(11) **EP 1 848 011 A1**

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: **24.10.2007 Bulletin 2007/43**

(21) Application number: 05700443.4

(22) Date of filing: 17.01.2005

(51) Int Cl.: **H01F** 7/00 (2006.01)

(86) International application number: PCT/CN2005/000069

(87) International publication number: WO 2006/074577 (20.07.2006 Gazette 2006/29)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR

HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

(71) Applicant: WANG, Jenchieh Taipei (TW)

(72) Inventor: WANG, Jenchieh Taipei (TW)

(74) Representative: Jeannet, Olivier Cabinet Jeannet 40 rue Raulin 69007 Lyon (FR)

(54) A MAGNET

(57)A magnetic body includes a plurality of laminated inner layers and an insulating enclosure fully enclosing the inner layers therein. The inner layers include a first or central metal layer, each one of upper and lower sides of which is sequentially provided with a first insulating layer, a second metal layer, a filter layer, a second insulating layer, a third metal layer, and a light-absorbing material layer. Each of the metal layers is negatively charged and formed by coating a specific high-temperature vaporized metal element on an entire surface of an insulating body. The filter layer is woven from an insulating material and has at least 144 millions of meshes per square inch. The light-absorbing material layer stores pre-absorbed light energy. Themagneticbody with the above-described structure produces a radial magnetic field of force that provides enhanced magnetizing effect.

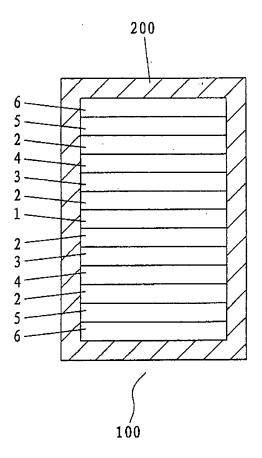


FIG.1

EP 1 848 011 A1

FIELD OF THE INVENTION

[0001] The present invention relates to a novel magnetic body, and more particularly to a magnetic body having a plurality of laminated inner layers, including metal layers formed from conductive metal elements, insulating layers, finely mesh-structured filter layers, and light-absorbing material layers, to produce a radial magnetic field of force.

1

BACKGROUND OF THE INVENTION

[0002] It is known that magnetic field of force has been proven existed and widely used to magnetize various kinds of substances to change their molecular structure and physical properties. For example, when the magnetic field of force is used to magnetize water, the magnetic field of force is in a direction perpendicular to the direction of water flow, so that magnetic lines of the magnetic field of force repeatedly cut water flown therethrough to eventually change the molecular structure and physical properties of water, making the water taste better. Currently, a permanent magnet or an electromagnet is used to produce the magnetic field of force, which is limited to two magnetic poles, namely, south (S) pole and north (N) pole, and has fixed acting direction and restricted acting range. Therefore, the permanent magnet or the electromagnet has only limited magnetic performance. When the magnetic field of force produced by the conventional permanent magnet or electromagnet is used to magnetize different substances, such as water, liquor, petroleum, etc., the magnetized substances have little or no change in their molecular structure and physical properties, indicating the conventional magnetic field of force has limited magnetizing range and effect.

SUMMARY OF THE INVENTION

[0003] A primary object of the present invention is to provide a magnetic body that produces a radial magnetic field of force, which has not fixed magnetic field direction and range, and accordingly, provides further enhanced magnetizing effect.

[0004] To achieve the above and other objects, the magnetic body of the present invention includes a plurality of laminated inner layers, including metal layers, insulating layers, filter layers, and light-absorbing material layers, and an insulating enclosure fully enclosing the laminated inner layers therein.

[0005] Each of the metal layers in the magnetic body of the present invention is formed by way of coating a specific high-temperature vaporized conductive metal element on an entire surface of an insulating body and is therefore negatively charged. And, more than two different types of metal elements are used to form more than two metal layers.

[0006] Since electric charges in the nature have radial force lines and fields, and a negatively charged force field has an inward direction while a positively charged force field has an outward direction, and most external substances, such as air, liquid, and solid bodies, are positively charged, the magnetic body of the present invention having negatively charged metal layers and inward force field direction would produce inward converged force lines and force fields when it is approached to a positively charged external substance having an outward force field direction, so that an electromagnetic phenomenon is formed and a radial magnetic field of force is produced. As a result, the radial magnetic field of force produced by the magnetic body of the present invention in use has not fixed magnetic field direction and range, and accordingly, provides further enhanced magnetizing

[0007] In a preferred embodiment of the present invention, three different metal elements are used to form three different metal layers, namely, a first or central metal layer formed from indium (In), a second metal layer formed from silver (Ag), and a third metal layer formed from aluminum (AI).

[0008] The insulating enclosure and the insulating layers are formed from general insulating substances, such as polyurethane (PU) rubber, polyvinyl chloride (PVC) resin, or polyethylene terephthalate (PET), and serve to isolate the negative charges of the metal layers, lest the magnetic body should become useless due to neutralization of the negative charges by external positive charges. However, the insulating enclosure and the insulating layers do not interrupt the effect of the magnetic field of force of the magnetic body.

[0009] The filter layers are of a mesh structure woven from an insulating material and having at least 144, 000, 000 meshes per square inch. The force lines of the electric charge field of force are transformed into a nanometer form when they pass through the extremely fine meshes of the filter layers.

[0010] The light-absorbing layer is a light-absorbing fabric capable of absorbing light energy. The absorbed light energy is stored in the light-absorbing layer to enhance the energy of electric charges and accordingly, the magnetizing power of the magnetic body.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein

Fig. 1 is a cross-sectional view of a magnetic body according to a preferred embodiment of the present invention;

Fig. 2 is a cross-sectional view of a metal layer in-

55

45

20

40

45

cluded in the magnetic body of the present invention; and

Fig. 3 schematically shows the mesh structure of a filter layer included in the magnetic body of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0012] Please refer to Fig. 1 that is a cross-sectional view of a magnetic body 100 according to a preferred embodiment of the present invention. As shown, the magnetic body 100 includes a plurality of laminated inner layers fully enclosed in an insulating enclosure 200. It is to be noted all the accompanying drawings are enlarged, and an actual overall thickness of the illustrated embodiment of the present invention is only about 2mm to 3mm. [0013] The laminated inner layers in the magnetic body 100 include a first metal layer 1 that is located at a center of the laminated inner layers and is therefore also referred to as a central metal layer 1 herein; two first insulating layers 2 separately located at an upper and a lower side of the central metal layer 1; two identical second metal layers 3 separately located at an outer side of the two first insulating layers 2; two mesh-structured filter layers 4 separately located at an outer side of the two second metal layers 3; two second insulating layers 2 separately located at an outer side of the two filter layers 4; two identical third metal layers 5 separately located at an outer side of the two second insulating layers 2; and two light-absorbing material layers 6 separately located at an outer side of the two identical third metal layers 5. All the laminated inner layers are then completely enclosed in the insulating enclosure 200 to form the magnetic body 100 of the present invention.

[0014] Please refer to Fig. 2. The first, the second, and the third metal layers 1, 3, and 5 of the magnetic body 100 are made of an electrically conductive metal element 300, which is high-temperature vaporized and then coated on an entire surface of an insulating body 310 to form the metal layers 1, 3, and 5 that are negatively charged. [0015] In the illustrated preferred embodiment, three different types of electrically conductive metal elements, namely, indium (In), silver (Ag), and aluminum (A1) are used to form the central, the second, and the third metal layers 1, 3, and 5, respectively. Through utilization of different charge numbers and charge densities of three different metal elements, radial magnetic fields of force of the first, the second, and the third metal layers 1, 3, and 5 are of highly complementary.

[0016] Since the metal elements of indium, silver, and aluminum have respective charge numbers, indium having the highest charge number is used in the present invention to form the central metal layer 1, and silver and aluminum having the next highest and the lowest charge number are used to form the second and the third metal layers 3 and 5, respectively. It is noted two identical sec-

ond metal layers 3 and two identical thirdmetal layers 5 are provided to separately locate at an upper and a lower position in the magnetic body 100, so that the radial magnetic fields of force of these metal layers have complementary densities and effects.

[0017] Fig. 3 shows the mesh-structured filter layer 4 included in the magnetic body 100 of the present invention. The filter layer 4 is a mesh structure woven from an insulating material and having at least 144,000,000 meshes/square inch. Force lines of electric charges passing through these highly fine meshes are transformed into an extremely fine nanometer form, which has been experimentally proven to act wider and farther, and last longer.

[0018] The light-absorbing material layer 6 in the magnetic body 100 is a fabric capable of absorbing light energy. With the light energy pre-absorbed by and stored in the light-absorbing material layers 6, the magnetic body 100 has further enhanced energy of electric charges.

[0019] The insulating layers 2 and the insulating enclosure 200 are formed from general insulating substances, such as polyurethane (PU) rubber, polyvinyl chloride (PVC) resin, or polyethylene terephthalate (PET), and serve to isolate the negative charges of the metal layers 1, 3, and 5, lest they should be neutralized by external positive charges.

[0020] When the magnetic body 100 is approached to an external positively charged substance or article, it cooperates with north and south poles to produce a radial magnetic field of force and inward converged force lines. That is, unlike the traditional magnetic field produced by a magnet, the radial magnetic field of force produced by the magnetic body 100 is not limited to fixed direction and range, and accordingly, provides further enhanced magnetizing effect. In other words, the magnetic body 100 produces a radial magnetic field of force having an even better magnetizing effect as compared to the traditional magnetic lines that have limited directions and ranges between north and south poles.

[0021] When the magnetic body 100 of the present invention is used to magnetize water, the water molecular structure and physical properties are changed, and big molecular groups of the tap water are split into small molecular groups to improve the activity of water molecules, making the water taste better and have increased solvency and permeating ability for nutrient substances to more easily pass through the cell wall to complete the metabolism in human body.

[0022] When the magnetic body 100 of the present invention is used to magnetize liquor, the liquor is changed in its properties and taste better.

[0023] When the magnetic body 100 of the present invention is used in different applications of electric energy, it magnetizes and rearranges the molecules at the surfaces of metal parts, such as conducting wires, battery plate electrodes, etc., so that the metal parts have lowered resistance and enhanced conductivity to enable

10

15

20

25

30

35

40

45

largely increased power.

[0024] When the magnetic body 100 of the present invention is used with fuels, it magnetizes, rearranges, and reduces the size of the fuel molecules to enable more complete combustion of the fuel to achieve the purpose of saving energy and enhancing fuel performance.

[0025] When the magnetic body 100 of the present invention is used with apparel, shoes, etc., or closely worn on a user's body, the magnetizing effect provided by its electric charges purifies the user's body magnetic field, activates the user's tissue cells, and improves the user's blood circulation.

[0026] It is to be particularly emphasized that the magnetic body 100 has radial magnetic lines that are not restricted to any definite direction and range, and can therefore be used without being limited to any specific direction or spatial size. In other words, when the magnetic body 100 is approached to, mounted on, disposed along with anything to be magnetized, such as gas, liquid, a solid body, or a given space, in any manner, the radial magnetic field of force and the magnetic lines produced by the magnetic body 100 are always effective. The magnetic body 100 is therefore extremely convenient and easy for use as compared to conventional magnets.

[0027] The effects of the above-mentioned examples of using the magnetic body 100 of the present invention with water, fuel, cells of living organism, etc. have been tested and proven by many public-recognized authorities.

[0028] It is understood the scope and the spirit of the present invention is to be limited only by the appended claims without being restricted by the above-mentioned examples.

[0029] In conclusion, the present invention employs the principles of natural electromagnetic phenomenon resulted from electric charges to produce magnetic force, static magnetic field of force, etc., which have better durability, and wider range and application than the traditionally produced magnetic force and static electricity.

Claims

1. A magnetic body, comprising a plurality of laminated inner layers and an insulating enclosure fully enclosing said inner layers therein; said inner layers including a plurality of metal layers, a plurality of insulting layers, a plurality of filter layers, and a plurality of light-absorbing material layers; said magnetic body being characterized in that each of said a plurality of metal layers is formed by coating a specific high-temperature vaporized electrically conductive metal element on an entire surface of an insulating body and is therefore negatively charged; and more than two different types of metal elements are used to form said metal layers; that said insulating layers are made of an insulating substance; that said filter layers are of highly fine mesh structure woven from an

insulating material; and that said light-absorbing material layers are formed from a light-absorbing substance; and

one of said a plurality of metal layers being a central or first metal layer located at a center of said magnetic body, and each of an upper and a lower side of said central metal layer being sequentially laminated with one said insulating layer, one said metal layer, one said filter layer, and one said light-absorbingmaterial layer, such that said a plurality of metal layers are electrically isolated from one another by said insulating layers to avoid neutralization of negative charges of said metal layers by external positive charges.

- 2. The magnetic body as claimed in claim 1, wherein said metal layers are three in number and are formed from three different metal elements; one of said three metal layers being a central or first metal layer located at a center of said magnetic body, and each of an upper and a lower side of said central metal layer being sequentially laminated with a first one of said insulating layer, a second one of said metal layers, a second one of said insulating layer, one said filter layer, a third one of said metal layers, and one said light-absorbing material layer, such that said a plurality of metal layers are electrically isolated from one another by said insulating layers to avoid neutralization of negative charges of said metal layers by external positive charges.
- The magnetic body as claimed in claim 1, wherein said metal elements used for forming said metal layers are selected from the group consisting of indium, silver, and aluminum.
- 4. The magnetic body as claimed in claim 2, wherein said third metal layers are formed from aluminum, said second metal layers are formed from silver, and said central metal layer is formed from indium.
- 5. The magnetic body as claimed in claim 1, wherein said insulating enclosure and said insulating layers are made of an insulating material selected from the group consisting of PU rubber, PVC resin, and PET. The magnetic body as claimed in claim 2, wherein said insulating enclosure and said insulating layers are made of an insulating material selected from the group consisting of PU rubber, PVC resin, and PET.
- **6.** The magnetic body as claimed in claim 1, wherein said filter layers are of a mesh structure having at least 144,000,000 meshes/square inch. The magnetic body as claimed in claim 2, wherein said filter layers are of a mesh structure having at least 144,000,000 meshes/square inch.
- 7. The magnetic body as claimed in claim 1, wherein

55

said light-absorbing substance forming said light-absorbing material layers has pre-absorbed light energy stored therein.

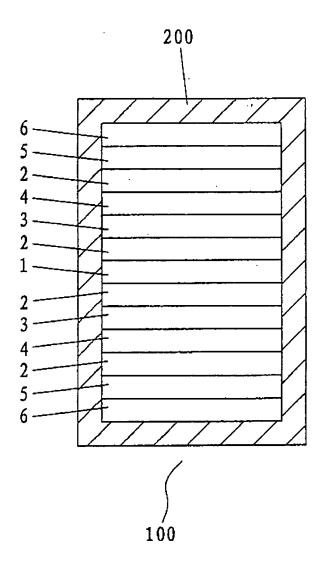


FIG.1

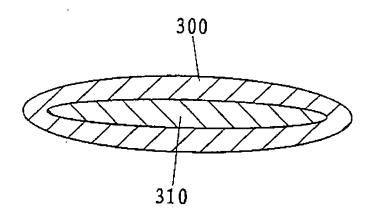


FIG.2

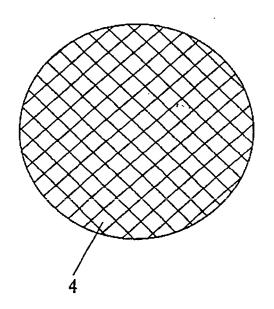


FIG.3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2005/000069

A. CLASSIFICATION OF SUBJECT MATTER				
IPC ⁷ H01F 7/00				
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols)				
IPC ⁷ H01F 7/00, C02F1/48, F02M27/04				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched CNPAT				
		rah tarma ugad)		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CNPAT, WPI, EPODOC, PAJ: metal, Al, Ag, In, negative, charge, insulat+, magnetiz+, laminat+,				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.		
A CN 1197889 A (ZHENG, Xiong) 4. Nov. 1998 (04. 11. 1998)		1-7		
A CN 2039307 U (PRACTICE FACTORY OF UNIV BEIJING POSTGRADUATE DEPT WUHAN POL) 14. Jun. 1989 (14. 06. 1989)		1-7		
A CN 2101321 U (SHANGHAI INST PHYSIO 1992 (08. 04. 1992)	1-7			
A GB 2285936 A (WOODHOUSE D A) 2. Aug. 1995 (02, 08, 1995)		1-7		
A US 6274040 B1 (ALPS ELECTRIC CO., LTD.) 14. Aug. 2001		1-7		
☐ Further documents are listed in the continuation of Box C. See patent family annex.				
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance cannot be considered novel or cannot an inventive step when the docum	be considered to involve		
"L" document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance cannot be considered to involve ar document is combined with one or	the claimed invention inventive step when the		
"O" document referring to an oral disclosure, use, exhibition or other means	documents, such combination being skilled in the art	g obvious to a person		
"P" document published prior to the international filing date but later than the priority date claimed	"&"document member of the same pater			
Date of the actual completion of the international search 20. Jul. 2005 (20. 07. 2005)	Date of mailing of the international search 18 • AUG 2005 (18 • 08	ch report 0 0 5)		
Name and mailing address of the ISA/CN The State Intellectual Property Office, the P.R.China 6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China	Authorized officer YING/Zhihon	g		
100088 Facsimile No. 86-10-62019451	Telephone No. 86-10-62085026			

Form PCT/ISA /210 (second sheet) (April 2005) INTERNATIONAL SEARCH REPORT Information on patent family members

International application No. PCT/CN2005/000069

Patent Documents referred in the Report	Publication Date	Patent Family	Publication Date
CN1197889 A	Nov. 1998 (04. 11. 1998)	none	
CN 2039307 U	14. Jun. 1989 (14. 06. 1989)	none	
CN 2101321 U	8. Apr. 1992 (08. 04. 1992)	none	
GB 2285936 A	2. Aug. 1995(02. 08. 1995)	none	
US 6274040 B1	14. Aug 2001 (14. 08. 2001)	JP 6295793 A 2	1. Oct. 1994 (21. 10. 1994)
		US 5480563 A	2. Jan. 1996 (02. 01. 1996)
		TW 335592 A	1. Jul. 1998 (01. 07. 1998)
		KR 143944 B1	1. Aug. 1998 (01. 08. 1998)

Form PCT/ISA /210 (patent family annex) (April 2005)