenazine (0.5-300 mg/d, e.g., 10-65 mg/d), Trifluoperazine
(0.5-200 mg/d, e.g., 2-40 mg/d), Thiothixene (1-200 mg/d, e.g., 6-60 mg/d), Haloperidol
(0.25-500 mg/d, e.g., 1-100 mg/d), Loxapine (1-1000 mg/d e.g., 20-250 mg/d), Molindone
(1-1000 mg/d, e.g., 15-225 mg/d), Acetophenazine (10-2000 mg/d, e.g., 30-500 mg/d),
Chlorprothixene (5-2000 mg/d, e.g., 30-500 mg/d), Droperidol (0.25-500 mg/d, e.g.,
1-100 mg/d), Pimozide (0.25-500 mg/d, e.g., 1-100 mg/d). Examples of atypical antipsychotics
(and examples of suitable daily dosages) include Clozapine (5-2000 mg/d, e.g., 12-900
mg/d), Risperidone (0.25-500 mg/d, e.g., 2-16 mg/d), Olanzapine (1-100 mg/d, e.g.,
5-10 mg/d), and Quetiapine (1-2000 mg/d, e.g., 50-750 mg/d). Depot antipsychotics
also can be used, e.g., Haloperidol decanoate (10-1000 mg/month, e.g., 100-450 mg/month),
Fluphenazine decanoate (5-1000 mg/month, e.g., 25-150 mg/month), and Fluphenazine
enanthate (5-1000 mg/month, e.g., 25-200 mg/month). Additional antipsychotics include
Butaperazine (0.5-500 mg/d, e.g., 1-200 mg/d), Carphenazine, (0.5-3000 mg/d, e.g.,
1-1000 mg/d), Remoxipride (0.5-5000 mg/d, e.g., 1-2000 mg/d), Piperacetazine (0.5-500
mg/d, e.g., 1-2000 mg/d), Sulpiride (0.5-5000 mg/d, e.g., 1-2000 mg/d), and Ziprasidone
(0.5-500 mg/d, e.g., 1-200 mg/d). Examples of antidepressants that can be used include
Amitriptyline (5-1000 mg/d, e.g., 50-300 mg/d), Amoxapine (5-1000 mg/d, e.g., 50-600
mg/d), Bupropion (5-1000 mg/d, e.g., 200-450 mg/d), Bupropion SR (5-1000 mg/d, e.g.,
150-400 mg/d), Clomipramine (5-1000 mg/d, e.g., 25-250 mg/d), Desipramine (5-1000
mg/d, e.g., 100-300 mg/d), Doxepin (5-1000 mg/d, e.g., 75-300 mg/d), Fluoxetine (1-200
mg/d, e.g., 20-80 mg/d), Fluvoxamine (5-1000 mg/d, e.g., 50-300 mg/d), Imipramine
(5-1000 mg/d, e.g., 75-300 mg/d), Maprotiline (5-1000, e.g., 75-225 mg/d), Mirtazapine
(1-200 mg/d, e.g., 15-45 mg/d), Nefazodone (5-1000 mg/d, e.g., 200-600 mg/d), Nortriptyline
(5-1000 mg/d, e.g., 75-150 mg/d), Paroxetine (1-200 mg/d, e.g., 10-60 mg/d), Phenelzine
(1-500 mg/d, e.g., 5-90 mg/d), Protriptyline (1-200 mg/d, e.g., 15-60 mg/d), Sertraline
(5-1000 mg/d, e.g., 50-200 mg/d), Tranylcypromine (1-200 mg/d, e.g., 30-60 mg/d),
Trazodone (5-1000 mg/d, e.g., 150-600 mg/d), Trimipramine (5-1000 mg/d, e.g., 5-300
mg/d), Venlafaxine (5-1000 mg/d, e.g., 75-375 mg/d), and Venlafaxine XR (5-1000 mg/d,
e.g, 75-225 mg/d). Psychostimulants that are particularly useful for treating attention
deficit disorder include Dextroamphetamine (0.5-200 mg/d, e.g., 5-40 mg/d), Methamphetamine
(0.5-200 mg/d, e.g., 5-25 mg/d), Methylphenidate (0.5-200 mg/d, e.g., 10-40 mg/d),
and Pemoline (5-500 mg/d, e.g., 37.5-112.5 mg/d). Examples of Alzheimer's disease
therapeutics that can be used in the invention include Donepezil (0.5-200 mg/d, e.g.,
1-100 mg/d) and Tacrine (0.5-1000 mg/d, e.g., 10-500 mg/d). Thus, the invention also
provides pharmaceutical compositions that contain D-alanine (typically substantially
free of D-cycloserine), D-serine, D-cycloserine and/or N-methylglycine (or a modified
version thereof, as described herein) along with an antipsychotic, antidepressant,
psychostimulant, or Alzheimer's disease therapeutic.
[0008] If desired, one can measure negative and/or positive and/or cognitive symptom(s)
of schizophrenia before and after treatment of the patient. A reduction in such a
symptom indicates that the patient's condition has improved. Improvement in the symptoms
of schizophrenia can be assessed using the Scales for the Assessment of Negative Symptoms
(SANS) or Positive and Negative Syndrome Scale (PANSS) (see, e.g., Andreasen, 1983,
Scales for the
Assessment of Negative
Symptoms (SANS), Iowa City,
Iowa and Kay et al., 1987, Schizophrenia Bulletin 13:261-276). Likewise, one can measure improvement of other neuropsychiatric disorders in patients
who have been treated by the methods of the invention.
[0009] As used herein, the term "neuropsychiatric disorder" refers to a disease having a
pathophysiological component of attenuated NMDA receptor-mediated neurotransmission.
Examples of such disorders include schizophrenia, Alzheimer's disease, autism, depression,
benign forgetfulness, childhood learning disorders, close head injury, and attention
deficit disorder.
[0011] The term "Alzheimer's Disease" refers to a progressive mental deterioration manifested
by memory loss, confusion and disorientation beginning in late middle life and typically
resulting in death in five to ten years. Pathologically, Alzheimer's Disease can be
characterized by thickening, conglutination, and distortion of the intracellular neurofibrils,
neurofibrillary tangles and senile plaques composed of granular or filamentous argentophilic
masses with an amyloid core. Methods for diagnosing Alzheimer's Disease are known
in the art. For example, the National Institute of Neurological and Communicative
Disorders and Stroke-Alzheimer's Disease-and the Alzheimer's Disease and Related Disorders
Association (NINCDS-ADRDA) criteria can be used to diagnose Alzheimer's Disease (
McKhann et al., 1984, Neurology 34:939-944). The patient's cognitive function can be assessed by the Alzheimer's Disease Assessment
Scale-cognitive subscale (ADAS-cog;
Rosen et al., 1984, Am. J. Psychiatry 141:1356-1364).
[0012] As used herein, the term "autism" refers to a state of mental introversion characterized
by morbid self-absorption, social failure, language delay, and stereotyped behavior.
Patients can be diagnosed as suffering from autism by using the DSM-IV criteria.
[0013] As used herein, the term "depression" refers to a clinical syndrome that includes
a persistent sad mood or loss of interest in activities, which lasts for at least
two weeks in the absence of treatment. The DSM-IV criteria can be used to diagnose
patients as suffering from depression.
[0014] The term "benign forgetfulness," as used herein, refers to a mild tendency to be
unable to retrieve or recall information that was once registered, learned, and stored
in memory (e.g., an inability to remember where one placed one's keys or parked one's
car). Benign forgetfulness typically affects individuals after 40 years of age and
can be recognized by standard assessment instruments such as the Wechsler Memory Scale
(
Russell, 1975, J. Consult Clin. Psychol. 43:800-809).
[0015] As used herein, the term "childhood learning disorders" refers to an impaired ability
to learn, as experienced by certain children. Such learning disorders can be diagnosed
by using the DSM-IV criteria.
[0016] The term "close head injury," as used herein, refers to a clinical condition after
head injury or trauma which condition can be characterized by cognitive and memory
impairment. Such a condition can be diagnosed as "amnestic disorder due to a general
medical condition" according to DSM-IV.
[0017] The term "attention deficit disorder," as used herein, refers to a disorder that
is most commonly exhibited by children and which can be characterized by increased
motor activity and a decreased attention span. The DSM-IV criteria can be used to
diagnose attention deficit disorder.
[0018] The terms "D-serine" and "D-alanine" refer to the D isomers of the amino acids serine
and alanine, respectively. As D isomers, rather than L isomers, these amino acids
are not naturally found in proteins.
[0021] "Cognitive" symptoms of schizophrenia include impairment in obtaining, organizing,
and using intellectual knowledge which can be measured by the Positive and Negative
Syndrome Scale-cognitive subscale (PANSS-cognitive subscale)(
Lindenmayer et al., 1994, J. Nerv. Ment. Dis. 182:631-638) or with cognitive tasks such as the Wisconsin Card Sorting Test.
[0022] A "full" agonist of the NMDA receptor is a compound that produces a maximal response
at full receptor occupancy.
[0023] A "partial" agonist of the NMDA receptor is a compound that produces a lower maximal
response at full receptor occupancy than do full agonists.
[0024] A "glycine uptake inhibitor of the NMDA receptor" is a compound that inhibits the
re-uptake of glycine and increases the availability of glycine for the NMDA receptor
(e.g., N-methylglycine).
[0025] The invention offers several advantages over many art-known methods for treating
neuropsychiatric disorders. For example, unlike many conventional antipsychotic therapeutics,
D-serine, D-alanine, and N-methylglycine can produce a desirable reduction in the
positive, negative, and cognitive symptoms of schizophrenia. As shown by the examples
set forth below, clinically significant improvement can be achieved even with patients
who are poorly responsive to treatment by conventional antipsychotics. In addition,
no significant side effects were detected after treatment of schizophrenia patients
with D-serine, D-alanine, or N-methylglycine. In contrast, conventional antipsychotics
typically lead to tardive dyskinesia (irreversible, involuntary movement disorder),
extrapyramidal symptoms, and akathesia symptoms.
[0026] Other features and advantages of the invention will be apparent from the following
detailed description, and from the claims.
Detailed Description
[0027] The invention provides methods for treating a patient diagnosed as suffering from
a neuropsychiatric disorder having a deficit in neurotransmission via the NMDA receptor
(e.g., schizophrenia, Alzheimer's Disease, autism, depression, benign forgetfulness,
childhood learning disorders, close head injury, and attention deficit disorder).
As described above, a variety of methods for diagnosing these disorders are known
to those of skill in the art of clinical psychiatry, and any conventional diagnostic
method can be used in conjunction with the invention.
[0028] The treatment method of the invention entails administering to a patient diagnosed
as having a neuropsychiatric disorder a pharmaceutical composition containing a therapeutically
effective amount of (i) an agonist of the glycine site of the NMDA receptor, which
agonist is relatively selective for (a) the glycine site of the NMDA receptor, compared
with (b) an inhibitory glycine receptor or any other receptor, or (ii) a glycine uptake
inhibitor. For example, suitable pharmaceutical compositions may include (i) D-alanine
substantially free of D-cycloserine and/or (ii) D-serine and/or (iii) N-methylglycine.
D-serine and D-alanine are commercially available (e.g., from Spectrum Quality Products,
Inc., Gardena, CA). Where D-alanine is used, the pharmaceutical composition is "substantially
free" of D-cycloserine, meaning that the composition lacks D-cycloserine, or D-cycloserine
is not included at a level sufficient to have a statistically significant effect upon
the efficacy of the pharmaceutical composition, as determined by any method (e.g.,
by comparing PANSS and/or SANS scores before and after treatment of the patient).
In general, this means that D-cycloserine is absent from the pharmaceutical composition
or present in an amount such that the patient receives less than 0.02 mg/day.
[0029] Treatment includes administering a therapeutically effective amount of a composition
containing D-alanine (substantially free of D-cycloserine) and/or D-serine and/or
N-methylglycine to a patient in need of such treatment, thereby treating the neuropsychiatric
disorder. Such compositions typically contain from about 0.1 to 90% by weight (such
as 1 to 20% or 1 to 10%) of D-alanine, D-serine, or N-methylglycine in a pharmaceutically
acceptable carrier. Regardless of the concentration of D-serine or D-alanine in the
pharmaceutical composition, D-serine and/or D-alanine and/or N-methylglycine is administered
to the patient at a dosage of 10 mg to 100 g. More typically, D-serine and/or D-alanine
and/or N-methylglycine is administered at a dosage of 100 mg to 10 g. Generally, treatment
continues for at least several weeks to several years or life-long as needed.
[0030] In an alternative method for treating a neuropsychiatric disorder in a patient, a
pharmaceutical composition containing D-cycloserine in an amount equivalent to a dosage
of 105 to 500 mg/day is administered to a patient in need of such treatment. For example,
the dosage can be in an amount of 125 to 400 mg, such as 150 to 300 mg (e.g., 175
mg, 200 mg, 225 mg, or 250 mg). D-cycloserine (D-4-amino-3-isoxazolidinone) is commercially
available from Eli Lilly, Inc. (Indianapolis, IN). Generally, treatment continues
for at least one week and can continue for several years or life-long as needed to
control the patient's symptoms.
[0031] In all of the methods of the invention, D-alanine, D-serine, and/or D-cycloserine
and/or N-methylglycine can be substituted with a modified version of the amino acid,
such as a salt, ester, alkylated form, or a precursor of the amino acid. For example,
the amino acid can be in the form of a sodium salt, potassium salt, calcium salt,
magnesium salt, zinc salt, or ammonium salt. Such salt forms of D-serine, D-alanine,
N-methylglycine and D-cycloserine can be made in accordance with conventional methods
(see, e.g.,
Organic Chemistry, pgs. 822-823, Morrison and Boyd, ed., Fifth Edition, Allyn and Bacon, Inc., Newton,
MA). Other modified forms of D-serine, D-alanine, N-methylglycine and D-cycloserine
also can be used in the methods of the invention. For example, the carboxy group of
the amino acid can be converted to an ester group by reaction with an alcohol in accordance
with standard esterification methods (
Id. at 841-843). For example, alcohols having 1-20 carbon atoms can be used to produce
an ester of D-serine, D-alanine, N-methylglycine or D-cycloserine for use in the invention
(e.g., methyl-, ethyl-, propyl-, isopropyl-, butyl-, isobutyl-, sec-butyl-, tert-butyl-,
pentyl-, isopentyl-, tert-pentyl-, hexyl-, heptyl-, octyl-, decyl-, dodecyl-, tetradecyl-,
hexadecyl-, octadecyl-, and phenyl-alcohols can be used). In another variation, the
amino group of the amino acid can be alkylated, using conventional methods, to produce
a secondary or tertiary amino group by ammonolysis of halides or reductive amination
(
Id. at 939-948). For example, an alkyl group having 1-20 carbon atoms can be added to
the amino acid to produce an alkylated amino acid (e.g., methyl-, ethyl-, propyl-,
isopropyl-, butyl-, isobutyl-, sec-butyl-, tert-butyl-, pentyl-, isopentyl-, tert-pentyl-,
hexyl-, heptyl-, octyl-, decyl-, dodecyl-, tetradecyl-, hexadecyl-, octadecyl- and
phenyl-groups can be added to the amino acid). D-phosphoserine and L-phosphoserine
are examples of precursors of D-serine, and are commercially available (e.g., from
Sigma Chemical, St. Louis, MO). N,N,N-trimethylglycine (betaine) and N,N-dimethylglycine
are examples of precursors of N-methylglycine.
[0032] In all of the methods of the invention, appropriate dosages of D-alanine, D-serine,
D-cycloserine, or N-methylglycine (or modified versions thereof) can readily be determined
by those of ordinary skill in the art of medicine by monitoring the patient for signs
of disease amelioration or inhibition, and increasing or decreasing the dosage and/or
frequency of treatment as desired.
[0033] The pharmaceutical compositions can be administered to the patient by any, or a combination,
of several routes, such as oral, intravenous, trans-mucosal (e.g., nasal, vaginal,
etc.), pulmonary, transdermal, ocular, buccal, sublingual, intraperitoneal, intrathecal,
intramuscular, or long term depot preparation. Solid compositions for oral administration
can contain suitable carriers or excipients, such as corn starch, gelatin, lactose,
acacia, sucrose, microcrystalline cellulose, kaolin, mannitol, dicalcium phosphate,
calcium carbonate, sodium chloride, lipids, alginic acid, or ingredients for controlled
slow release. Disintegrators that can be used include, without limitation, micro-crystalline
cellulose, corn starch, sodium starch glycolate and alginic acid. Tablet binders that
may be used include, without limitation, acacia, methylcellulose, sodium carboxymethylcellulose,
polyvinylpyrrolidone (Povidone), hydroxypropyl methylcellulose, sucrose, starch, and
ethylcellulose.
[0034] Liquid compositions for oral administration prepared in water or other aqueous vehicles
can include solutions, emulsions, syrups, and elixirs containing, together with the
active compound(s), wetting agents, sweeteners, coloring agents, and flavoring agents.
Various liquid and powder compositions can be prepared by conventional methods for
inhalation into the lungs of the patient to be treated.
[0035] Injectable compositions may contain various carriers such as vegetable oils, dimethylacetamide,
dimethylformamide, ethyl lactate, ethyl carbonate, isopropyl myristate, ethanol, polyols
(glycerol, propylene glycol, liquid polyethylene glycol, and the like). For intravenous
injections, the compounds may be administered by the drip method, whereby a pharmaceutical
composition containing the active compound(s) and a physiologically acceptable excipient
is infused. Physiologically acceptable excipients may include, for example, 5% dextrose,
0.9% saline, Ringer's solution or other suitable excipients. For intramuscular preparations,
a sterile composition of a suitable soluble salt form of the compound can be dissolved
and administered in a pharmaceutical excipient such as Water-for-Injection, 0.9% saline,
or 5% glucose solution, or depot forms of the compounds (e.g., decanoate, palmitate,
undecylenic, enanthate) can be dissolved in sesame oil. Alternatively, the pharmaceutical
composition can be formulated as a chewing gum, lollipop, or the like.
EXAMPLES
[0036] The following examples demonstrate that D-alanine, D-serine, and N-methylglycine
each can be used to treat a neuropsychiatric disorder in patients.
Patients
[0037] This study employed 37 patients who were diagnosed as having schizophrenia. All patients
fulfilled the DSM-IV diagnosis of schizophrenia (APA, 1994, Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition, Washington, DC). All of the patients also
fulfilled the criteria of primary deficit syndrome, with a SANS score of more than
40 (
Kirkpatrick et al., 1989, Psychiatry Research 30:119-123;
Andreasen, 1983, Scales for the Assessment of Negative Symptoms (SANS), Iowa City,
Iowa). All of the patients were poorly responsive to treatment by other antipsychotic
drugs, and had been kept on a stable dose of an antipsychotic drug for at least 3
months prior to enrollment in this study.
Assessments
[0038] Several scales were used to assess the severity of the disorder in each patient.
At the beginning of the study (i.e., the baseline), the PANSS, SANS, and Global Assessment
Scales (CGI) were used. Each scale also was completed at the end of each 2-week period
throughout the study. These assessments were performed by a psychiatrist who was blind
to the treatment assignment. The Wisconsin Card Sort Test was used to provide a cognitive
rating of the patients; in general, schizophrenic patients perform poorly on this
test. The Wisconsin Card Sort Test was administered only at the initiation of the
study and at the end of the 6-week study. To measure side effects, the Simpson-Angus
Scale was used to measure extrapyramidal symptoms (EPS;
Simpson et al., 1970, Acta Psychiatrica Scandinavia Suppl. 212:11-19). The Abnormal Involuntary Movement Scale (AIMS) was used to measure dyskinesia (
Simpson et al., 1970, Acta Psychiatrica Scandinavia Suppl. 212:11-19). The Barnes Scale was used to measure akathesia (
Barnes, 1989, Brit. J. Psychiatry 154:672-676). The side effects of D-serine, D-alanine, and N-methylglycine treatments were assessed
biweekly according to the UKU side effects rating scale
(Scandinavian Society of Psychopharmacology Committee of Clinical Investigation: The
UKU side effect rating scale: scale for the registration of unwanted effects of psychotropics.
Acta. Psychiatr. Scand. 1987; Suppl. 334:81-94).
Treatment and Results
[0039] Using double-blind conditions, the patients were randomly assigned to receive placebo
(fruit juice), D-serine (30 mg/kg/day), D-alanine (60-100 mg/kg/day), or N-methylglycine
(30 mg/kg/day) once a day by mouth for a period of 6 weeks. As indicated by the results
shown in Table 1, treatment with D-serine, D-alanine, or N-methylglycine improved
the schizophrenic symptoms and cognitive deficit of the patients. More specifically,
treatment with D-serine resulted in a 21% reduction of the negative symptoms (on the
SANS scale), and it resulted in a 17% reduction of the positive symptoms (on the PANSS-positive
subscale). Treatment with D-alanine resulted in an 11% reduction of the negative symptoms
and a 12% reduction of the positive symptoms. Treatment with N-methylglycine resulted
in a 20% reduction of the negative symptoms and a 15% reduction of the positive symptoms.
These reductions in the negative and positive symptoms represented clinically significant
improvement. Treatment with each of D-serine, D-alanine, and N-methylglycine also
improved cognition, as measured using the PANSS-cognitive subscale and the Wisconsin
Card Sort Test. These results indicate that D-serine, D-alanine, and N-methylglycine
are effective in treating schizophrenia even in patients who are poorly responsive
to treatment by conventional antipsychotic drugs.
[0040] Using the UKU scale for rating side effects, no side effects were noted after treatment
with D-serine, D-alanine, or N-methylglycine. In addition, there was no newly emergent
tardive dyskinesia or worsening of extrapyramidal or akathesia symptoms. Thus, D-serine,
D-alanine, and N-methylglycine offer an advantage over many conventional drugs for
treating schizophrenia in that they do not cause significant side effects.
TABLE 1: Effects of D-serine, D-alanine, and N-methylglycine Treatment on Schizophrenia
Patients
|
D-serine |
D-alanine |
N-methylglycine |
Placebo |
Clinical Symptoms |
|
|
|
|
Negative Symptoms |
-21%* |
-12%* |
-20%* |
-1% |
Positive Symptoms |
-17%* |
-11%* |
-15%* |
3% |
CGI |
4.8→2.6* |
3.9→2.8* |
4.2→2.7* |
4.5→4.0 |
Cognition |
|
|
|
|
Cognitive symptoms |
-12%* |
-11%* |
-12%* |
1% |
WCST |
+0.9 (category)* |
+0.5* |
+0.7* |
-0.5 |
Side Effects |
|
|
|
|
EPS |
1.4-->1.7 |
3.1-->3.1 |
2.1-->2.1 |
3.3-->3.4 |
AIMS |
0.3-->0.3 |
0.5-->0.1 |
0.4-->0.3 |
0.5-->0.9 |
Barnes |
0.4-->0.8 |
0.4-->0.6 |
0.5-->0.6 |
0.9-->0.9 |
* Clinically significant improvement |
Other Embodiments
[0041] It is to be understood that, while the invention has been described in conjunction
with the detailed description thereof, the foregoing description is intended to illustrate
and not limit the scope of the invention, which is defined by the appended claims.
Other aspects, advantages, and modifications are within the scope of the following
claims.
[0042] The invention will now be described by way of a series of numbered clauses.
CLAUSES
[0043]
- 1. A method for treating a neuropsychiatric disorder characterized by attenuated NMDA
neurotransmission in a patient, the method comprising administering to a patient diagnosed
as suffering from the neuropsychiatric disorder a pharmaceutical composition comprising
a therapeutically effective amount of an agonist of the glycine site of an NMDA receptor
or a glycine uptake inhibitor, wherein:
the agonist is selected from the group consisting of D-alanine, a salt of D-alanine,
an ester of D-alanine, alkylated D-alanine, a precursor of D-alanine, D-serine, a
salt of D-serine, an ester of D-serine, alkylated D-serine, a precursor of D-serine,
D-cycloserine, a salt of D-cycloserine, an ester of D-cycloserine, a precursor of
D-cycloserine, and alkylated D-cycloserine;
the pharmaceutical composition is substantially free of D-cycloserine when the agonist
is D-alanine, a salt of D-alanine, an ester of D-alanine, an alkylated D-alanine,
or a precursor of D-alanine; and
when the agonist is D-cycloserine, a salt of D-cycloserine, an ester of D-cycloserine,
a precursor of D-cycloserine, or alkylated D-cycloserine, the pharmaceutical composition
comprises an amount of the agonist equivalent to 105-500 mg of D-cycloserine.
- 2. The method of clause 1, wherein the neuropsychiatric disorder is schizophrenia.
- 3. The method of clause 1, wherein the neuropsychiatric disorder is Alzheimer's disease.
- 4. The method of clause 1, wherein the neuropsychiatric disorder is autism.
- 5. The method of clause 1, wherein the neuropsychiatric disorder is depression.
- 6. The method of clause 1, wherein the neuropsychiatric disorder is benign forgetfulness.
- 7. The method of clause 1, wherein the neuropsychiatric disorder is a childhood learning
disorder.
- 8. The method of clause 1, wherein the neuropsychiatric disorder is attention deficit
disorder.
- 9. The method of clause 1, wherein the neuropsychiatric disorder is close head injury.
- 10. The method of clause 1, wherein the agonist is selected from the group consisting
of D-alanine, a salt of D-alanine, an ester of D-alanine, alkylated D-alanine, and
a precursor of D-alanine.
- 11. The method of clause 10, wherein the D-alanine, salt of D-alanine, ester of D-alanine,
alkylated D-alanine, or precursor of D-alanine is administered at a dosage equivalent
to 10 mg to 100 g of D-alanine.
- 12. The method of clause 10, wherein the agonist is a D-alanine salt selected from
the group consisting of a sodium salt, a potassium salt, a calcium salt, a magnesium
salt, a zinc salt, and an ammonium salt of D-alanine.
- 13. The method of clause 10, wherein the agonist is an ester of D-alanine having an
ester group with 1-20 carbon atoms.
- 14. The method of clause 10, wherein the agonist is an alkylated D-alanine having
an alkyl group with 1-20 carbon atoms.
- 15. The method of clause 10, wherein the pharmaceutical composition further comprises
D-serine.
- 16. The method of clause 1, wherein the agonist is selected from the group consisting
of D-serine, a salt of D-serine, an ester of D-serine, alkylated D-serine, and a precursor
of D-serine.
- 17. The method of clause 16, wherein the D-serine, salt of D-serine, ester of D-serine,
precursor of D-serine, or alkylated D-serine is administered at a dosage equivalent
to 10 mg to 100 g of D-serine.
- 18. The method of clause 16, wherein the agonist is a D-serine salt selected from
the group consisting of a sodium salt, a potassium salt, a calcium salt, a magnesium
salt, a zinc salt, and an ammonium salt of D-serine.
- 19. The method of clause 16, wherein the agonist is an ester of D-serine having an
ester group with 1-20 carbon atoms.
- 20. The method of clause 16, wherein the agonist is an alkylated D-serine having an
alkyl group with 1-20 carbon atoms.
- 21. The method of clause 1, wherein the agonist is selected from the group consisting
of D-cycloserine, a salt of D-cycloserine, an ester of D-cycloserine, a precursor
of D-cycloserine, and an alkylated D-cycloserine.
- 22. The method of clause 21, wherein the D-cycloserine, salt of D-cycloserine, ester
of D-cycloserine, alkylated D-cycloserine, or precursor of D-cycloserine is administered
in a dose equivalent to 125-400 mg of D-cycloserine.
- 23. The method of clause 22, wherein the D-cycloserine, D-cycloserine salt, ester
of D-cycloserine, alkylated D-cycloserine, or precursor of D-cycloserine is administered
in a dose equivalent to 150-300 mg of D-cycloserine.
- 24. The method of Clause 21, wherein the pharmaceutical composition comprises a salt
of D-cycloserine selected from the group consisting of a sodium salt, a potassium
salt, a calcium salt, a magnesium salt, a zinc salt, and an ammonium salt of D-cycloserine.
- 25. The method of clause 21, wherein the pharmaceutical composition comprises an ester
of D-cycloserine having an ester group with 1-20 carbon atoms.
- 26. The method of clause 21, wherein the pharmaceutical composition comprises an alkylated
D-cycloserine having an alkyl group with 1-20 carbon atoms.
- 27. The method of clause 21, wherein the pharmaceutical composition comprises a precursor
of D-cycloserine.
- 28. The method of clause 1, wherein the glycine uptake inhibitor is selected from
the group consisting of N-methylglycine, a salt of N-methylglycine, an ester of N-methylglycine,
and a precursor of N-methylglycine.
- 29. The method of clause 28, wherein the N-methylglycine, salt of N-methylglycine,
ester of N-methylglycine, alkylated N-methylglycine, or precursor of N-methylglycine
is administered at a dosage equivalent to 10 mg to 100 g of N-methylglycine.
- 30. The method of clause 28, wherein the glycine uptake inhibitor is an ester of N-methylglycine
having an ester group with 1-20 carbon atoms.
- 31. The method of clause 28, wherein glycine uptake inhibitor is an alkylated N-methylglycine
having an alkyl group with 1-20 carbon atoms.
- 32. The method of clause 28, wherein the precursor is selected from the group consisting
of N,N,N-trimethylglycine and N,N-dimethylglycine.
- 33. The method of clause 1, wherein the pharmaceutical composition is administered
to the patient at least once daily for at least one week.
- 34. The method of clause 1, further comprising administering to the patient at least
one therapeutic selected from the group consisting of antipsychotics, antidepressants,
psychostimulants, and Alzheimer's disease therapeutics.
- 35. A pharmaceutical composition comprising (i) at least one agonist of the glycine
site of an NMDA receptor or at least one glycine uptake inhibitor and (ii) at least
one therapeutic agent selected from the group consisting of antipsychotics, antidepressants,
psychostimulants, and Alzheimer's disease therapeutics, wherein:
the agonist is selected from the group consisting of D-alanine, a salt of D-alanine,
an ester of D-alanine, alkylated D-alanine, a precursor of D-alanine, D-serine, a
salt of D-serine, an ester of D-serine, alkylated D-serine, a precursor of D-serine,
D-cycloserine, a salt of D-cycloserine, an ester of D-cycloserine, a precursor of
D-cycloserine, and alkylated D-cycloserine; and
the pharmaceutical composition is substantially free of D-cycloserine when the agonist
is D-alanine, a salt of D-alanine, an ester of D-alanine, an alkylated D-alanine,
or a precursor of D-alanine; and
when the agonist is D-cycloserine, a salt of D-cycloserine, an ester of D-cycloserine,
a precursor of D-cycloserine, or alkylated D-cycloserine, the pharmaceutical composition
comprises an amount of the agonist equivalent to 105-500 mg of D-cycloserine.
- 36. The pharmaceutical composition of clause 35, wherein the glycine uptake inhibitor
is selected from the group consisting of N-methylglycine, a salt of N-methylglycine,
an ester of N-methylglycine, alkylated N-methylglycine, and a precursor of N-methylglycine.
- 37. The pharmaceutical composition of clause 36, wherein the therapeutic agent is
an antipsychotic selected from the group consisting of typical antipsychotics, atypical
antipsychotics, and depot antipsychotics.
- 38. The pharmaceutical composition of clause 36, wherein the therapeutic agent is
selected from the group consisting of Chlorpromazine, Thioridazine, Mesoridazine,
Fluphenazine, Perphenazine, Trifluoperazine, Thiothixene, Haloperidol, Loxapine, Molindone,
Clozapine, Risperidone, Olanzapine, Quetiapine, Haloperidol decanoate, Fluphenazine
decanoate, Fluphenazine enanthate, Amitriptyline, Amoxapine, Bupropion, Bupropion
SR, Clomipramine, Desipramine, Doxepin, Fluoxetine, Fluvoxamine, Imipramine, Maprotiline,
Mirtazapine, Nefazodone, Nortriptyline, Paroxetine, Phenelzine, Protriptyline, Sertraline,
Tranylcypromine, Trazodone, Trimipramine, Venlafaxine, Venlafaxine XR, Dextroamphetamine,
Methamphetamine, Methylphenidate, Pemoline, Donepezil, Tacrine, Acetophenazine, Chlorprothixene,
Droperidol, Pimozide, Butaperazine, Carphenazine, Remoxipride, Piperacetazine, Sulpiride,
and Ziprasidone.
1. Use of a compound selected from the group consisting of N-methylglycine, a salt of
N-methylglycine, an ester of N-methylglycine, alkylated N-methylglycine, and a precursor
of N-methylglycine, for the preparation of a medicament for treating a human patient
having schizophrenia.
2. The use of claim 1, wherein the compound is N-methylglycine.
3. The use of claim 1, wherein the compound is a salt of N-methylglycine selected from
the group consisting of a sodium salt, a potassium salt, a calcium salt, a magnesium
salt, a zinc salt, and an ammonium salt of N-methylglycine.
4. The use of claim 1, wherein the compound is an alkylated N-methylglycine having an
alkyl group with 1-20 carbon atoms.
5. The use of claim 1, wherein the compound is a precursor of N-methylglycine, and the
precursor is N,N,N-trimethylglycine or N,N-dimethylglycine.
6. The use of claim 1, wherein said medicament comprises 10 mg-10 g of the compound.
7. The use of claim 1, wherein said medicament further comprises an additional therapeutic
agent selected from the group consisting of antipsychotics, antidepressants, and psychostimulants.
8. The use of claim 7, wherein said additional therapeutic agent is selected from the
group consisting of Chlorpromazine, Thioridazine, Mesoridazine, Fluphenazine, Perphenazine,
Trifluoperazine, Thiothixene, Haloperidol, Loxapine, Molindone, Clozapine, Risperidone,
Olanzapine, Quetiapine, Haloperidol decanoate, Fluphenazine decanoate, Fluphenazine
enanthate, Amitriptyline, Amoxapine, Bupropion, Bupropion SR, Clomipramine, Desipramine,
Doxepin, Fluoxetine, Fluvoxamine, Imipramine, Maprotiline, Mirtazapine, Nefazodone,
Nortriptyline, Paroxetine, Phenelzine, Protriptyline, Sertraline, Tranylcypromine,
Trazodone, Trimipramine, Venlafaxine, Venlafaxine XR, Dextroamphetamine, Methamphetamine,
Methylphenidate, Pemoline, Donepezil, Tacrine, Acetophenazine, Chlorprothixene, Droperidol,
Pimozide, Butaperazine, Carphenazine, Remoxipride, Piperacetazine, Sulpiride, and
Ziprasidone.
9. The use of claim 8, wherein said additional therapeutic agent is Chlorpromazine or
Risperidone.
10. A pharmaceutical composition comprising (i) 100 mg-10 g of a compound selected from
the group consisting of N-methylglycine, a salt of N-methylglycine, an ester of N-methylglycine,
alkylated N-methylglycine, and a precursor of N-methylglycine, and (ii) at least one
additional therapeutic agent selected from the group consisting of antipsychotics,
antidepressants, and psychostimulants.
11. The pharmaceutical composition of claim 10, wherein the compound is N-methylglycine.
12. The pharmaceutical composition of claim 10, wherein the compound is a salt of N-methylglycine
selected from the group consisting of a sodium salt, a potassium salt, a calcium salt,
a magnesium salt, a zinc salt, and an ammonium salt of N-methylglycine.
13. The pharmaceutical composition of claim 10, wherein the compound is an alkylated N-methylglycine
having an alkyl group with 1-20 carbon atoms.
14. The pharmaceutical composition of claim 10, wherein the compound is a precursor of
N-methylglycine, and the precursor is N,N,N-trimethylglycine or N,N-dimethylglycine.
15. The pharmaceutical composition of claim 10, wherein said additional therapeutic agent
is selected from the group consisting of Chlorpromazine, Thioridazine, Mesoridazine,
Fluphenazine, Perphenazine, Trifluoperazine, Thiothixene, Haloperidol, Loxapine, Molindone,
Clozapine, Risperidone, Olanzapine, Quetiapine, Haloperidol decanoate, Fluphenazine
decanoate, Fluphenazine enanthate, Amitriptyline, Amoxapine, Bupropion, Bupropion
SR, Clomipramine, Desipramine, Doxepin, Fluoxetine, Fluvoxamine, Imipramine, Maprotiline,
Mirtazapine, Nefazodone, Nortriptyline, Paroxetine, Phenelzine, Protriptyline, Sertraline,
Tranylcypromine, Trazodone, Trimipramine, Venlafaxine, Venlafaxine XR, Dextroamphetamine,
Methamphetamine, Methylphenidate, Pemoline, Donepezil, Tacrine, Acetophenazine, Chlorprothixene,
Droperidol, Pimozide, Butaperazine, Carphenazine, Remoxipride, Piperacetazine, Sulpiride,
and Ziprasidone.
16. The pharmaceutical composition of claim 10, wherein said additional therapeutic agent
is Chlorpromazine or Risperidone.
17. A method for treating a neuropsychiatric disorder
characterized by attenuated NMDA neurotransmission in a patient, the method comprising administering
to a patient diagnosed as suffering from the neuropsychiatric disorder a pharmaceutical
composition comprising a therapeutically effective amount of an agonist of the glycine
site of an NMDA receptor or a glycine uptake inhibitor, wherein:
the agonist is selected from the group consisting of D-alanine, a salt of D-alanine,
an ester of D-alanine, alkylated D-alanine, a precursor of D-alanine, D-serine, a
salt of D-serine, an ester of D-serine, alkylated D-serine, a precursor of D-serine,
D-cycloserine, a salt of D-cycloserine, an ester of D-cycloserine, a precursor of
D-cycloserine, and alkylated D-cycloserine;
the pharmaceutical composition is substantially free of D-cycloserine when the agonist
is D-alanine, a salt of D-alanine, an ester of D-alanine, an alkylated D-alanine,
or a precursor of D-alanine; and
when the agonist is D-cycloserine, a salt of D-cycloserine, an ester of D-cycloserine,
a precursor of D-cycloserine, or alkylated D-cycloserine, the pharmaceutical composition
comprises an amount of the agonist equivalent to 105-500 mg of D-cycloserine.