TECHNICAL FIELD
[0001] The present invention relates to an engine part, and more particularly to an engine
part which is subjected to a high temperature due to a high-temperature exhaust gas
discharged from an engine.
BACKGROUND ART
[0002] In a vehicle such as a motorcycle or an all-terrain four-wheeled vehicle, not only
the performance of the vehicle itself, but a good design is an important issue. FIG.
9 is a side view showing an example of a sports-type motorcycle. A motorcycle 200
shown in FIG. 9 includes a V-type engine 201 and an exhaust pipe 202 for guiding along
exhaust gas. The V-type engine 201 includes cylinders 203, cylinder heads 204, and
head covers 205. The aesthetically excellent V-type engine 201 is likely to be mounted
to the motorcycle such that the engine is exposed on the outside, and is highly influential
to the exterior appearance of the entire motorcycle.
[0003] Exhaust pipes extend from the two cylinders 203 of the V-type engine 201 and are
united into the single exhaust pipe 202, which extends toward and above the rear wheel
so as to allow exhaust gas to be discharged at the rear portion of the body. The exhaust
pipe 202 must have a certain thickness for allowing the exhaust gas generated in the
engine 201 to be efficiently discharged. Moreover, the portion constituting a muffler
202a has an increased diameter in order to accommodate the structure for muffling.
For these reasons, the exhaust pipe accounts for a relatively large part of the exterior
appearance of the entire motorcycle, and thus the shape and color of the exhaust pipe
are highly influential to the entire motorcycle design.
[0004] In the present specification, engine components such as the cylinders 203, the cylinder
heads 204, the head covers 205, and the exhaust pipe 202 for guiding the exhaust gas
from the engine as well as a cover thereof, will be referred to as "engine parts".
For the aforementioned reasons, the shape and color of engine parts are important
factors in determining the entire motorcycle design.
[0005] Conventionally, those engine parts which show up on the exterior appearance are subjected
to surface treatments such as plating to acquire a lustrous metallic color, thus to
enhance the engine part design. Above all, decorative chromium plating has been widely
used for engine parts because it is possible to give the plated material a characteristic,
lustrous silver-gray color (see, for example, Patent Document 1).
[0006] Since decorative chromium plating provides an excellent metallic luster, and also
excels in anticorrosiveness, it is also used in various fields other than engine parts.
In order to obtain excellent exterior appearance and anticorrosiveness, it is unnecessary
to form the decorative chromium plating so as to be thick. In fact, when formed thick,
decorative chromium plating will result in a poor color tone and surface finish. Therefore,
in general, decorative chromium plating is preferably used at a thickness in the range
from 0.1 µm to 0.15 µm.
[0007] Note that, as plating using chromium, hard chromium plating (industrial chromium
plating) is also widely used in industrial products. Since hard chromium plating has
a low friction coefficient and an excellent abrasion resistance, it is used for sliding
sections of various machine parts, for example. Since abrasion resistance is a requirement,
hard chromium plating is usually formed to a thickness of several
µm or more. Moreover, hard chromium plating does not have a decorativeness surface
as does decorative chromium plating. Usually, decorative chromium plating has a surface
roughness (Ra) of 1 µm or less (typically, 0.2 µm or less) after the plating, while
hard chromium plating has a surface roughness of 1
µm or more.
[0008] Decorative chromium plating is usually formed by using a plating solution of chromate,
including hexavalent chromium (Cr
6+). Hexavalent chromium is inexpensive, and a chromium plating layer formed from a
plating solution containing hexavalent chromium (hereinafter referred to as a "hexavalent
chromium plating solution") shows good contact with a base substrate, and has excellent
anticorrosiveness and abrasion resistance. Furthermore, a chromium plating layer formed
from a hexavalent chromium plating solution has a silver-gray color with a characteristically
metallic luster. For these reasons, a hexavalent chromium plating solution is widely
used for engine parts for motorcycles.
[0009] However, hexavalent chromium is known for its highly biotoxic nature. When performing
plating with a hexavalent chromium plating solution, it has become a requirement that
safety of the workers is ensured and that environmental pollution is prevented.
DISCLOSURE OF INVENTION
PROBLEMS TO BE SOLVED BY THE INVENTION
[0011] From environmental and safety standpoints, it is preferable to use a plating solution
containing trivalent chromium (hereinafter referred to as a "trivalent chromium plating
solution"). However, a chromium plating layer which is formed by using a conventional
trivalent chromium plating solution has a problem of being inferior to a plating layer
which is formed from a hexavalent chromium plating solution, in terms of stability
of growth of the chromium plating layer and the plating film-forming characteristics
of the resultant chromium plating layer, e.g., anticorrosiveness and abrasion resistance.
[0012] Moreover, an engine part is heated to a high temperature due to heat generation associated
with fuel combustion and a high-temperature exhaust gas. When a chromium plating layer
is formed on an engine part by using a conventional trivalent chromium plating solution,
there is a problem in that the chromium plating layer is likely to have cracks responsive
to heating. If a crack occurs in a chromium plating layer, rust will occur from that
portion, thus severely degrading the exterior appearance.
[0013] Therefore, trivalent chromium plating solutions of various compositions have been
proposed since twenty or more years ago. However, trivalent chromium plating solutions
have hardly been used for engine parts, in particular.
[0014] The present invention solves such conventional problems, and intends to provide an
engine part having a chromium plating layer which is formed by using a trivalent chromium
plating solution; which has as good film-forming characteristics as those of a plating
layer that is formed from a hexavalent chromium plating solution; and which has excellent
thermal resistance.
MEANS FOR SOLVING THE PROBLEMS
[0015] An engine part according to the present invention is an engine part comprising: a
metal substrate; a chromium plating layer covering at least a portion of a surface
of the metal substrate, the chromium plating layer being formed from a trivalent chromium
plating solution, wherein, the chromium plating layer includes a boron content of
no less than 0.05 mass% and no more than 0.3 mass%, and the chromium plating layer
has a thickness or 0.7µm or less.
[0016] In a preferred embodiment, the boron content in the chromium plating layer is no
less than 0.05 mass% and no more than 0.1 mass%.
[0017] In a preferred embodiment, the chromium plating layer includes an iron content of
2 mass% or less.
[0018] In a preferred embodiment, the chromium plating layer covers a region of the metal
substrate surface that is heated to a temperature of 350°C or more.
[0019] In a preferred embodiment, the engine part further comprises an underlying plating
layer provided between the metal substrate surface and the chromium plating layer,
wherein, the chromium plating layer has a thickness of no less than 0.2µm and no more
than 0.7µm in the region that is heated to a temperature of 350°C or more.
[0020] In a preferred embodiment, the underlying plating layer includes at least one of
C and S.
[0021] In a preferred embodiment, the underlying plating layer further includes Ni.
[0022] In a preferred embodiment, the underlying plating layer is formed of a metal having
a hardness lower than that of the Cr composing the chromium plating layer.
[0023] In a preferred embodiment, the underlying plating layer is formed from Ni plating.
[0024] In a preferred embodiment, the chromium plating layer has a color tone such that
an L* value measured according to CIE (Commission Internationale de l'Eclairage) 1976
is in a range of no less than 68 and no more than 80.
[0025] In a preferred embodiment, the metal substrate is composed of a material containing
Fe, A1, Zn, or Mg as a main component.
[0026] In a preferred embodiment, the metal substrate is a metal tube defining a passage
through which an exhaust gas from an engine travels.
[0027] An engine according to the present invention comprises any of the aforementioned
engine parts.
[0028] A transportation apparatus according to the present invention comprises any of the
aforementioned engine parts or engine.
EFFECTS OF THE INVENTION
[0029] According to the present invention, a boron content in the chromium plating layer
is adjusted to no less than 0.05 mass% and no more than 0.3 mass%, and the chromium
plating layer has a thickness or 0.7µm or less. Therefore, by using a trivalent chromium
plating solution, a chromium plating layer which has as good film-forming characteristics
as those of a plating layer that is formed from a hexavalent chromium plating solution
and which has good thermal resistance can be obtained. Thus, an engine part having
good exterior appearance can be obtained by using a trivalent chromium plating solution.
[0030] Moreover, by prescribing a boron content in the chromium plating layer to be 0.1
mass% or less and an iron content to be 2 mass% or less, a silver-gray color tone
similar to that of a chromium plating layer which is formed from a hexavalent chromium
plating solution can be obtained. Furthermore, by prescribing the thickness of the
chromium plating layer in a range of no less than 0.2µm and no more than 0.7µm, an
engine part which is not likely to experience thermal discoloration can be obtained.
BRIEF DESCRIPTION OF DRAWINGS
[0031]
[FIG. 1] A diagram schematically showing the structure of an engine part according
to the present invention.
[FIG. 2] (a) is a graph showing X-ray diffraction analysis results of a chromium plating
layer formed by using trivalent chromium; and (b) is a graph showing X-ray diffraction
analysis results of a chromium plating layer formed by using hexavalent chromium.
[FIG. 3] A diagram schematically showing the generation of a "C-S thickened layer"
or a "C-S-Ni thickened layer", obtained by heating, near an interface between a chromium
plating layer and an underlying plating layer.
[FIG. 4] (a) is a schematic diagram for explaining prevention of discoloration of
a chromium plating layer by increasing the thickness of the chromium plating layer;
and (b) is a diagram schematically showing a portion of a conventional chromium-nickel
plating layer.
[FIG. 5] A side view showing a motorcycle in which an engine part according to the
present invention is used.
[FIG. 6] (a) is a diagram schematically showing a portion of an exhaust pipe which
is directly connected to an engine; (b) is a diagram schematically showing a cross
section of a catalyst accommodating section of an exhaust pipe; and (c) is a diagram
schematically showing a cross section of a manifold section.
[FIG. 7] A diagram showing an example of a chromium plating apparatus used in the
present invention.
[FIG. 8] (a) is a diagram schematically showing an arrangement in which a minimum
distance exists between a curved portion of a metal substrate and an electrode; and
(b) is a diagram schematically showing an arrangement in which a long distance exists
between a curved portion of a metal substrate and an electrode.
[FIG. 9] A side view showing the exterior appearance of a motorcycle.
DESCRIPTION OF THE REFERENCE NUMERALS
[0032]
- 30, 201
- engine
- 4, 4a, 202
- exhaust pipe
- 203
- cylinder
- 204
- cylinder head
- 205
- head cover
- 1
- metal substrate
- 2
- underlying plating layer
- 3
- chromium plating layer
- 5
- metal tube
- 6
- passage
- 7
- silencer portion
- 8
- catalyst
- 9
- bent portion
- 9a
- convex surface portion
- 9b
- inner side face
- 10
- plating layer
- 11
- chromium plating trough
- 12
- pump
- 13
- percolator
- 14
- adjustment valve
- 15
- flowmeter
- 16
- ion exchange apparatus
- 17
- metal substrate
- 18
- insoluble anode
- 19
- DC power source
- 20
- chromium plating apparatus
- 21
- link section
- 22
- catalyst accommodating section
- 23
- another exhaust pipe
- 24
- tube path
- 100, 200
- motorcycle
BEST MODE FOR CARRYING OUT THE INVENTION
[0033] As a result of studying the composition of trivalent chromium plating solutions and
the composition within resultant chromium plating layers, the inventor has found that
the problem of cracks occurring in a chromium plating layer is related to the boron
content within the chromium plating layer. The inventor has also found that the stability
of growth of a chromium plating layer and the anticorrosiveness and abrasion resistance
of the resultant chromium plating layer are also related to the boron content within
the chromium plating layer and the boron concentration within the trivalent chromium
plating solution.
[0034] Moreover, a chromium plating layer which is formed from a conventional trivalent
chromium plating solution has a blackish color tone as compared to a chromium plating
layer which is formed from a hexavalent chromium plating solution. This has been found
to be related to the iron content in the resultant chromium plating layer.
[0035] Furthermore, when providing on an engine part a chromium plating layer which is formed
from a trivalent chromium plating solution, the surface color tone may change due
to heating, so that the chromium plating layer may appear blue-violet. Such discoloration
will degrade the exterior appearance of a motorcycle or the like in which the engine
part is mounted. The inventor has found that the discoloration of a chromium plating
layer due to heating depends on the thickness of the chromium plating layer.
1. Structure of the engine part
(1) Basic structure
[0036] Hereinafter, with reference to FIG. 1, the structure of an engine part according
to the present invention will be described. As shown in FIG. 1, the engine part according
to the present invention includes a metal substrate 1, a chromium plating layer 3
covering at least a portion of the surface of the metal substrate 1, and an underlying
plating layer 2 provided between the metal substrate 1 and the chromium plating layer
3. Hereinafter, these constituent elements will be specifically described.
(i) Metal substrate
[0037] The metal substrate 1, which has a mechanical strength suitable to its purpose and
a necessary level of anticorrosiveness and the like, can be formed from a material
which is usually used for an engine part. A typical example would be an Fe-type material.
Otherwise, the metal substrate 1 may be formed from any non-Fe material, such as an
Al-type material, a Zn-type material, an Mg-type material, or a Ti-type material.
[0038] Examples of Fe-type materials include Fe or steels whose main component is Fe, such
as: steel tubes for machine structural purposes (e.g., carbon steel tubes for machine
structural purposes (STKM) or alloy steels for machine structural purposes); stainless
steel (e.g., ferrite-type stainless steel, austenite-type stainless steel, or austenite/ferrite-type
stainless steel); and mild steel (e.g., SPCC or SPHC). Examples of Al-type materials
include: Al; and Al alloys such as Al-Si alloys or Al-Si-Mg-type alloys.
Examples of Zn-type materials include: Zn; Zn-plated steel plates, on which Zn plating
is provided; and Zn alloy-plated steel plates, on which Zn alloy plating whose main
component is Zn and which includes alloying elements such as Ni, Co, Cr, or Al is
provided. Examples of Mg-type materials include Mg-Al type alloys and Mg-Zn type alloys.
Examples of Ti-type materials include: Ti; and Ti alloys whose main component is Ti
and which includes elements such as Al, V, or Si.
[0039] These materials have different characteristics depending on their types. For example,
Al is light-weight and shiny, whereas Ti is light-weight and has excellent mechanical
strength. Therefore, any appropriate material may be selected depending on the purpose,
required characteristics, and the like.
(ii) Underlying plating layer
[0040] The underlying plating layer 2 formed on the metal substrate 1 defines an underlying
plating for the chromium plating layer 3. From the standpoint of preventing cracks
from occurring in the chromium plating layer and allowing a chromium plating layer
having good anticorrosiveness and abrasion resistance to stably grow, the underlying
plating layer 2 does not need to be provided. In the case of chromium plating, an
underlying plating layer is usually formed under the chromium plating layer with the
purpose of providing enhanced contact with the base substrate, for example. Therefore,
it is preferable that the underlying plating layer 2 exhibits good contact with various
metal substrates, as well as good contact with the chromium plating layer. There might
be other preferable characteristics, e.g., anticorrosiveness.
[0041] The metal composing the underlying plating layer 2 used for the present invention
can be defined in terms of a relationship with the hardness (Vickers hardness) of
chromium, which is used for forming the chromium plating layer.
Specifically, it is preferable that the metal composing the underlying plating layer
2 is formed of a metal having a hardness lower than the hardness of chromium (about
350 to 1200 Hv). The presence of a layer composed of a low-hardness metal interposed
between the chromium plating layer and the metal substrate reduces the stress applied
to the chromium plating layer due to heat cycles. As a result, the generation of cracks
and the like is prevented, and a chromium plating layer having good surface characteristics
can be obtained. Examples of metals having a lower hardness than that of chromium
include nickel (Ni) (hardness: about 150 to 350 Hv), Copper (Cu) (hardness: about
40 to 250 Hv), Tin (Sn) (hardness: about 20 to 200 Hv), and lead (Pb) (whose hardness
is immeasurable).
[0042] As an underlying plating layer including such metals, for example, a layer composed
of nickel plating, copper plating, tin plating, lead plating, zinc-nickel plating,
or the like is used. A single such plating layer may be formed, or two or more kinds
may be combined to result in there being a plurality of underlying plating layers.
Alternatively, a plurality of underlying plating layers of the same kind but containing
different types of additives, etc., may be formed. A typical underlying plating layer
to be used as the underlying treatment for a chromium plating layer is nickel plating,
which further enhances anticorrosiveness, luster, and the like.
[0043] The underlying plating layer 2 includes elements which compose various additives.
With the purpose of enhancing the luster of the chromium plating layer, such additives
are added in a plating solution for forming the underlying plating layer 2. Specifically,
a primary brightener (a non-butyne-type brightener, e.g., saccharin sodium, naphthalene-1,3,6-trisodium
trisulfonate, or benzene sulfonic acid), a secondary brightener (e.g., 2-butyl-1,4-diol,
sodium allylsulfonate), and the like are used. Any such additive includes C and/or
S as its component elements. Although depending on the type of underlying plating
layer and the type of additive, a total of about 0.001 to 1.0 mass% of C and/or S
is included in the underlying plating layer. As will be specifically described later,
these elements will thicken to about 0.1 to 10 mass% responsive to heating, thus causing
surface discoloration of the chromium plating layer. Furthermore, in the case where
the underlying plating layer 2 is a nickel plating layer, the Ni contained in the
nickel plating layer also substantially affects surface discoloration.
[0044] Hereinafter, nickel plating will be specifically described as a typical example of
an underlying plating layer. Nickel plating is generally classified into lusterless
nickel plating, semigloss nickel plating, and gloss nickel plating, mainly depending
on the type of brightener added in the plating solution, whether such an addition
is made or not, etc. These types of plating can be appropriately combined in accordance
with the required characteristics, purpose, and the like, whereby the desired exterior
appearance can be obtained.
[0045] Among others, gloss nickel plating is obtained by adding a brightener such as saccharin
or benzene sulfonic acid to the plating solution. Gloss nickel plating provides an
excellent surface leveling (planarize) action and exhibits good contact with the chromium
plating layer, and therefore is widely used as an underlying layer to be formed directly
under a chromium plating layer. A brightener for gloss nickel plating is usually used
in an amount such that a total of about 0.001 to 1.0 mass% of at least one of C and
S is included in the plating layer. Anticorrosiveness tends to decrease as the S content
increases.
[0046] Lusterless nickel plating differs from gloss nickel plating in that no brightener
is contained in the plating solution. Although providing less luster than gloss nickel
plating, lusterless nickel plating is excellent in terms of throwing power (adhesion),
anticorrosiveness, discoloration prevention, etc., of the plating layer.
[0047] Semigloss nickel plating is obtained by adding a non-coumarin-type semi-brightener
to the plating solution. Unlike the aforementioned brighteners, semi-brighteners have
little C and/or S content. Therefore, it provides better anticorrosiveness but poorer
luster than those provided by gloss nickel plating.
[0048] In general, when a number of nickel plating layers containing different amounts of
S are formed on top of one another, potential differences will emerge between the
plating layers, so that coatings having greater S contents are corroded first. By
utilizing this property, it is common to use two or more layers of nickel plating
to provide improved anticorrosiveness. For example, in the case of a two-layer plating
obtained by sequentially forming a semigloss nickel plating layer and a gloss nickel
plating layer upon a base metal, the gloss plating layer is corroded first because
of having a lower potential than that of the semigloss plating layer. As a result,
the base metal under the semigloss plating layer is protected without being corroded.
In order to further enhance anticorrosiveness in the aforementioned two-layer plating
structure, a tri-nickel plating layer (which is a type of gloss nickel plating layer)
having a large S content may be formed between the semigloss nickel plating layer
and the gloss nickel plating layer, thus obtaining a three-layer plating structure.
The S contained in the tri-nickel plating layer is most often supplied from an additive
other than a brightener. In this case, the uppermost gloss nickel plating layer is
corroded first, and then the intermediate tri-nickel plating layer is corroded, whereby
both the semigloss nickel plating layer and the base metal are protected.
[0049] In order to effectively utilize such actions of nickel plating, the nickel plating
layer(s) preferably has a total thickness of about 10 to 30 µm, and more preferably
about no less than 15 µm and no more than 25 µm.
[0050] In the case where an underlying plating layer other than a nickel plating layer is
to be formed, the underlying plating layer is preferably controlled to a thickness
of about 10 to 30
µm.
(iii) Chromium plating layer
[0051] On the underlying plating layer 2, the chromium plating layer 3 is formed. As will
be specifically described later, the chromium plating layer 3 is a decorative chromium
plating layer which is formed by electroplating using a trivalent chromium plating
solution.
[0052] Whether a chromium plating layer has been formed by using a trivalent chromium plating
solution or by using a hexavalent chromium plating solution can be determined by measuring
the crystal state of the chromium plating layer. Specifically, the determination can
be easily made by subjecting the chromium plating layer to an X-ray diffraction analysis.
FIGS. 2(a) and (b) each show X-ray diffraction analysis results of a chromium plating
layer. The detailed measurement method was as follows.
[0053] Analysis equipment: X-ray diffraction apparatus RAD-3C type (Rigaku Corporation)
Measurement conditions: A Cu anticathode was used, and power was supplied at 40kV/40mA.
X-ray diffraction results of a chromium plating layer which has been formed by using
a hexavalent chromium plating solution are shown in FIG. 2(b). Near diffraction angles
of about 40θ to 50θ, a very large diffraction peak of about 1200 cps is observed,
and large diffraction peaks of about 200cps are observed near diffraction angles of
about 65 θ and about 83 θ . In the ascending order of diffraction angles, these peaks
correspond to (111) orientation crystal, (200) orientation crystal, and (211) orientation
crystal, respectively.
[0054] On the other hand, X-ray diffraction results of a chromium plating layer which has
been formed by using a trivalent chromium plating solution are shown in FIG. 2(a).
Only a small diffraction peak of about 100 cps is observed near diffraction angles
of about 40 to 50 θ, this corresponding to (111) orientation crystal. A value obtained
by dividing the half-width of the peak corresponding to (111) orientation crystal
by the peak intensity (half-width/peak height) is about 0.6rad/cps, which is much
broader than the value of (111) orientation crystal (about 7.9×10
-4rad/cps) which is observed when using hexavalent chromium.
[0055] From these figures, it can be seen that the chromium plating layer obtained by using
hexavalent chromium has a crystal structure composed of polycrystals, whereas the
chromium plating layer obtained by using trivalent chromium plating solution has a
substantially amorphous structure. The determination as to whether a plating layer
has a crystalline structure or an amorphous structure can be made based on, for example,
whether a diffraction peak associated with a (half-width/peak height) value of about
0.001 rad/cps or less is observed or not near diffraction angles of about 40 to 50
θ.
[0056] The amount of boron contained in the chromium plating layer 3 is no less than 0.05
mass% and no more than 0.3 mass%. If the boron content is more than 0.3 mass%, cracks
may occur in the chromium plating layer 3 responsive to heating to 400 °C or above.
On the other hand, if the boron content is less than 0.05%, the anticorrosiveness
and abrasion resistance of the chromium plating layer 3 become lowered. Moreover,
stability of plating growth when forming the chromium plating layer 3 becomes lower.
The boron content is preferably no less than 0.05 mass% and no more than 0.2 mass%,
and more preferably no less than 0.05 mass% and no more than 0.1 mass%. Crack generation
can be prevented with more certainty and better anticorrosiveness and abrasion resistance
can be obtained as there is less boron content.
[0057] Herein, "stability of plating growth" means that the throwing power (adhesion) of
a chromium plating layer in a plating process is constant over time. Specifically,
it means that, when a Hull cell test is conducted, poor exterior appearance, e.g.,
inadequate plating thickness, scorching, or streaks, is prevented over a large area
of current density, or that a plating layer with a predetermined thickness is formed
also on portions of the material to be plated that are difficult to be plated (e.g.,
a surface to be plated that is located opposite from an electrode).
[0058] Moreover, "plating anticorrosiveness" means an anticorrosiveness that is imparted
through a plating process. Specifically, if a resting number of 7.0 or more is satisfied
when performing a CASS test (which is a plating anticorrosiveness test method defined
in JIS H8502) by using a sample that has experienced a plating process, it is said
that "there is good plating anticorrosiveness".
[0059] "Plating abrasion resistance" means an abrasion resistance (hardness) that is imparted
through a plating process. Specifically, if the Vickers hardness is in the range of
350Hv0.1 (test power: 0.9807N) or more when a Vickers hardness as defined in JIS Z
2244 is measured by using a sample that has experienced a plating process, it is said
that "there is good plating abrasion resistance".
[0060] Thus, since the chromium plating layer 3 contains boron, a chromium plating layer
having good anticorrosiveness and abrasion resistance can be obtained. Moreover, the
chromium plating layer can be allowed to stably grow. However, boron acts to harden
the plating layer, and, if its content exceeds the aforementioned range, the hardness
of the chromium plating layer will increase especially when heated to a high temperature
(esp., 400°C or more), so that the stress on the chromium plating layer due to heat
cycles will be increased. As a result, cracks and the like are likely to occur on
the surface. If cracks occur, rust is likely to occur from the cracks. If a large
number of cracks occur, coating may peel, etc., thus degrading the exterior appearance.
Moreover, the color tone will be degraded when the content exceeds the aforementioned
range.
[0061] As described above, since boron causes the chromium plating layer to be hardened,
cracks become likely to occur when a thick chromium plating layer containing boron
is formed. Therefore, the thickness of the chromium plating layer 3 is preferably
0.7µm or less. If the chromium plating layer 3 is thicker than 0.7µm, it becomes difficult
to form a chromium plating layer without cracks even if the boron content is within
the aforementioned range. In order to more certainly prevent crack generation, it
is preferable that the thickness of the chromium plating layer 3 is 0.5
µm or less.
[0062] From the standpoint of preventing crack generation due to heating, it will suffice
that the boron content in the chromium plating layer is kept at 0.3 mass% or less
only in regions of the engine part that will rise to a high temperature. However,
in any chromium plating layer which is to continuously cover the surface of an engine
part through plating, it is difficult to vary the boron content in a portion thereof.
Therefore, it is preferable that the boron content in the chromium plating layer remains
within the aforementioned range in any region of the chromium plating layer.
[0063] However, just because the boron content remains within the aforementioned range in
any region of the chromium plating layer, it is not necessary for the engine part
according to the present invention to be used in an environment where its entirety
is heated to a high temperature. The present invention is suitably used for an engine
part at least a portion of which is exposed to a high temperature.
[0064] So long as the chromium plating layer 3 has a boron content as described above, it
is possible, by using a trivalent chromium plating solution, to form a chromium plating
layer which has as good film-forming characteristics as those of a plating layer formed
from a hexavalent chromium plating solution and which has good thermal resistance.
However, a chromium plating layer which is formed from a trivalent chromium plating
solution has a blackish color tone as compared to a chromium plating layer which is
formed from a hexavalent chromium plating solution. The causes for the blackish color
tone are related to the concentrations of iron and boron that are contained in the
chromium plating layer. The color tone becomes blackish particularly when the iron
content increases. Although not clearly known, it is believed that, when growing a
chromium plating layer from a trivalent chromium plating solution, the iron within
a chromium plating layer binds with various elements within the plating solution,
thus generating a deposit containing black iron.
[0065] Therefore, in order to a silver-gray color tone similar to a chromium plating layer
which is formed from a hexavalent chromium plating solution, the boron content is
preferably 0.1 mass% or less and the iron content is 2 mass% or less in the chromium
plating layer 3. The iron content should be as little as possible, and is more preferably
1 mass% or less, and further more preferably 0.5 mass% or less.
[0066] However, in the case where the engine part according to the present invention is
not to be used in a manner of being compared against a chromium plating layer which
is formed from a hexavalent chromium plating solution, the boron content may be prescribed
to be 0.3 mass% or less and the iron content to be 7 mass% or less, whereby a chromium
plating layer with a color tone that qualifies for chromium plating can be obtained,
although its color tone may be somewhat muddier.
[0067] The boron and iron contents in the chromium plating layer are to be each expressed
as a maximum value when the content of each element, contained along the depth direction
of the chromium plating layer, is analyzed through GDS analysis.
[0068] In the case where the boron content is 0.1 mass% or less and the iron content is
2 mass% or less in the chromium plating layer 3, the chromium plating layer has a
color tone such that an L* value measured according to CIE (Commission Internationale
de l'Eclairage) 1976 is in a range from 68 to 80. The L value is to be measured by
using a spectrometric color difference meter (e.g., color analyzer TC-1800MK-II (Tokyo
Denshoku)). This value is similar to that of a chromium plating layer which is formed
from a hexavalent chromium plating solution. Therefore, even in a side-by-side comparison
between the chromium plating layer 3 whose iron content is confined within the aforementioned
range and a chromium plating layer which is formed from a hexavalent chromium plating
solution, hardly any difference in color tone will be noticed.
[0069] Since the engine part has such a structure, it is possible, by using a trivalent
chromium plating solution, to obtain a chromium plating layer which has as good film-forming
characteristics as those of a plating layer which is formed from a hexavalent chromium
plating solution and which has good thermal resistance. Moreover, by prescribing the
boron content to be 0.1 mass% or less and the iron content to be 2 mass% or less in
the chromium plating layer, a silver-gray color tone similar to that of a chromium
plating layer which is formed from a hexavalent chromium plating solution can be obtained.
[0070] (iv) Mechanism of discoloration prevention
The engine part according to the present invention can be suitably used in parts of
an engine; e.g., a cylinder, a cylinder head, and a head cover; an exhaust pipe for
guiding along exhaust gas from the engine; and the like. However, in the case where
the engine part according to the present invention is used in a place which is exposed
to a heat of 350°C or above, the color tone of the surface may change due to heating,
so that the chromium plating layer may appear blue-violet. In the case where the engine
part according to the present invention is used in such a place, it is preferable
that the chromium plating layer has a thickness of 0.2 µm or more. Hereinafter, the
reason why discoloration of the chromium plating layer due to heating can be prevented
by controlling the thickness of the chromium plating layer will be described with
reference to FIG. 3 and FIG. 4.
[0071] FIG. 3 is a diagram schematically showing a manner in which C and/or S gather near
the interface between the chromium plating layer and the underlying plating layer
responsive to heating, thus showing a generation mechanism of a "C-S thickened layer"
or a "C-S-Ni thickened layer" (hereinafter may simply be referred to as a "thickened
layer"), which is considered as responsible for the surface discoloration of the chromium
plating layer. FIG. 3 illustrates a typical structure according to the present invention,
in which a nickel plating layer is formed between an Fe substrate and a chromium plating
layer. The nickel plating layer is composed of the following three layers, respectively
from the Fe substrate side: a semigloss nickel plating layer, a tri-nickel plating
layer, and a gloss nickel plating layer.
[0072] Note that, responsive to heating, various elements which compose the additives contained
in the chromium plating layer and/or the nickel plating layer will gather near the
interface between the chromium plating layer and the nickel plating layer. FIG. 3
only shows those elements which are considered as contributive to the discoloration
of the chromium plating layer, i.e., the elements (at least one of C, S, and Ni) composing
the aforementioned thickened layer and elements (e.g., Fe or Cr) which are likely
to bind to these elements, while omitting any other elements (e.g., O which gathers
near the aforementioned interface responsive to heating).
[0073] As shown in FIG. 3, mainly C or S moves from the nickel plating layer side to the
chromium plating layer side, thus gathering at the aforementioned interface. As described
earlier, C or S is mainly the element which composes a non-butyne-type brightener
(e.g., benzene sulfonic acid) which is added to the nickel plating solution. In particular,
a large amount of S is contained in the gloss nickel plating layer and the tri-nickel
plating layer. Therefore, near the aforementioned interface, a "C-S thickened layer"
in which a large amount of C or S has gathered is formed. As used herein, a "C-S thickened
layer" means a layer in which at least one of C and S has gathered. Note that, although
C or S may also diffuse over from the chromium plating layer side, such diffusion
will account for a very small proportion as compared to the diffusion from the nickel
plating layer side, and therefore is omitted from illustration.
[0074] In the case where the underlying plating layer is a nickel plating layer, a "C-S-Ni
thickened layer" containing Ni will be formed. Similarly to C or S, Ni is also considered
as contributive to discoloration. As used herein, a "C-S-Ni thickened layer" means
a layer in which at least one of C or S and Ni has gathered.
[0075] Although not clearly known, the reason why formation of such a thickened layer causes
surface discoloration of the chromium plating layer may be that the Cr composing the
chromium plating layer may bind to the element (C or S, or Ni) composing the thickened
layer and change the refractive index of the chromium plating layer, thus causing
discoloration, for example. Iron is also considered as a substance that contributes
to discoloration. In the case where the metal substrate is composed of an Fe-type
material, responsive to heating, Fe may diffuse from the Fe-type material and become
thickened in the area of the aforementioned interface (not shown).
[0076] Surface discoloration of the chromium plating layer associated with such a thickened
layer can be prevented by forming the thickness of the chromium plating layer to be
0.2 µm or more. Hereinafter, the reason thereof will be described with reference to
FIGS. 4(a) and (b).
[0077] FIG. 4(b) is a diagram schematically showing a portion of a conventional Cr-nickel
plating layer. As shown in FIG. 4(b), the thickness of the conventional chromium plating
layer is as small as about 0.1
µm or less. Therefore, incident light will be transmitted to the vicinity of the interface
between the chromium plating layer and the nickel plating layer. Consequently, a portion
of the incident light will be absorbed by the thickened layer which is generated near
the interface, thus making the discoloration due to heating more conspicuous.
[0078] On the other hand, by prescribing the thickness of the chromium plating layer to
be 0.2 µm or more, as shown in FIG. 4(a), the incident light will for the most part
be reflected near the surface of the chromium plating layer, instead of being transmitted
over to the vicinity of the interface between the chromium plating layer and the nickel
plating layer. Therefore, only the interference colors caused by the usually-occurring
oxide coating on the outermost surface of a chromium plating layer are observed, and
the influence due to the thickened layer can be minimized.
[0079] In order to allow such action to be effectively exhibited, the thickness of the chromium
plating layer is set to be 0.2
µm or more. From the perspective of prevention of thermal discoloration due to heating,
the chromium plating layer should be as thick as possible. Preferably, the thickness
of the chromium plating layer is 0.3
µm or more, and more preferably 0.4
µm or more.
[0080] Thus, in order to prevent crack generation and discoloration due to heating, the
thickness of the chromium plating layer is preferably no less than 0.2µm and no more
than 0.7µm, and more preferably no less than 0.3µm and no more than 0.5µm. When the
thickness of the chromium plating layer is no less than 0.4µm and no more than 0.5µm,
crack generation can be almost surely prevented, and discoloration due to heating
can be surely prevented.
[0081] The thickness of the chromium plating layer 3 may be measured through observation
with an optical microscope (magnification: × 400). Specifically, a cross section along
the thickness direction of the plating layer is mirror-polished and etched. As a result,
the chromium plating layer becomes clearly distinguishable from the underlying plating
layer. Note that the chromium plating layer will have a surface roughness Ra of not
more than about 0.01 µm, and therefore the influence of the surface roughness Ra on
the thickness of the chromium plating layer is virtually negligible. Since the thickness
of the chromium plating layer will slightly vary depending on the measurement site,
a total of three measurements are to be taken in different measurement sites within
a given a field of observation, and an average value thereof is to be defined as the
"thickness of the chromium plating layer".
[0082] Another means for preventing discoloration due to the formation of a thickened layer
might be to reduce the C or S content, although this method would not be practical.
For example, in order to reduce the C or S content, the amount of brightener to be
contained in the underlying plating layer would mainly have to be reduced. However,
this would result in a reduced luster, and thus considerably impair the design of
the engine part. When good design is considered as an important factor as in the case
of the present invention, any deterioration in design because of not using the brightener
must definitely be avoided.
[0083] In order to prevent discoloration due to heating, it will suffice if a portion of
the chromium plating layer 3 which is to be heated to a temperature of 350°C or above
satisfies the aforementioned range of thickness. It is not necessary that the entire
area of the chromium plating layer 3 formed on the metal substrate 1 satisfy the aforementioned
range of thickness. In regions which will only rise to a temperature of 350 °C or
less, the thickness of the chromium plating layer 3 may be 0.2 µm or less. In general,
a chromium plating layer is tinted from silver-gray to yellow to gold responsive to
heating, and at a high temperature of about 350 to 500°C, becomes discolored from
gold to violet. Such changes in color tone will not be uniformly observed over the
entire area in which the chromium plating layer is formed, but will be most noticeable
in portions which are likely to be exposed to a high-temperature exhaust gas. Therefore,
in order to prevent discoloration from gold to violet, it will be sufficient to control
the thickness of the portion at which discoloration due to heating is most likely
to occur, i.e., the region of the chromium plating layer that is exposed to a temperature
of 350 °C or above, to be in the aforementioned range.
[0084] Examples of the "region which is to be heated to a temperature of 350°C or above"
may include a portion of an engine part composing an engine, e.g., a cylinder, a cylinder
head, a head cover, as well as a portion of an exhaust pipe defining a channel for
guiding the exhaust gas discharged from the engine, or a cover of the exhaust pipe.
As used herein, the exhaust pipe may be an exhaust pipe which directly guides exhaust
gas, or an exhaust pipe (a double tube) which is indirectly heated by exhaust gas.
An exhaust pipe includes a manifold section for guiding along the exhaust gas from
each cylinder, a catalytic apparatus accommodating section covering a catalytic apparatus,
a muffler, and the like.
(2) Specific structure and application to motorcycle
[0085] With reference to FIG. 5, a specific structure of the engine part according to the
present invention will be described. FIG. 5 shows a motorcycle 100 incorporating an
exhaust pipe which is an engine part according to the present invention. As shown
in FIG. 5, the motorcycle 100 includes an engine 30 which is composed of a 4-cycle
internal combustion engine, and an exhaust pipe 4 for guiding the exhaust gas generated
in the engine 30 so as to be discharged at the rear portion of the body. The exhaust
pipe 4 includes an exhaust pipe congregation section 4a, which is connected to the
engine 30 and constitutes a substantially bent exhaust path for allowing the exhaust
gas having been discharged at the front of the engine 30 to be guided toward the rear,
and a muffler 4b. The exhaust pipe congregation section 4a may be integrally formed
of a single part, or composed of a plurality of parts which are connected with one
another. In the present embodiment, the exhaust pipe 4 is entirely exposed so as to
appear on the exterior of the motorcycle 100, thus constituting a part of the design
of the motorcycle 100 as a whole. As will be specifically described below, the effect
of the present invention, i.e., cracks or rust does not occur in the chrome plating
layer of the exhaust pipe 4, discoloration is prevented, and the fresh exterior appearance
of a brand-new motorcycle is retained for long periods of time, is more clearly enhanced
in the exterior appearance in the case where the entire exhaust pipe 4 is exposed.
However, as long as the exhaust pipe 4 at least partially appears on the exterior,
a part of the exhaust pipe 4 may be covered by a cowl or a protector, depending on
the design of the motorcycle. Moreover, the shape of the motorcycle for which the
exhaust pipe is used is not limited to that shown in FIG. 5. For example, the exhaust
pipe according to the present invention may be adopted in a motorcycle having a structure
as shown in FIG. 9.
[0086] Next, with reference to FIGS. 6(a), (b), and (c), the "region of the metal substrate
surface that is to be heated to a temperature of 350°C or above", on which the chromium
plating layer preferably has a thickness of 0.2 µm or more, will be described. Each
of these figures is a cross-sectional view showing a part of the exhaust pipe 4.
[0087] FIG. 6(a) shows an exhaust pipe congregation section 4a of the exhaust pipe 4, which
is directly connected to an engine. As shown in FIG. 6(a), the exhaust pipe congregation
section 4a, which is connected to an engine (not shown), includes a metal tube 5 defining
a passage 6 in which exhaust gas travels through, and a plating layer 10 covering
the outer side surface of the metal tube 5. The metal tube 5 includes a bent portion
9. The bent portion 9 is a portion at which the passage 6 is bent, or a portion at
which the longitudinal direction of the passage 6 changes.
[0088] As described above, the plating layer 10 includes an underlying plating layer and
a chromium plating layer. The metal tube 5 simply needs to define the passage 6, and
may have a double-tube structure composed of an inner tube defining the passage 6
and an outer tube covering the inner tube from the outside.
[0089] The exhaust gas that comes through the exhaust pipe congregation section 4a, which
is directly connected to the engine (not shown), rapidly travels through the passage
6, and therefore collides against the metal tube 5 at the bent portion 9. The exhaust
gas collides especially intensely against an inner side surface 9b of the metal tube
5 that is located at the convex surface portion 9a, which in itself is formed as a
result of the bending. Therefore, the outer convex surface portion 9a is heated by
the high-temperature exhaust gas to a temperature of about 350 °C or more (e.g., about
400 to 500°C).
[0090] In the case where the metal tube 5 has a double-tube structure, a single-tube structure
is often adopted for a link section 21 at which another exhaust pipe member 23 is
to be connected. The reason is that, if a double-tube structure were adopted at the
link section 21, the metal tube 5 might deform or be destroyed due to a difference
in thermal expansion between the outer tube and the inner tube during the welding
to the other exhaust pipe member 23. If the metal tube 5 is of such a structure, the
link section 21 will be heated to a temperature of about 350°C or more (e.g., about
400 to 500°C) as the high-temperature exhaust gas comes in direct contact with the
inner side surface of the link section 21.
[0091] FIG. 6(b) schematically shows a cross section of a catalyst accommodating section
22 of the exhaust pipe 4, in which a catalytic apparatus 8 is accommodated. The catalytic
apparatus 8 which is provided within the catalyst accommodating section 22, decomposes
at least one component contained in the exhaust gas when the exhaust gas travel therethrough.
Since the catalytic apparatus 8 is heated responsive to the aforementioned decomposition,
the catalyst accommodating section 22 is heated to a temperature of about 350°C or
more (e.g., about 400 to 500°C).
[0092] In the case where the engine 30 (FIG. 5) has a plurality of cylinders, the exhaust
pipe 4 may include a manifold section for combining the exhaust gas generated in the
respective cylinders so as to allow such exhaust gas to be guided to the rear portion
of the motorcycle 100. FIG. 6(c) shows an exhaust pipe 4 having a manifold section
15 at which branch pipes 4d and 4e (each of which is connected to a cylinder) come
together, such that discharge takes place through a unified exhaust pipe member 4f.
At such a manifold section 15 of the exhaust pipe congregation section 4a, exhaust
gas comes together through the plurality of branch pipes 4d and 4e, whereby the flow
rate of the exhaust gas is increased, and the flow paths are deflected. As a result,
the exhaust gas collides against the inner side surface of the manifold section 15.
Therefore, the manifold section 15 is heated by the exhaust gas to a temperature of
about 350°C or more (e.g., about 400 to 500°C).
[0093] In the motorcycle of the present embodiment, those portions of the exhaust pipe which
are exemplified as being heated to a high temperature in FIGS. 6(a), (b), and (c)
are covered from the outside by a chromium plating layer of 0.2 µm or more. As a result,
even when exposed to a high-temperature exhaust gas, discoloration of the chromium
plating layer due to the heating can be prevented.
[0094] In the case of using a chromium plating layer which is formed by using trivalent
chromium, the Fe content in the chromium plating layer is reduced. As a result, an
excellent color tone similar to that which is obtained by using hexavalent chromium
can be expressed.
[0095] The present invention also encompasses a transportation apparatus incorporating the
above-described engine part(s). Examples of transportation apparatus include a vehicle
having an engine (e.g., a motorcycle or an all-climate four-wheeled vehicle) and a
transportation apparatus having an engine (e.g., a marine vessel or an airplane).
2. Method of producing the engine part
[0096] Next, a method for producing an engine part according to the present invention will
be described. The engine part according to the present invention is produced by sequentially
forming an underlying plating layer and a chromium plating layer on a metal substrate
having a predetermined shape. Hereinafter, the production method will be specifically
described.
[0097] First, in order to degrease and clean the surface of a metal substrate, a metal substrate
is immersed in a bath such as a water rinse bath, ultrasonic wave alkaline degreasing
bath, electrolytic degreasing bath, or acid treatment activation bath for a predetermined
period of time. As a result of this, the surface of the metal substrate is sufficiently
degreased, thus making it easy to form an underlying plating layer and a chromium
plating layer on the metal surface.
[0098] Next, by using the metal substrate thus washed, an electroplating is conducted to
sequentially form an underlying plating layer and a chromium plating layer at least
on the outer surface of the metal substrate. Both the underlying plating layer and
the chromium plating layer are to be formed through electroplating, based on the same
principle. Therefore, in the following description, only the step of forming the chromium
plating layer will be specifically described by using the plating apparatus shown
in FIG. 7, whereas the step of forming the underlying plating layer will be described
without referring to any figures.
[0099] The underlying plating layer is formed by immersing the aforementioned metal substrate
in a plating trough containing a solution of a metal from which a plating layer is
to be formed, and applying power until reaching a desired thickness. For example,
in the case where three nickel plating layers, namely a semigloss nickel plating layer,
a tri-nickel plating layer, and a gloss nickel plating layer, are to be formed as
the underlying plating layer, the metal substrate which has been washed in the aforementioned
manner is immersed in a semigloss nickel plating solution, a tri-nickel plating solution,
and a gloss nickel plating solution, and power is applied until the respective desired
plating layers are obtained. The specific plating conditions will depend on the metal
substrate to be used, plating solution composition, purpose, and the like. The conditions
which are usually used for Ni-chromium plating can be selected as appropriate. For
example, in the case where a semigloss nickel plating layer (5 to 15
µm), a tri-nickel plating layer (1 to 2
µm), and a gloss nickel plating layer (5 to 15
µm) are to be sequentially formed on an Fe substrate, it is preferable to control the
temperature of the plating solution to be about 40 to 65°C , and the pH of the plating
solution to be about 2 to 5. The plating time is preferably about 10 to 20 minutes
for semigloss nickel plating as well as gloss nickel plating, and about 1 to 5 minutes
for tri-nickel plating. Note that a strike nickel layer may be further provided between
the underlying plating layer and the metal substrate.
[0100] Next, a chromium plating layer is formed on the metal substrate on which the underlying
plating layer has been formed. As shown in FIG. 7, a chromium plating apparatus 20
includes a chromium plating trough 11 in which to perform chromium plating, a pump
12 for pumping up a plating solution which has been introduced to the chromium plating
trough 11, a percolator 13 for removing impurities which are suspended in the plating
solution, an adjustment valve 14 for adjusting the flow rate of the plating solution,
and a flowmeter 15 for monitoring the flow rate of the plating solution. On the downstream
end of the chromium plating apparatus 20, an ion exchange apparatus 16 for removing
the metal ions (such as Fe) contained in the plating solution is provided. The chromium
plating apparatus 20 and the ion exchange apparatus 16 are connected to each other
via a metal tube (not shown).
[0101] The chromium plating trough 11 is filled with a trivalent chromium plating solution.
As a trivalent chromium ion source, the plating solution contains basic chromium sulfate
which converts to 30 to 40g/l of chromium.
[0102] In order for the amounts of boron and iron contained in the chromium plating layer
to fall within the aforementioned ranges, it is necessary to ensure that the concentrations
of boron and iron within the plating solution that is used fall within predetermined
ranges. Specifically, the trivalent chromium plating solution has a boric acid content
in a range from 1 to 5 g/l as converted to a boron amount, and an Fe content of 0.5
mg/l or less.
[0103] The boric acid content is reduced to about 1/15 to 5/6 as compared to the amount
of boron that is added to a typical conventional trivalent chromium plating solution
(about 6 to 15 g/l). In recent years, regulations on the amounts of boron to be discharged
to the environment have been introduced. Using a plating solution with a low boron
concentration also complies with such environmental regulations.
[0104] Moreover, a typical conventional trivalent chromium plating solution contains about
0.0001 to 0.0003 mass% of ferrous sulfate as an additive, in order to enhance the
throwing power and the like of the plating layer. Therefore, when using a conventional
trivalent chromium plating solution, the chromium plating layer contains about 2 to
20 mass% of Fe. However, it is preferable that the trivalent chromium plating solution
to be used in the present invention does not contain such an additive, and the Fe
content is restricted to 0.5 mg/l or less.
[0105] Boric acid is used to adjust pH and to allow the chromium plating layer to acquire
a silver-gray color tone. Therefore, in order to reduce the boric acid amount and
maintain appropriate pH, the trivalent chromium plating solution to be used in the
present invention contains citric acid or a citrate compound, as converted to a citric
acid amount in a range from 5 to 30 g/l. As citrate compounds, citrates such as potassium
citrate or metal citrate compounds such as nickel citrate can be used. In order to
obtain a chromium plating layer with good color tone, it is more preferable to use
citric acid. The amount of citric acid to be added is preferably no less than 10 g/l
and no more than 25 g/l, and more preferably no less than 20 g/l and no more than
25 g/l.
[0106] The chromium plating is to be carried out via electroplating. The chromium plating
trough 11 is filled with the aforementioned trivalent chromium plating solution, and
a metal substrate 17 which is to receive chromium plating is used as a cathode. Since
chromium plating is to be performed while supplying chromium ions from the plating
solution, an insoluble anode 18 which does not dissolve in a chromium plating solution
is used as an anode.
[0107] Next, the DC power source 19 is connected between the electrodes, and power is supplied
therefrom. The chromium ions contained in the chromium plating solution move toward
the cathode side, i.e., the metal substrate 17, where the ions are reduced to metal
Cr and deposit.
[0108] In order to form a chromium plating layer of 0.2 µm or more in a region which is
to be heated to a temperature of 350°C or above, the plating is preferably performed
while placing the metal substrate in a position which will allow a chromium plating
layer having a desired thickness to be formed. In particular, in the case where a
metal substrate such as a curved exhaust pipe is to be plated, it is preferable to
locate the metal substrate so that the distance between the electrode and the material
to be plated (metal substrate) is as short as possible.
[0109] For example, as shown in FIG. 8(a), if the metal substrate 17 is arranged so that
the distance between the convex portion 9a of the bent portion of the metal substrate
17 and the electrode 18 becomes smallest, a Cr layer can be efficiently formed at
the convex portion 9a, which will be heated to a high temperature.
[0110] On the other hand, as shown in FIG. 8(b), if the metal substrate 17 is arranged so
that a long distance exists between the convex portion 9a of the metal substrate 17
and the electrode 18, a chromium plating layer is likely to be formed at the concave
portion opposite from the convex portion 9a, and not at the convex portion 9a itself,
thus resulting in a poor plating efficiency.
[0111] Otherwise, by controlling the amount of charge (current × time) traveling through
the electrode surface, current density, or the like, for example, the thickness of
the chromium plating layer can be controlled to be within a predetermined range. In
particular, the electrode positioning may be controlled, or an auxiliary electrode
may be attached to control the current density or the like, for example, thus making
it easier to form a predetermined chromium plating layer in regions which are to be
heated to a temperature of 350°C or above. In the specific controlling method, appropriate
conditions may be selected according to the type and shape of the metal substrate
which is used, the constitution of the plating solution, the thickness of the chromium
plating layer, or the like. Especially in the case
where no ferrous sulfate is contained in the plating solution, the throwing power
of a plating layer will generally worsen, and therefore it is necessary to ensure
a uniform current density by optimizing the electrode location, for example.
[0112] The boron contents in the chromium plating layer to be formed depends not only on
the boron concentration in the plating solution but also on the temperature of the
plating solution, plating time, stirring rate of the plating solution, etc., and in
particular on the temperature of the plating solution. Generally speaking, the boron
content in the chromium plating layer increases as the temperature of the plating
solution increases. Therefore, in order to keep the boron amount in the chromium plating
layer within the aforementioned range, it is preferable to control the temperature
of the plating solution to be in a range from 25°C to 30°C.
[0113] In order to ensure that the iron content in the chromium plating layer falls in the
aforementioned range, it is necessary to pay attention to the iron which elutes from
the metal substrate into the plating solution. Moreover, even if the metal substrate
does not include iron as its main component, Fe may inevitably gather at the chromium
plating layer in some cases. As a result, even if ferrous sulfate is not added to
the plating solution, the iron concentration within the plating solution may increase
so that iron may be contained in the chromium plating layer.
[0114] In order to eliminate such possibilities, it is necessary to regularly monitor the
iron concentration in the plating solution during plating, and remove the iron when
the iron concentration reaches a predetermined value or more. The iron ions which
stray into the plating solution are to be removed by using the ion exchange apparatus
16, which includes a cation exchange resin. The cation exchange resin to be used for
the present invention may be any resin that permits easy exchange with divalent metal
cations such as Fe, without any particular limitations.
[0115] The specific removal method may be as follows. First, during the plating, the plating
solution is regularly pumped up from the plating trough 11 by using the pump 12, and
suspended matter is removed by using the percolator 13. Next, the plating solution
from which the suspended matter has been removed is introduced into the ion exchange
apparatus 16, while adjusting the flow rate via the adjustment valve 14, and metal
cations such as Fe ions are removed by using the cation exchange resin. The flow rate
of the plating solution is monitored with the flowmeter 15. The plating solution which
has been processed by the ion exchange apparatus 16 is regularly collected in order
to check for Fe concentration. In order to reduce the Fe concentration within the
chromium plating layer to 2 mass% or less as in the present invention, it is necessary
to control the Fe concentration in the plating solution to be about 0.0001 mass% or
less. Thus, removal by the ion exchange apparatus 16 is performed until the aforementioned
range is satisfied.
[0116] The plating solution (recovered plating solution) from which Fe ions are thus removed
exits the outlet of the ion exchange apparatus 16, and is led through the tube path
24, thus to be circulated to the plating trough 11. The recovered plating solution
may be stored in an appropriate storage container (not shown), for example.
[0117] Note that a technique of removing metal cations within a plating solution by using
the ion exchange apparatus 16 is specifically described in Patent Document 4, for
example, and such a technique is applicable to the method of the present invention.
Moreover, various alterations thereof have also been proposed (e.g., Patent Document
5), which are also applicable to the method of the present invention.
[0118] The chromium plating layer after the plating has a surface roughness (Ra) of about
1 µm or less, and preferably a surface roughness of 0.2µm or less. Therefore, after
the plating, the chromium plating layer has sufficient luster, without the need to
particularly finish up the surface.
3. Experimental example
(Experimental Example 1)
[0119] In this Experimental Example, the following experiment was performed in order to
prove that stability of plating growth is ensured by setting the lower limit of the
boron content in the chromium plating layer to be 0.05 mass%.
[0120] First, metal tubes composed of STKM were prepared, and a Ni plating layer composed
of a semigloss Ni plating layer, a tri-Ni plating layer, and a gloss Ni plating layer
was formed by the following method. The compositions of the plating solutions used
for forming these plating layers are shown in Table 1. Note that the C and/or S contained
in the tri-Ni plating solution was supplied from an additive other than a brightener.
[0121] Semigloss Ni plating layer (thickness: about 5 to 15 µm)
plating conditions: power was supplied at 10 to 12V (volts), 1800 to 2800A (amperes).
Tri-Ni plating layer (thickness: about 1 to 5
µm)
plating conditions: power was supplied at 3 to 3.5V (volts), 20 to 40A (amperes).
Gloss Ni plating layer (thickness: about 5 to 15
µm)
plating conditions: power was supplied at 10 to 12V (volts), 1800 to 2800A (amperes).
[0122]
[Table 1]
Component |
Semigloss Nickel |
Tri-Nickel |
Gloss Nickel |
Nickel Sulfate (g/l) |
200-260 |
180-230 |
200-400 |
Nickel Chloride (g/l) |
30-60 |
30-60 |
30-60 |
Boric Acid (g/l) |
35-60 |
35-60 |
35-60 |
Brightener |
Added |
None |
Added |
Amounts of carbon and sulfur (%) |
0.0001 |
0.1-0.2 |
0.05 |
pH |
4-4.4 |
2-2.4 |
4-4.4 |
[0123] Next, by using a chromium plating apparatus having an ion exchange apparatus as shown
in FIG. 6, a chromium plating layer was formed on the underlying plating layer (the
chromium plating layer had a thickness of 0.3
µm). As the chromium plating solution, four types of trivalent chromium plating solutions
as described in Table 2 were used (Nos. 1 to 4). The components of the trivalent chromium
plating solutions of Sample 1 to Sample 4 were identical except for different ferrous
sulfate and boric acid contents. Specifically, each of these trivalent chromium plating
solutions contained citric acid, and ferrous sulfate was added in amounts of 0 (Sample
1), 2.5 mg/l (Sample 2), 5 mg/l (Sample 3), and 10 mg/l (Sample 4); or, as converted
to Fe amounts, 0 (Sample 1), 0.05 mg/l (Sample 2), 0.1 mg/l (Sample 3), and 0.3 mg/l
(Sample 4). On the other hand, boric acid was added in amounts of 5 g/l (Sample 1),
5 g/l (Sample 2), 30 g/l (Sample 2), and 60 g/l (Sample 3).
[0124]
[Table 2]
Component |
Sample 1 (Present Invention) |
Sample 2 (Present Invention) |
Sample 3 (Comparative Example) |
Sample 4 (Comparative Example) |
Basic Chromium Sulfate Cr(OH)SO4 (g/l) |
95-115 |
95-115 |
95-115 |
95-115 |
Boric Acid H3BO4 (g/l) |
5 |
5 |
30 |
60 |
Citric Acid* |
30 |
30 |
30 |
30 |
Ammonium Formate HCOONH4 (g/l) |
200 |
200 |
200 |
200 |
Surfactant**(mg/l) |
6.5 |
6.5 |
6.5 |
6.5 |
Ferrous Sulfate FeSO4 · 7H2O (mg/l) |
0 |
2.5 |
5 |
10 |
(Note)
*HOOCCH2C(OH) (COOH)CH2COOH
**Sodium Sulfosuccinate 2-Ethylhexyl Sodium Sulfate |
[0125] Note that, in order to adjust the boron content in the plating layer in various ranges,
the temperature of the plating solution was varied in a range from about 25 to 60°C,
and the current density was varied in a range from about 10 to 30A/dm
2, while also adjusting the air agitation amount of the plating solution.
[0126] In the case where the trivalent chromium plating solution of Sample 1 (Present Invention)
was used, the Fe ions which strayed into the plating were removed by using an ion
exchange apparatus having a cation exchange resin. Specifically, a plating solution
was regularly fed to the ion exchange apparatus, and the Fe concentration within the
plating solution was controlled to be within the range from 0 to 0.0001 mass%. As
a result, in the case where the trivalent chromium plating solution of Sample 1 (Present
Invention) was used, the Fe content in the chromium plating layer was 0.2 mass% at
the most, when being measured along the thickness of the plating layer. On the other
hand, in the case where the trivalent chromium plating solutions of Sample 2 to Sample
4 were used, the respective chromium plating layers had Fe contents (maximum values)
of 2.0 mass%, 7.0 mass%, and 15.0 mass% because Fe ion removal with an ion exchange
apparatus was not performed.
[0127] With respect to each sample, stability of plating growth was measured by the aforementioned
method, and evaluations were made according to the following standards, based on the
thickness of the chromium plating layer at each measurement site.
<Stability of Plating Growth>
[0128] Evaluation Standards (where ⊚ to Δ correspond to Present Invention)
⊚: chromium plating layer has a thickness in the range of no less than 0.25mm but
less than 0.5mm.
○: chromium plating layer has a thickness in the range of no less than 0.20mm but
less than 0.25.
Δ: chromium plating layer has a thickness in the range of no less than 0.05mm but
less than 0.20mm.
× : chromium plating layer has a thickness less than 0.05mm.
[0129] The obtained results are shown in Table 3.
[0130]
[Table 3]
Sample No. |
Concentration of Iron added to Plating Solution (mg/l) |
Concentration of Iron in Plating Layer (mass %) |
Boron Content in Chrome Plating Layer (mass %) |
0 |
0.05 |
0.1 |
0.2 |
0.3 |
Sample 1 |
0 |
0.2 |
|
○ |
⊚ |
⊚ |
⊚ |
Sample 2 |
2.5 |
2 |
× |
○ |
⊚ |
⊚ |
⊚ |
Sample 3 |
5 |
7.0 |
× |
○ |
⊚ |
⊚ |
⊚ |
Sample 4 |
10 |
15.0 |
× |
○ |
⊚ |
⊚ |
⊚ |
[0131] It can be seen from Table 3 that, when any of the trivalent chromium plating solutions
of Sample 1 to Sample 4 is used, plating growth becomes considerably unstable in the
case where no boron is contained in the chromium plating layer (zero content), but
plating can stably grow in the case where plating conditions are set so that at least
0.05 mass% or more of boron is contained in the chromium plating layer. As far as
stable plating growth is concerned, the boron content in the chromium plating layer
is preferably as much as possible.
[0132] Thus, it has been proven that boron is an indispensable component for ensuring stability
of plating growth, and that good plating characteristics cannot be obtained from merely
adding citric acid instead of boric acid. This effect, i.e., stable growth of plating
which is realized by the addition of boron, was similarly observed irrespective of
the Fe content in the plating layer.
[0133] Next, in order to further investigate in the aforementioned effects of boron, chromium
plating layers were formed in a manner similar to the aforementioned method by using
the trivalent chromium plating solution of Sample 1, and their plating anticorrosiveness
and plating abrasion resistance were measured according to the aforementioned method,
based on the following standards.
<Plating Anticorrosiveness>
[0134] Evaluation Standards (where ⊚ to Δ correspond to Present Invention)
⊚: rating number is no less than 9.0.
○: rating number is no less than 8.0 but less than 9.0.
Δ: rating number is no less than 7.0 but less than 8.0.
×: rating number is less than 7.0.
<Plating Abrasion Resistance>
[0135] Evaluation Standards (where ⊚ to Δ correspond to Present Invention)
⊚: Vickers hardness is 500 Hv or more.
○ : Vickers hardness is no less than 450 Hv but less than 500 Hv.
Δ: Vickers hardness is no less than 350 Hv but less than 450 Hv.
×: Vickers hardness is less than 350 Hv.
[0136] The obtained results are shown in Table 4. Table 4 also shows results of plating
growth stability.
[0137]
[Table 4]
Characteristics |
Boron Content in Chrome Plating Layer (mass %) |
0 |
0.05 |
0.1 |
0.2 |
0.3 |
Stability of Plating Growth |
× |
○ |
⊚ |
⊚ |
⊚ |
Plating Anticorrosiveness |
× |
⊚ |
⊚ |
○ |
Δ |
Plating Abrasion Resistance |
× |
⊚ |
⊚ |
○ |
Δ |
[0138] It can be seen from Table 4 that plating anticorrosiveness and plating abrasion resistance
are considerably degraded in the case where no boron is contained in the chromium
plating layer (zero content), but these properties are improved in the case where
plating conditions are set so that at least 0.05 mass% or more of boron is contained
in the chromium plating layer. These results are similar to the aforementioned results
of stability of plating growth. Thus, it can be seen that boron is an indispensable
component not only for the enhancement of stability of plating growth but also for
the enhancement of plating anticorrosiveness and plating abrasion resistance.
[0139] However, as shown in Table 4, plating anticorrosiveness and plating abrasion resistance
are gradually degraded once the boron content in the chromium plating layer exceeds
0.1 mass%. These results differ from the aforementioned results of stability of plating
growth.
[0140] From the above results, in order to improve the plating film-forming characteristics
which are to be evaluated in a totalistic manner based on the three properties of
plating growth stability, plating anticorrosiveness, and plating abrasion resistance,
it is preferable to control the boron content in the chromium plating layer to be
in the range from 0.05 to 0.3 mass%.
(Experimental Example 2)
[0141] In this Experimental Example, the following experiment was performed in order to
prove that the color tone of a chromium plating layer immediately after plating is
improved by controlling the boron content and Fe content in the chromium plating layer.
[0142] Specifically, four kinds of trivalent chromium plating solutions, i.e., Sample 1
to Sample 4 in Experimental Example 1, were used to form chromium plating layers in
a manner similar to Experimental Example 1 described above.
[0143] With respect to each sample thus obtained, a color tone immediately after plating
was measured by the following method, and evaluated based on the following standards.
<Color Tone Immediately After Plating>
[0144] By using a spectrometric color difference meter (color analyzer TC-1800MK-II (Tokyo
Denshoku)), the L* value was measured according to the method described in CIE 1976.
The color tone of a chromium plating layer which is obtained by using a hexavalent
chromium plating solution is in a range from 70 to 80 in L* value. In this Experimental
Example, it is regarded that a color tone similar to that of a chromium plating layer
which is obtained from a hexavalent chromium plating solution has been obtained so
long as the L* value is 68 or more.
Evaluation Standards:
[0145] ⊚: A good color tone similar to that which is obtained by using hexavalent chromium
is obtained.
(L* value = no less than 70 and no more than 80) ○: A color tone similar to that which
is obtained by using hexavalent chromium is obtained, with a slightly lower metallic
luster.
(L* value = no less than 68 but less than 70) Δ: A slightly blackish color tone is
obtained.
(L* value = no less than 65 but less than 68) ×: A blackish color tone is obtained.
(L* value = less than 65)
[0146] These results are shown in Table 5.
[0147]
[Table 5]
Sample No. |
Concentration of Iron in Plating Layer (mass %) |
Boron Content in Chrome Plating Layer (mass %) |
0.05 |
0.1 |
0.2 |
0.3 |
0.5 |
0.8 |
1.0 |
1.5 |
Sample 1 |
0.2 |
⊚ |
⊚ |
Δ |
Δ |
× |
× |
× |
× |
Sample 2 |
2 |
○ |
○ |
Δ |
Δ |
× |
× |
× |
× |
Sample 3 |
7.0 |
Δ |
Δ |
Δ |
Δ |
× |
× |
× |
× |
Sample 4 |
15.0 |
× |
× |
× |
× |
× |
× |
× |
× |
[0148] As is clear from Table 5, when the trivalent chromium plating solution of Sample
4 was used and the Fe content in the chromium plating layer was controlled to 15.0
mass%, a chromium plating layer with a blackish color tone was obtained, irrespective
of the boron content in the chromium plating layer.
[0149] When the trivalent chromium plating solution of Sample 3 was used and the Fe content
in the chromium plating layer was controlled to 7.0 mass%, a chromium plating layer
with a slightly blackish color tone was obtained by controlling the boron amount to
0.3 mass% or less.
[0150] On the other hand, when the trivalent chromium plating solution of Sample 2 was used
and the Fe content in the chromium plating layer was reduced to 2.0 mass%, a chromium
plating layer with a slightly blackish color tone was obtained by controlling the
boron amount to 0.3 mass% or less, and a chromium plating layer having substantially
the same color tone as that of a chromium plating layer which is obtained from a hexavalent
chromium plating solution was obtained by further controlling the boron amount to
0.1 mass% or less. Moreover, similar results were also obtained when the trivalent
chromium plating solution of Sample 1 was used and the Fe content in the chromium
plating layer was reduced to 0.2 mass%, with the boron amount being controlled to
0.3 mass% or less. By reducing the Fe content in the chromium plating layer to 0.2
mass% and controlling the boron amount to 0.1 mass% or less, a chromium plating layer
having a color tone which is almost indistinguishable from that of a chromium plating
layer which is obtained from a hexavalent chromium plating solution was obtained.
[0151] Accordingly, it will be seen that a trivalent chromium plating layer having a color
tone similar to that obtained by using hexavalent chromium can be obtained by reducing
the Fe amount in the trivalent chromium plating layer to 2.0 mass% or less and reducing
the boron amount to 0.1 mass% or less. Note that, so far as color tone is concerned,
better characteristics are obtained as the Fe content and boron content in the chromium
plating layer are smaller.
(Experimental Example 3)
[0152] In this Experimental Example, it was examined as to how cracks would occur before
and after heating and how the color tone of a chromium plating layer would change
depending on the thickness of the chromium plating layer.
[0153] Specifically, by using the trivalent chromium plating solution of Sample 1 in Experimental
Example 1, chromium plating layers were formed in a manner similar to Experimental
Example 1. The thickness of a chromium plating layer can be adjusted by appropriately
controlling the plating time depending on the size of the plating material used, and
the like. In this Experimental Example, plating time was varied in a range of 0.3
to 5 minutes, thus changing the thickness of the chromium plating layer from 0.1 to
1.5 µm.
[0154] With respect to each sample thus obtained, occurrence of cracks that are observed
immediately after plating (before heating) was measured by the following method, and
evaluated according to the following standards. Furthermore, according to the aforementioned
method, the color tone of the chromium plating layer immediately after plating was
measured and evaluated.
[0155] Next, each of the aforementioned samples was placed in an atmospheric furnace, and
after being heated under the conditions of 400°C×8 hours, occurrence of cracks after
heating was examined by the same measurement method and evaluation standards as those
used when examining occurrence of cracks observed immediately after plating.
<Occurrence of Cracks>
[0156] Measurement method: By using an optical microscope (magnification: × 400), cracks
occurring in the chromium plating layer surface (about 10 mm × 10 mm) were observed.
[0157] Evaluation Standards (⊚ to Δ correspond to Present Invention):
⊚: There are no cracks.
○: A few discontinuous cracks are observed.
Δ: Some slightly continuous cracks have occurred.
×: A large number of continuous cracks have occurred.
[0158] Occurrence of cracks is shown altogether in Table 6. Also, the color tone of each
chromium plating layer immediately after plating is shown in Table 7.
[0159]
[Table 6]
Sample No. |
Thickness of Chromium Plating Layer (µm) |
Boron Content in Chrome Plating Layer (mass %) |
0.05 |
0.1 |
0.2 |
0.3 |
0.5 |
0.8 |
1.0 |
1.5 |
Before Heating |
0.1 |
⊚ |
⊚ |
⊚ |
⊚ |
⊚ |
○ |
○ |
○ |
0.3 |
⊚ |
⊚ |
⊚ |
⊚ |
⊚ |
○ |
○ |
○ |
0.5 |
⊚ |
⊚ |
○ |
○ |
Δ |
× |
× |
× |
0.7 |
○ |
○ |
○ |
○ |
Δ |
× |
× |
× |
1.5 |
× |
× |
× |
× |
× |
× |
× |
× |
After Heating |
0.1 |
⊚ |
⊚ |
○ |
Δ |
× |
× |
× |
× |
0.3 |
⊚ |
⊚ |
○ |
Δ |
× |
× |
× |
× |
0.5 |
⊚ |
⊚ |
○ |
Δ |
× |
× |
× |
× |
0.7 |
⊚ |
○ |
Δ |
Δ |
× |
× |
× |
× |
1.5 |
× |
× |
× |
× |
× |
× |
× |
× |
[0160] As shown in Table 6, it can be seen that cracks are more likely to occur when the
thickness of the chromium plating layer increases and the boron content in the chromium
plating layer increases.
[0161] For example, the experimental results before heating (immediately after plating)
indicate that hardly any cracks occurred while the chromium plating layer had a thickness
in the range from 0.1 to 0.3µm, even if the boron content in the chromium plating
layer was increased to 1.5 mass%. Cracks were more likely to occur as the thickness
of the chromium plating layer increased to 0.5
µm or above, and when the chromium plating layer had a thickness of 1.5
µm
, cracks occurred irrespective of the boron content in the chromium plating layer.
[0162] On the other hand, there was a tendency that cracks were more likely to occur in
the case where a heat treatment was performed at 400 °C for 8 hours, as compared to
before heating. Specifically, even if the thickness of the chromium plating layer
was in the range from 0.1 to 0.7
µm, it was not possible to effectively prevent crack generation unless the boron content
in the chromium plating layer was controlled to 0.05 to 0.3 mass%. An even more preferable
boron content would be 0.05 to 0.2 mass%. Note that cracks were likely to occur when
the thickness of the chromium plating layer exceeded 0.7
µm, and cracks occurred irrespective of the boron content in the chromium plating layer
when the thickness of the chromium plating layer was 1.5µm.
[0163] It can be seen from these experimental results that crack generation before and after
heating can be effectively prevented by controlling the thickness of the chromium
plating layer to 0.7µm or less, and further controlling the boron content in the chromium
plating layer to be within a range from 0.05 to 0.3 mass%.
[0164] Next, with respect to samples whose chromium plating layers had boron contents of
0.05 mass% and 0.1 mass%, the thickness of the chromium plating layer was varied in
a range from 0.05 µm to 0.7 µm, and the degree of discoloration due to heating was
evaluated.
<Thermal Discoloration>
[0165] Measurement method: By using a spectrometric color difference meter (color analyzer
TC-1800MK-II (Tokyo Denshoku)), the L* value, a* value, and b* value were measured,
before and after heating, according to the method described in CIE 1976. The values
before heating are labeled as "L0* value", "a0* value", and "b0* value", whereas the
values after heating are labeled as "L1* value", "a1* value", and "b1* value". Thus,
a color difference ΔE* value after heating was measured as follows.
[0166] 
[0167] Evaluation Standards (where ⊚ to Δ correspond to Present Invention):
⊚: ΔE* value <1
○: 1≦ΔE* value <3
Δ: 3≦ΔE* value <4
×: 4≦ΔE* value
[0168]
[Table 7]
Boric Acid Content (mass%) |
Thickness of Chromium Plating Layer (µm) |
0.05 |
0.10 |
0.15 |
0.20 |
0.25 |
0.30 |
0.40 |
0.50 |
0.60 |
0.70 |
0.05 |
× |
× |
× |
Δ |
Δ |
○ |
⊚ |
⊚ |
⊚ |
⊚ |
0.1 |
× |
× |
× |
Δ |
Δ |
○ |
⊚ |
⊚ |
⊚ |
⊚ |
[0169] As is clear from Table 7, there was little change in color tone before and after
heating when the thickness (µm) of the chromium plating layer was 0.2µm or more, and
the color tone almost never changed when the thickness (µm) of the chromium plating
layer was 0.3µm or more.
INDUSTRIAL APPLICABILITY
[0170] The present invention is broadly applicable to a vehicle having an engine (e.g.,
a motorcycle or an all-terrain four-wheeled vehicle) and a transportation apparatus
having an engine (e.g., a ship or an airplane).