EP 1 849 056 B9

Patent Office

(1 9) ’ o Hllm”‘ ‘llH H“‘ Hll‘ |H‘| |H|‘ ”l’l ‘”H Hll‘ |‘|H ‘l |H ’l”l ‘”H Hll‘
Patentamt
0 European

Office européen
des brevets” (11) EP 1 849 056 B9
(12) CORRECTED EUROPEAN PATENT SPECIFICATION
(15) Correction information: (51) IntCl.:
Corrected versionno 1 (W1 B1) GOG6F 3/06 (2006.01) GO6F 17/30 (2006.01)
Corrections, see
Description Paragraph(s) 50 (86) International application number:
PCT/US2006/004943

(48) Corrigendum issued on:
09.11.2011 Bulletin 2011/45 (87) International publication number:
WO 2006/088773 (24.08.2006 Gazette 2006/34)
(45) Date of publication and mention
of the grant of the patent:
11.05.2011 Bulletin 2011/19

(21) Application number: 06734880.5

(22) Date of filing: 13.02.2006

(54) SYSTEM AND METHOD FOR ENABLING A STORAGE SYSTEM TO SUPPORT MULTIPLE
VOLUME FORMATS SIMULTANEOUSLY

SYSTEM UND VERFAHREN FUR EIN SPEICHERSYSTEM MIT MOGLICHKEIT ZUR
GLEICHZEITIGEN UNTERSTUTZUNG MEHRERER DATENTRAGERFORMATE

SYSTEME ET PROCEDE PERMETTANT A UN SYSTEME DE STOCKAGE DE SUPPORTER
PLUSIEURS FORMATS DE VOLUME SEPAREMENT

(84) Designated Contracting States: (72) Inventors:
AT BE BG CH CY CZ DE DK EE ES FIFR GB GR « HITZ, David
HUIEISIT LILT LU LV MC NL PL PT RO SE SI Sunnyvale, CA 94089 (US)
SK TR « EDWARDS, John, K.
Designated Extension States: Sunnyvale, CA 94087-2076 (US)

AL BA HR MK YU

(74) Representative: Rupprecht, Kay et al

(30) Priority: 29.04.2005 US 118455 Meissner, Bolte & Partner GbR

14.02.2005 US 652626 P WidenmayerstrafRe 48

80538 Miinchen (DE)

(43) Date of publication of application:
31.10.2007 Bulletin 2007/44 (56) References cited:

US-A-5129 088 US-A1-2004 030 822

(73) Proprietor: Network Appliance, Inc.
Sunnyvale, CA 94089 (US)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

1 EP 1 849 056 B9 2

Description
FIELD OF THE INVENTION

[0001] The present invention relates to storage sys-
tems and, more specifically, to storage systems that sup-
port multiple volume formats simultaneously.

BACKGROUND INFORMATION

[0002] A storage system typically comprises one or
more storage devices into which information may be en-
tered, and from which information may be obtained, as
desired. The storage system includes a storage operat-
ing system that functionally organizes the system by, in-
ter alia, invoking storage operations in support of a stor-
age service implemented by the system. The storage
system may be implemented in accordance with a variety
of storage architectures including, but not limited to, a
network-attached storage environment, a storage area
network and a disk assembly directly attached to a client
or host computer. The storage devices are typically disk
drives organized as a disk array, wherein the term "disk"
commonly describes a self-contained rotating magnetic
media storage device. The term disk in this context is
synonymous with hard disk drive (HDD) or direct access
storage device (DASD).

[0003] Storage of information on the disk array is pref-
erably implemented as one or more storage "volumes"
of physical disks, defining an overall logical arrangement
of disk space. The disks within a volume are typically
organized as one or more groups, wherein each group
may be operated as a Redundant Array of Independent
(or Inexpensive) Disks (RAID). Most RAID implementa-
tions enhance the reliability/integrity of data storage
through the redundant writing of data "stripes" across a
given number of physical disks in the RAID group, and
the appropriate storing of redundant information (parity)
with respect to the striped data. The physical disks of
each RAID group may include disks configure to store
striped data (i.e., data disks) and disks configure to store
parity for the data (i.e., parity disks). The parity may there-
after be retrieved to enable recovery of data lost when a
disk fails. The term "RAID" and its various implementa-
tions are well-known and disclosed in A Case for Redun-
dant Arrays of Inexpensive Disks (RAID), by D. A. Pat-
terson, G. A. Gibson and R. H. Katz, Proceedings of the
International Conference on Management of Data (SIG-
MOD), June 1988.

[0004] The storage operating system of the storage
system may implement a high-level module, such as a
file system, to logically organize the information stored
on the disks as a hierarchical structure of directories, files
and blocks. For example, each "on-disk" file may be im-
plemented as set of data structures, i.e., disk blocks, con-
figured to store information, such as the actual data for
the file. These data blocks are organized within a volume
block number (vbn) space that is maintained by the file

10

15

20

25

30

35

40

45

50

55

system. The file system organizes the data blocks within
the vbn space as a "logical volume"; each logical volume
may be, although is not necessarily, associated with its
own file system. The file system typically consists of a
contiguous range of vbns from zero to n-1, for a file sys-
tem of size n blocks.

[0005] A known type of file system is a write-anywhere
file system that does not overwrite data on disks. If a data
block is retrieved (read) from disk into a memory of the
storage system and "dirtied" (i.e., updated or modified)
with new data, the data block is thereafter stored (written)
to a new location on disk to optimize write performance.
A write-anywhere file system may initially assume an op-
timal layout such that the data is substantially contigu-
ously arranged on disks. The optimal disk layout results
in efficient access operations, particularly for sequential
read operations, directed to the disks. An example of a
write-anywhere file system that is configure to operate
on a storage system is the Write Anywhere File Layout
(WAFL™) file system available from Network Appliance,
Inc., Sunnyvale, California.

[0006] The storage operating system may further im-
plement a storage module, such as a RAID system, that
manages the storage and retrieval of the information to
and from the disks in accordance with input/output (1/O)
operations. The RAID system is also responsible for par-
ity operations in the storage system. Note that the file
system only "sees" the data disks within its vbn space;
the parity disks are "hidden" from the file system and,
thus, are only visible to the RAID system. The RAID sys-
tem typically organizes the RAID groups into one large
"physical" disk (i.e., a physical volume), such that the
disk blocks are concatenated across all disks of all RAID
groups. The logical volume maintained by the file system
is then "disposed over" (spread over) the physical volume
maintained by the RAID system.

[0007] The storage system may be configure to oper-
ate according to a client/server model of information de-
livery to thereby allow many clients to access the direc-
tories, files and blocks stored on the system. In this mod-
el, the client may comprise an application, such as a da-
tabase application, executing on a computer that "con-
nects" to the storage system over a computer network,
such as a point-to-point link, shared local area network,
wide area network or virtual private network implemented
over a public network, such as the Internet. Each client
may request the services of the file system by issuing file
system protocol messages (in the form of packets) to the
storage system over the network. By supporting a plu-
rality of file system protocols, such as the conventional
Common Internet File System (CIFS) and the Network
File System (NFS) protocols, the utility of the storage
system is enhanced.

[0008] When accessing a block of a file in response to
servicing a client request, the file system specifies a vbn
that is translated at the file system/RAID system bound-
ary into a disk block number (dbn) location on a particular
disk (disk, dbn) within a RAID group of the physical vol-

3 EP 1 849 056 B9 4

ume. It should be noted that a client request is typically
directed to a specific file block number (fbn), which rep-
resents an offset into a particular file. For example, if a
file system is using 4 KB blocks, fbn 6 of a file represents
a block of data starting 24 KB into the file and extending
to 28 KB, where fbn 7 begins. The fbn is converted to an
appropriate vbn by the file system. Each block in the vbn
space and in the dbn space is typically fixed, e.g., 4k
bytes (kB), in size; accordingly, there is typically a one-
to-one mapping between the information stored on the
disks in the dbn space and the information organized by
the file system in the vbn space. The (disk, dbn) location
specified by the RAID system is further translated by a
disk driver system of the storage operating system into
aplurality of sectors (e.g., a 4kB block with a RAID header
translates to 8 or 9 disk sectors of 512 or 520 bytes) on
the specified disk.

[0009] The requested block is then retrieved from disk
and stored in a buffer cache of the memory as part of a
buffer tree of the file. The buffer tree is an internal rep-
resentation of blocks for a file stored in the buffer cache
and maintained by the file system. Broadly stated, the
buffer tree has an inode at the root (top-level) of the file.
An inode is a data structure used to store information,
such as metadata, about a file, whereas the data blocks
are structures used to store the actual data for the file.
The information contained in an inode may include, e.g.,
ownership of the file, access permission for the file, size
of the file, file type and references to locations on disk of
the data blocks for thefile. The references to the locations
ofthe file data are provided by pointers, which may further
reference indirect blocks that, in turn, reference the data
blocks, depending upon the quantity of data in the file.
Each pointer may be embodied as a vbn to facilitate ef-
ficiency among the file system and the RAID system
when accessing the data on disks.

[0010] The RAID system maintains information about
the geometry of the underlying physical disks (e.g., the
number of blocks in each disk) in raid labels stored on
the disks. The RAID system provides the disk geometry
information to the file system for use when creating and
maintaining the vbn-to-disk,dbn mappings used to per-
form write allocation operations and to translate vbns to
disk locations for read operations. Block allocation data
structures, such as an active map, a snapmap, a space
map and a summary map, are data structures that de-
scribe block usage within the file system, such as the
write-anywhere file system. These mapping data struc-
tures are independent of the geometry and are used by
a write allocator of the file system as existing infrastruc-
ture for the logical volume. Examples of the block allo-
cation data structures are described in U.S. Patent Ap-
plication Publication No. US2002/0083037 A1, titled In-
stant Snapshot, by Blake Lewis et al. and published on
June 27, 2002, which application is hereby incorporated
by reference.

[0011] The write-anywhere file system typically per-
forms write allocation of blocks in a logical volume in re-

10

15

20

25

30

35

40

45

50

55

sponse to an event in the file system (e.g., dirtying of the
blocks in a file). When write allocating, the file system
uses the block allocation data structures to select free
blocks within its vbn space to which to write the dirty
blocks. The selected blocks are generally in the same
positions along the disks for each RAID group (i.e., within
a stripe) so as to optimize use of the parity disks. Stripes
of positional blocks may vary among other RAID groups
to, e.g., allow overlapping of parity update operations.
When write allocating, the file system traverses a small
portion of each disk (corresponding to a few blocks in
depth within each disk) to essentially "lay down" a plu-
rality of stripes per RAID group. In particular, the file sys-
tem chooses vbns that are on the same stripe per RAID
group during write allocation using the vbn-to-disk,dbn
mappings.

[0012] The on-disk structure of the file system is com-
prised of a number of entities of discrete data structures
organized with appropriate pointers to layers beneath
one entity. A storage system may utilize one physical
volume, wherein the volume comprises of a number of
physical disks associated in an arrangement, such as a
RAID group for improved data protection. The physical
volume utilizes physical volume block numbers (pvbns)
within indirect blocks and inodes to point to other data
structures within the on-disk structure of the file system.
[0013] Fig. 1 is a schematic block diagram of an ex-
emplary on-disk storage arrangement 100 of a conven-
tional physical volume of a file system. The on-disk stor-
age arrangement 100 comprises a volinfo block 102 that
contains pointers to various fsinfo blocks including fsinfo
block 105 representing the active file system, as well as
fsinfo blocks 110 and 115 representing various shap-
shots, or persistent consistency point images (PCPlIs)
associated with the active file system. It should be noted
that "snapshot" is a trademark of Network Appliance, Inc.
and is used for purposes of this patent to designate a
persistent consistency point (CP) image. A PCPl is a
space conservative, point-in-time read-only image of da-
ta accessible by name that provides a consistent image
of that data (such as a storage system) at some previous
time. More particularly, a PCPI is a point-in-time repre-
sentation of a storage element, such as an active file
system, volume, virtual file system, file or database,
stored on a storage device (e.g., on disk) or other per-
sistent memory and having a name or other identifier that
distinguishes it from other PCPIs taken at other points in
time. A PCPI can also include other information (meta-
data) about the active file system at the particular point
in time for which the image is taken. The terms "PCPI"
and "snapshot" may be used interchangeably through
out this patent without derogation of Network Appliance’s
trademark rights.

[0014] The volinfo 102 is illustratively located at vbns
1 and 2 or, in alternate embodiments, at another prede-
termined location on disk. Each fsinfo block 105, 110,
115is illustratively contained within an fsinfo file, the con-
tents of which comprise the fsinfo block. In this example,

5 EP 1 849 056 B9 6

the fsinfo block 105 for the active file system includes the
inodes of the inode file for the active file system 120. The
inode file for the active file system 120 includes further
inodes for an active map 125, a summary map 130, a
space map 135, a root directory 140 and a hidden meta-
data directory 145. Each additional fsinfo block, for ex-
ample, fsinfo blocks 110 and 115, that is associated with
a PCPI includes the inode of the inode file for the PCPI,
which in turnincludes appropriate inodes for active maps
and the like (not shown) for the specific PCPI.

[0015] Other possible on-disk structures may be used
with a storage system. For example, a volume may be
modified so as to comprise an aggregate having a plu-
rality of virtual volumes therein. Aggregates and virtual
volumes are further described in U.S. Patent Application
Serial No. 10/836,817, entitled extension to a file system
Write layout, by John K. Edwards, et al. In such a storage
system, the file system utilizes and interprets pointers
contained within the various on-disk structures, including
the volume information and fsinfo blocks according to a
predetermined virtual volume format. However, there ex-
ists no adequate technique for permitting a storage sys-
tem to support volumes having different formats simul-
taneously. That is, the storage system is typically "hard-
coded" to utilize one type of volume format and to utilize
adiffering format, all volumes associated with the storage
system need to be modified. Thus, if a storage system
utilizes a conventional physical volume and a set of disks
comprising an aggregate are connected thereto, the stor-
age system will incorrectly interpret the data contained
within the aggregate’s disks due to the differing format
of pointers contained therein.

[0016] US 5,129,088 discloses a data processing
method to create virtual disks and US 2004/0030822 A1
addresses storage virtualization.

SUMMARY OF THE INVENTION

[0017] The present invention comprises a method ac-
cording to claim 1 and a system according to claim 3.
[0018] The presentinvention overcomes the disadvan-
tages of the prior art by providing a system and method
for enabling a storage system to support multiple volume
formats simultaneously. In the illustrative embodiment,
a volume type field is added to a file system information
(fsinfo) block that forms a top level of a volume or other
data container. The volume type field holds a type volume
that identifies the appropriate type of volume. By exam-
ining the fsinfo block when the volume is initially mounted
on the storage system, a file system executing on the
storage system may interpret correctly other data within
the on-disk structure, including, e.g., the format of point-
ers within the volume.

[0019] Specifically, the file system utilizes the type val-
ue stored in the type field of the FS info block to identify
the appropriate type of volume and to interpret the data
contained therein correctly. In alternate embodiments,
however, the type field may be stored in other predeter-

10

15

20

25

30

35

40

45

50

55

mined locations, e.g. within a memory of the storage sys-
tem or may be utilized to identify differing formats. In the
illustrated embodiment, the type field differentiates be-
tween a conventional volume and a flexible volume com-
prising an aggregate having one or more virtual volumes
contained therein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The above and further advantages of the inven-
tion may be better understood by referring to the following
description in conjunction with the accompanying draw-
ings in which like reference numerals indicate identical
or functionally similar elements:

Fig. 1, already described, is a schematic block dia-
gram of an exemplary on-disk structure of a physical
volume in accordance with an embodiment of the
present invention;

Fig. 2 is a schematic block diagram of an exemplary
storage system in accordance with an embodiment
of the present invention;

Fig. 3 is a schematic block diagram of an exemplary
storage operating system in accordance with an em-
bodiment of the present invention;

Fig. 4 is a schematic block diagram of an exemplary
inode in accordance with an embodiment of the
present invention;

Fig. 5 is a schematic block diagram of an exemplary
buffer tree data structure showing pointers in accord-
ance with an embodiment of the present invention;
Fig. 6 is a schematic block diagram of an exemplary
buffer tree data structure showing pointer pairs in
accordance with an embodiment of the present in-
vention;

Fig. 7 is a schematic block diagram of an exemplary
aggregate in accordance with an embodiment of the
present invention;

Fig. 8 is a schematic block diagram of an exemplary
on-disk;

Fig. 9 is a schematic block diagram of an exemplary
file system information block in accordance with an
embodiment of the present invention; and

Fig. 10 is a flowchart detailing the steps of a proce-
dure for permitting a storage system to utilize multi-
ple volume type simultaneously in accordance with
an embodiment of the present invention.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE
EMBODIMENT

A. Network Environment

[0021] Fig. 2 is a schematic block diagram of an envi-
ronment 200 including a storage system 220 that may
be advantageously used with the present invention. The
storage system is a computer that provides storage serv-
ice relating to the organization of information on storage

7 EP 1 849 056 B9 8

devices, such as disks 230 of a disk array 260. The stor-
age system 220 comprises a processor 222, a memory
224, a network adapter 226 and a storage adapter 228
interconnected by a system bus 225. The storage system
220 also includes a storage operating system 300 that
preferably implements a high-level module, such as afile
system, to logically organize the information as a hierar-
chical structure of directories, files and special types of
files called virtual disks (hereinafter "blocks") on the
disks.

[0022] In theillustrative embodiment, the memory 224
comprises storage locations that are addressable by the
processor and adapters for storing software program
code. A portion of the memory may be further organized
as a "buffer cache" 270 for storing certain data structures
associated with the presentinvention. The processorand
adapters may, in turn, comprise processing elements
and/or logic circuitry configured to execute the software
code and manipulate the data structures. Storage oper-
ating system 300, portions of which are typically resident
in memory and executed by the processing elements,
functionally organizes the system 220 by, inter alia, in-
voking storage operations executed by the storage sys-
tem. It will be apparent to those skilled in the art that other
processing and memory means, including various com-
puter readable media, may be used for storing and exe-
cuting program instructions pertaining to the inventive
technique described herein.

[0023] The network adapter 226 comprises the me-
chanical, electrical and signaling circuitry needed to con-
nect the storage system 220 to a client 210 over a com-
puter network 240, which may comprise a point-to-point
connection or a shared medium, such as a local area
network (LAN) or wide area network (WAN). lllustratively,
the computer network 240 may be embodied as an Eth-
ernet network or a Fibre Channel (FC) network. The client
210 may communicate with the storage system over net-
work 240 by exchanging discrete frames or packets of
data according to pre-defined protocols, such as the

Transmission Control Protocol/Internet Protocol
(TCP/IP).
[0024] The client 210 may be a general-purpose com-

puter configured to execute applications 112. Moreover,
the client 210 may interact with the storage system 220
in accordance with a client/server model of information
delivery. That is, the client may request the services of
the storage system, and the system may return the re-
sults of the services requested by the client, by exchang-
ing packets 250 over the network 240. The clients may
issue packets including file-based access protocols,
such as the Common Internet File System (CIFS) proto-
col or Network File System (NFS) protocol, over TCP/IP
when accessing information in the form of files and di-
rectories. Alternatively, the client may issue packets in-
cluding block-based access protocols, such as the Small
Computer Systems Interface (SCSI) protocol encapsu-
lated over TCP (iSCSI) and SCSI encapsulated over Fi-
bre Channel (FCP), when accessing information in the

10

15

20

25

30

35

40

45

50

55

form of blocks.

[0025] The storage adapter 228 cooperates with the
storage operating system 300 executing on the system
220 to access information requested by a user (or client).
The information may be stored on any type of attached
array of writable storage device media such as video
tape, optical, DVD, magnetic tape, bubble memory, elec-
tronicrandom access memory, micro-electro mechanical
and any other similar media adapted to store information,
including data and parity information. However, as illus-
tratively described herein, the information is preferably
stored on the disks 230, such as HDD and/or DASD, of
array 260. The storage adapter includes input/output
(1/0) interface circuitry that couples to the disks over an
I/O interconnect arrangement, such as a conventional
high-performance, FC serial link topology.

[0026] Storage of information on array 260 may be il-
lustratively implemented as one or more storage "vol-
umes" that comprise a collection of physical storage disks
130 cooperating to define an overall logical arrangement
of volume block number (vbn) space on the volume(s).
Each logical volume is generally, although not necessar-
ily, associated with its own file system. The disks within
a logical volume/file system are typically organized as
one or more groups, wherein each group may be oper-
ated as a Redundant Array of Independent (or Inexpen-
sive) Disks (RAID). Most RAID implementations, such
as aRAID-4 level implementation, enhance the reliability/
integrity of data storage through the redundant writing of
data "stripes" across a given number of physical disks in
the RAID group, and the appropriate storing of parity in-
formation with respect to the striped data. An illustrative
example of a RAID implementation is a RAID-4 level im-
plementation, although it should be understood that other
types and levels of RAID implementations may be used
in accordance with the inventive principles described
herein.

B. Storage Operating System

[0027] Tofacilitate access tothe disks 230, the storage
operating system 300 implements a write-anywhere file
system that cooperates with virtualization modules to
"virtualize" the storage space provided by disks 230. The
file system logically organizes the information as a hier-
archical structure of named directories and files on the
disks. Each "on-disk" file may be implemented as set of
disk blocks configure to store information, such as data,
whereas the directory may be implemented as a specially
formatted file in which names and links to other files and
directories are stored. The virtualization modules allow
the file system to further logically organize information
as a hierarchical structure of blocks on the disks that are
exported as named logical unit numbers (luns).

[0028] In the illustrative embodiment, the storage op-
erating system is preferably the NetApp® Data ONTAP™
operating system available from Network Appliance, Inc.,
Sunnyvale, California thatimplements a Write Anywhere

9 EP 1 849 056 B9 10

File Layout (WAFL™) file system. However, it is express-
ly contemplated that any appropriate storage operating
system may be enhanced for use in accordance with the
inventive principles described herein. As such, where the
term "WAFL" is employed, it should be taken broadly to
refer to any file system that is otherwise adaptable to the
teachings of this invention.

[0029] Fig. 3 is a schematic block diagram of the stor-
age operating system 300 that may be advantageously
used with the present invention. The storage operating
system comprises a series of software layers organized
to form an integrated network protocol stack or, more
generally, a multi-protocol engine that provides data
paths for clients to access information stored on the stor-
age system using block and file access protocols. The
protocol stack includes a media access layer 310 of net-
work drivers (e.g., gigabit Ethernet drivers) thatinterfaces
to network protocol layers, such as the IP layer 312 and
its supporting transport mechanisms, the TCP layer 314
and the User Datagram Protocol (UDP) layer 316. A file
system protocol layer provides multi-protocol file access
and, to that end, includes support for the Direct Access
File System (DAFS) protocol 318, the NFS protocol 320,
the CIFS protocol 322 and the Hypertext Transfer Pro-
tocol (HTTP) protocol 324. A VI layer 326 implements
the VI architecture to provide direct access transport
(DAT) capabilities, such as RDMA, as required by the
DAFS protocol 318.

[0030] AniSCSI driverlayer 328 provides block proto-
col access over the TCP/IP network protocol layers, while
aFCdriverlayer 330 receives and transmits block access
requests and responses to and from the storage system.
The FC and iSCSI drivers provide FC-specificand iSCSI-
specific access control to the blocks and, thus, manage
exports of luns to either iISCSI or FCP or, alternatively,
to both iSCSI and FCP when accessing the blocks on
the storage system. In addition, the storage operating
system includes a storage module embodied as a RAID
system 340 that manages the storage and retrieval of
information to and from the volumes/disks in accordance
with 1/O operations, and a disk driver system 350 that
implements a disk access protocol such as, e.g., the SC-
Sl protocol.

[0031] Bridging the disk software layers with the inte-
grated network protocol stack layers is a virtualization
system that is implemented by a file system 380 inter-
acting with virtualization modules illustratively embodied
as, e.g., vdisk module 360 and SCSI target module 370.
The vdisk module 360 is layered on the file system 380
to enable access by administrative interfaces, such as a
user interface (Ul) 375, in response to a user (system
administrator) issuing commands to the storage system.
The SCSI target module 370 is disposed between the
FC and iSCSI drivers 328, 330 and the file system 380
to provide a translation layer of the virtualization system
between the block (lun) space and the file system space,
where luns are represented as blocks. The Ul 375 is dis-
posed over the storage operating system in a manner

10

15

20

25

30

35

40

45

50

55

that enables administrative or user access to the various
layers and systems.

[0032] The file system is illustratively a message-
based system that provides logical volume management
capabilities for use in access to the information stored
on the storage devices, such as disks. That is, in addition
to providing file system semantics, the file system 380
provides functions normally associated with a volume
manager. These functions include (i) aggregation of the
disks, (ii) aggregation of storage bandwidth of the disks,
and (iii) reliability guarantees, such as mirroring and/or
parity (RAID). The file system 380 illustratively imple-
ments the WAFL file system (hereinafter generally the
"write-anywhere file system") having an on-disk format
representation that is block-based using, e.g., 4 kilobyte
(kB) blocks and using index nodes ("inodes") to identify
files and file attributes (such as creation time, access
permissions, size and block location). The file system
uses files to store metadata describing the layout of its
file system; these metadata files include, among others,
an inode file. A file handle, i.e., an identifier that includes
an inode number, is used to retrieve an inode from disk.
[0033] Broadly stated, all inodes of the write-anywhere
file system are organized into the inode file. A file system
(fs) info block specifies the layout of information in the
file system and includes an inode of a file that includes
all other inodes of the file system. Each logical volume
(file system) has an fsinfo block that is preferably stored
at a fixed location within, e.g., a RAID group. The inode
of the root fsinfo block may directly reference (point to)
blocks of the inode file or may reference indirect blocks
of the inode file that, in turn, reference direct blocks of
the inode file. Within each direct block of the inode file
are embedded inodes, each of which may reference in-
direct blocks that, in turn, reference data blocks of a file.
[0034] Operationally, a request from the client 210 is
forwarded as a packet 250 over the computer network
240 and onto the storage system 220 where it is received
at the network adapter 226. A network driver (of layer
310 or layer 330) processes the packet and, if appropri-
ate, passes it on to a network protocol and file access
layer for additional processing prior to forwarding to the
write-anywhere file system 380. Here, the file system
generates operations to load (retrieve) the requested da-
ta from disk 230 if it is not resident "in core", i.e., in the
buffer cache 270. If the information is not in the cache,
the file system 380 indexes into the inode file using the
inode number to access an appropriate entry and retrieve
a logical vbn. The file system then passes a message
structure including the logical vbn to the RAID system
340; the logical vbn is mapped to a disk identifier and
disk block number (disk,dbn) and sent to an appropriate
driver (e.g., SCSI) of the disk driver system 350. The disk
driver accesses the dbn from the specified disk 230 and
loads the requested data block(s) in buffer cache 270 for
processing by the storage system. Upon completion of
the request, the storage system (and operating system)
returns a reply to the client 210 over the network 240.

11 EP 1 849 056 B9 12

[0035] It should be further noted that the software
"path" through the storage operating system layers de-
scribed above needed to perform data storage access
for the client request received at the storage system may
alternatively be implemented in hardware. That is, in an
alternate embodiment of the invention, a storage access
request data path may be implemented as logic circuitry
embodied within a field programmable gate array (FPGA)
or an application specific integrated circuit (ASIC). This
type of hardware implementation increases the perform-
ance of the storage service provided by storage system
220 in response to a request issued by client 210. More-
over, in another alternate embodiment of the invention,
the processing elements of adapters 226, 228 may be
configure to offload some or all of the packet processing
and storage access operations, respectively, from proc-
essor 222, to thereby increase the performance of the
storage service provided by the system. It is expressly
contemplated that the various processes, architectures
and procedures described herein can be implemented in
hardware, firmware or software.

[0036] As used herein, the term "storage operating
system" generally refers to the computer-executable
code operable to perform a storage function in a storage
system, e.g., that manages data access and may, in the
case of a file server, implement file system semantics.
In this sense, the ONTAP software is an example of such
a storage operating system implemented as a microker-
nel and including the WAFL layer to implement the WAFL
file system semantics and manage data access. The stor-
age operating system can also be implemented as an
application program operating over a general-purpose
operating system, such as UNIX® or Windows NT®, or
as a general-purpose operating system with configurable
functionality, which is configured for storage applications
as described herein.

[0037] In addition, it will be understood to those skilled
in the art that the inventive technique described herein
may apply to any type of special-purpose (e.g., file server,
filer or storage appliance) or general-purpose computer,
including a standalone computer or portion thereof, em-
bodied as orincluding a storage system 220. An example
of a multi-protocol storage appliance that may be advan-
tageously used with the present invention is described
in U.S. Patent Application Serial No. 10/215,917 titled
MULTI-PROTOCOL STORAGE APPLIANCE THAT
PROVIDES INTEGRATED SUPPORT FOR FILE AND
BLOCKACCESSPROTOCOLS, filed on August 8,2002.
Moreover, the teachings of this invention can be adapted
to a variety of storage system architectures including, but
not limited to, a network-attached storage environment,
a storage area network and disk assembly directly-at-
tached to a client or host computer. The term "storage
system" should therefore be taken broadly to include
such arrangements in addition to any subsystems con-
figure to perform a storage function and associated with
other equipment or systems.

10

15

20

25

30

35

40

45

50

55

C. File System Organization

[0038] In the illustrative embodiment, a file is repre-
sented in the write-anywhere file system as an inode data
structure adapted for storage on the disks 230. Fig. 4 is
a schematic block diagram of an inode 400, which pref-
erably includes a metadata section 410 and a data sec-
tion 450. The information stored in the metadata section
410 of each inode 400 describes the file and, as such,
includes the type (e.g., regular, directory, virtual disk) 412
of file, the size 414 of the file, time stamps (e.g., access
and/or modification) 416 for the file and ownership, i.e.,
user identifier (UID 418) and group ID (GID 420), of the
file. The contents of the data section 450 of each inode,
however, may be interpreted differently depending upon
the type of file (inode) defmed within the type field 412.
For example, the data section 450 of a directory inode
contains metadata controlled by the file system, whereas
the data section of a regular inode contains file system
data. In this latter case, the data section 450 includes a
representation of the data associated with the file.
[0039] Specifically, the data section 450 of a regular
on-disk inode may include file system data or pointers,
the latter referencing 4 kilobyte (KB) data blocks on disk
used to store the file system data. Each pointer is pref-
erably a logical vbn to facilitate efficiency among the file
system and the RAID system 340 when accessing the
data on disks. Given the restricted size (e.g., 128 bytes)
of the inode, file system data having a size that is less
than or equal to 64 bytes is represented, in its entirety,
within the data section of that inode. However, if the file
system data is greater than 64 bytes but less than or
equal to 64 KB, then the data section of the inode (e.g.,
a first level inode) comprises up to 16 pointers, each of
which references a 4 KB block of data on the disk.
[0040] Moreover, if the size of the data is greater than
64 KB but less than or equal to 64 megabytes (MB), then
each pointer in the data section 450 of the inode (e.g., a
second level inode) references an indirect block (e.g., a
first level block) that contains 1024 pointers, each of
which references a 4 KB data block on disk. For file sys-
tem data having a size greater than 64MB, each pointer
in the data section 450 of the inode (e.g., a third level
inode) references a double-indirect block (e.g., a second
level block) that contains 1024 pointers, each referencing
an indirect (e.g., a first level) block. The indirect block, in
turn, that contains 1024 pointers, each of which referenc-
es a4 KB data block on disk. When accessing afile, each
block of the file may be loaded from disk 230 into the
buffer cache 270.

[0041] When an on-diskinode (or block) is loaded from
disk 230 into buffer cache 270, its corresponding in core
structure embeds the on-disk structure. For example, the
dotted line surrounding the inode 400 (Fig. 4) indicates
the in core representation of the on-disk inode structure.
The in-core structure is a block of memory that stores
the on-disk structure plus additional information needed
to manage data in the memory (but not on disk). The

13 EP 1 849 056 B9 14

additional information may include, e.g., a "dirty" bit 460.
After data in the inode (or block) is updated/modified as
instructed by, e.g., a write operation, the modified data
is marked "dirty" using the dirty bit 460 so that the inode
(block) can be subsequently "flushed" (stored) to disk.
The in-core and on-disk format structures of the WAFL
file system, including the inodes and inode file, are dis-
closed and described in the previously incorporated U.S.
Patent No. 5,819,292 titted METHOD FOR MAINTAIN-
ING CONSISTENT STATES OF A FILE SYSTEM AND
FOR CREATING USER-ACCESSIBLE READ-ONLY
COPIES OF AFILE SYSTEM by David Hitz et al., issued
on October 6, 1998.

[0042] Fig. 5 is a schematic block diagram of an em-
bodiment of a buffer tree of a file that may be advanta-
geously used with the present invention. The buffer tree
is an internal representation of blocks for a file (e.g., file
500) loaded into the buffer cache 270 and maintained by
the write-anywhere file system 380. A root (top-level) in-
ode 502, such as an embedded inode, references indirect
(e.g., level 1) blocks 504. Note that there may be addi-
tional levels of indirect blocks (e.g., level 2, level 3) de-
pending upon the size of the file. The indirect blocks (and
inode) contain pointers 505 that ultimately reference data
blocks 506 used to store the actual data of the file. That
is, the data of file 500 are contained in data blocks and
the locations of these blocks are stored in the indirect
blocks of the file. Each level 1 indirect block 504 may
contain pointers to as many as 1024 data blocks. Accord-
ing to the "write anywhere" nature of the file system, these
blocks may be located anywhere on the disks 230.
[0043] As noted above, the present invention permits
multiple volume formats may be utilized in conjunction
with a storage system simultaneously. Figs. 1 and 5 de-
scribe an on-disk layout of a conventional physical vol-
ume. An alternate volume format that apportions an un-
derlying physical volume into one or more virtual volumes
(vvols) of a storage system is described in the above
referenced U.S. Patent Application Serial No.
10/836,817 titted EXTENSION OF WRITE ANYWHERE
FILE SYSTEM LAYOUT, by John K. Edwards et al. The
underlying physical volume is an aggregate comprising
one or more groups of disks, such as RAID groups, of
the storage system. The aggregate has its own physical
volume block number (pvbn) space and maintains meta-
data, such as block allocation structures, within that pvbn
space. Each vvol has its own virtual volume block number
(wbn) space and maintains metadata, such as block al-
location structures, within that vvbn space. Each vvol is
a file system that is associated with a container file; the
container file is a file in the aggregate that contains all
blocks used by the vvol. Moreover, each vvol comprises
data blocks and indirect blocks that contain block pointers
that point at either other indirect blocks or data blocks.
[0044] In one embodiment, pvbns are used as block
pointers within buffer trees of files (such as file 500)
stored in a vvol. This "hybrid" vvol embodiment involves
the insertion of only the pvbn in the parent indirect block

10

15

20

25

30

35

40

45

50

55

(e.g., inode or indirect block). On a read path of a logical
volume, a "logical" volume (vol) info block has one or
more pointers that reference one or more fsinfo blocks,
each of which, in turn, "points to" an inode file and its
corresponding inode buffer tree. The read path on a vvol
is generally the same, following pvbns (instead of wbns)
to find appropriate locations of blocks; in this context, the
read path (and corresponding read performance) of a
vvol is substantially similar to that of a physical volume.
Translation from pvbn-to-disk,dbn occurs at the file sys-
tem/RAID system boundary of the storage operating sys-
tem 300.

[0045] In an illustrative "dual vbn" hybrid ("flexible")
vvol embodiment, both a pvbn and its corresponding
vvbn are inserted in the parentindirect blocks in the buffer
tree of a file. That is, the pvbn and vvbn are stored as a
pair for each block pointer in most buffer tree structures
thathave pointers to other blocks, e.g., level 1(L1) indirect
blocks, inode file level 0 (LO) blocks. Fig. 6 is a schematic
block diagram of an illustrative embodiment of a buffer
tree of a file 600 that may be advantageously used with
the present invention. A root (top-level) inode 602, such
as an embedded inode, references indirect (e.g., level 1)
blocks 604. Note that there may be additional levels of
indirect blocks (e.g., level 2, level 3) depending upon the
size of the file. The indirect blocks (and inode) contain
pvbn/vvbn pointer pair structures 608 that ultimately ref-
erence data blocks 606 used to store the actual data of
the file.

[0046] The pvbns reference locations on disks of the
aggregate, whereas the vvbns reference locations within
files of the vvol. The use of pvbns as block pointers 608
in the indirect blocks 604 provides efficiencies in the read
paths, while the use of vvbn block pointers provides ef-
ficientaccess to required metadata. Thatis, when freeing
a block of a file, the parent indirect block in the file con-
tains readily available vvbn block pointers, which avoids
the latency associated with accessing an owner map to
perform pvbn-to-vvbn translations; yet, on the read path,
the pvbn is available.

[0047] As noted, each inode has 64 bytes in its data
section that, depending upon the size of the inode file
(e.g., greater than 64 bytes of data), function as block
pointers to other blocks. For traditional and hybrid vol-
umes, those 64 bytes are embodied as 16 block pointers,
i.e., sixteen (16) 4 byte block pointers. For the illustrative
dual vbn flexible volume, the 64 bytes of an inode are
embodied as eight (8) pairs of 4 byte block pointers,
wherein each pair is a vvbn/pvbn pair. In addition, each
indirect block of a traditional or hybrid volume may con-
tain up to 1024 (pvbn) pointers; each indirect block of a
dual vbn flexible volume, however, has a maximum of
510 (pvbn/vvbn) pairs of pointers.

[0048] Fig. 7 is a schematic block diagram of an em-
bodiment of an aggregate 700 that may be advanta-
geously used with the present invention. Luns (blocks)
702, directories 704, qgtrees 706 and files 708 may be
contained within vvols 710, such as dual vbn flexible

15 EP 1 849 056 B9 16

vvols, that, in turn, are contained within the aggregate
700. The aggregate 700 is illustratively layered on top of
the RAID system, which is represented by at least one
RAID plex 750 (depending upon whether the storage
configuration is mirrored), wherein each plex 750 com-
prises at least one RAID group 760. Each RAID group
further comprises a plurality of disks 730, e.g., one or
more data (D) disks and at least one (P) parity disk.
[0049] Whereas the aggregate 700 is analogous to a
physical volume of a conventional storage system, a vvol
is analogous to a file within that physical volume. That
is, the aggregate 700 may include one or more files,
wherein each file contains a vvol 710 and wherein the
sum of the storage space consumed by the vvols is phys-
ically smaller than (or equal to) the size of the overall
physical volume. The aggregate utilizes a"physical" pvbn
space that defines a storage space of blocks provided
by the disks of the physical volume, while each embed-
ded vvol (within a file) utilizes a "logical" vvbn space to
organize those blocks, e.g., as files. Each vvbn space is
an independent set of numbers that corresponds to lo-
cations within the file, which locations are then translated
to dbns on disks. Since the vvol 710 is also a logical
volume, it has its own block allocation structures (e.g.,
active, space and summary maps) in its vvbn space.
[0050] A container file is a file in the aggregate that
contains all blocks used by a vvol. The container file is
aninternal (to the aggregate) feature that supports a vvol;
illustratively, there is one container file per vvol. Similar
to the pure logical volume in afile approach, the container
file is a hidden file (not accessible to a user) in the ag-
gregate that holds every block in use by the vvol. The
aggregate includes an illustrative hidden metadata root
directory that contains subdirectories of vvols:

WAFLIfsidlfilesystem file, storage label file

[0051] Specifically, a"physical" file system (WAFL) di-
rectory includes a subdirectory for each vvol in the ag-
gregate, with the name of subdirectory being afile system
identifier (fsid) of the vvol. Each fsid subdirectory (vvol)
contains at least two files, a filesystem file and a storage
label file. The storage label file is illustratively a 4kB file
that contains metadata similar to that stored in a conven-
tional raid label. In other words, the storage label file is
the analog of a raid label and, as such, contains informa-
tion about the state of the vvol such as, e.g., the name
of the vvol, a universal unique identifier (uuid) and fsid
of the vvol, whether it is online, being created or being
destroyed, etc.

[0052] Fig. 8 is a schematic block diagram of an on-
disk representation of an aggregate 800. The storage
operating system 300, e.g., the RAID system 340, as-
sembles a physical volume of pvbns to create the aggre-
gate 800, with pvbns 1 and 2 comprising a "physical"
volinfo block 802 for the aggregate. The volinfo block 802
contains block pointers to fsinfo blocks 804, each of which
may represent a snapshot of the aggregate. Each fsinfo

10

15

20

25

30

35

40

45

50

55

block 804 includes a block pointer to an inode file 806
that contains inodes of a plurality of files, including an
owner map 810, an active map 812, a summary map 814
and a space map 816, as well as other special metadata
files. The inode file 806 further includes a root directory
820 and a "hidden" metadata root directory 830, the latter
of which includes a namespace having files related to a
vvol in which users cannot "see" the files. The hidden
metadata root directory also includes the WAFL/fsid/ di-
rectory structure that contains filesystem file 840 and
storage label file 890. Note that root directory 820 in the
aggregate is empty; all files related to the aggregate are
organized within the hidden metadata root directory 830.
[0053] In addition to being embodied as a container
file having level 1 blocks organized as a container map,
the filesystem file 840 includes block pointers that refer-
ence various file systems embodied as vvols 850. The
aggregate 800 maintains these vvols 850 at special re-
served inode numbers. Each vvol 850 also has special
reserved inode numbers within its vvol space that are
used for, among other things, the block allocation bitmap
structures. As noted, the block allocation bitmap struc-
tures, e.g., active map 862, summary map 864 and space
map 866, are located in each vvol.

[0054] Specifically, each vvol 850 has the same inode
file structure/content as the aggregate, with the exception
that there is no owner map and no WAFL/fsidlfilesystem
file, storage label filedirectory structure in a hidden meta-
data root directory. To that end, each vvol 850 has a
volinfo block 852 that points to one or more fsinfo blocks
900, each of which may represent a snapshot, along with
the active file system of the vvol. Each fsinfo block, in
turn, points to an inode file 860 that, as noted, has the
same inode structure/content as the aggregate with the
exceptions noted above. Each vvol 850 has its own inode
file 860 and distinct inode space with corresponding in-
ode numbers, as well as its own root (fsid) directory 870
and subdirectories of files that can be exported separate-
ly from other vvols.

[0055] As noted, the storage label file 890contained
within the hidden metadata root directory 830 of the ag-
gregate is a small file that functions as an analog to a
conventional raid label. A raid label includes "physical”
information about the storage system, such as the vol-
ume name; that information is loaded into the storage
label file 890. lllustratively, the storage label file 890 in-
cludes the name 892 of the associated vvol 850, the on-
line/offline status 894 of the vvol, and other identity and
state information 896 of the associated vvol (whether it
is in the process of being created or destroyed).

[0056] An example of a write allocation procedure that
may be advantageously used with the present invention
is described in U.S. Patent Application Serial No.
10/836,090 titled, EXTENSION OF WRITE ANYWHERE
FILE LAYOUT WRITE ALLOCATION, by John K. Ed-
wards, which application is hereby incorporated by ref-
erence. Broadly stated, block allocation proceeds in par-
allel on the flexible vvol and aggregate when write allo-

17 EP 1 849 056 B9 18

cating a block within the vvol, with a write allocator proc-
ess 282 selecting an actual pvbn in the aggregate and a
vvbn in the vvol. The write allocator adjusts block alloca-
tion bitmap structures, such an active map and space
map, of the aggregate to record the selected pvbn and
adjusts similar structures of the vvol to record the select-
ed vvbn. A vvid (vvol identifier) of the vvol and the vvbn
are inserted into owner map 710 of the aggregate at an
entry defined by the selected pvbn. The selected pvbn
is also inserted into a container map (not shown) of the
destination vvol. Finally, an indirect block or inode file
parent of the allocated block is updated with one or more
block pointers to the allocated block. The content of the
update operation depends on the vvol embodiment. For
a dual vbn hybrid vvol embodiment, both the pvbn and
vvbn are inserted in the indirect block or inode as block
pointers.

D. Supporting Multiple Volume Formats on a Storage
Appliance

[0057] The present invention provides a system and
method for enabling a storage system to support multiple
volume formats simultaneously. In the illustrative embod-
iment, an on-disk structure e.g. an fsinfo block, is modi-
fied to include a volume type field that holds a type value
identifying the format utilized by a particular volume. It
should be noted that a volinfo block is the top-level on-
disk structure that points to one or more fsinfo blocks. In
the illustrative embodiment, the fsinfo block is modified
in accordance with the present invention. However, in
alternated embodiments, the volinfo block may be mod-
ified in accordance with the teachings of the present in-
vention. Thus, the file system, upon first accessing the
volume’s fsinfo block, is able to identify the appropriate
volume format associated with the particular volume.
During file system operations, the file system utilizes the
identified volume format for determining how to interpret
various file system data structures, including pointers
within blocks in the file system. For example, in a con-
ventional volume, pointers comprise vbns, whereas in a
flexible (or virtual) volume in an aggregate pointers may
comprise pvbn/vvbn pairs. By utilizing the identified type
of volume, the storage system may interpret the pointers
appropriately.

[0058] Fig.9is a schematic block diagram of the fsinfo
block on-disk structure for supporting multiple volume
formats. The fsinfo block 900 includes a set of PCPI point-
ers 905, a volume type field 910, an inode for the inode
file 915 and, in alternate embodiments, additional fields
920. The PCPI pointers 905 are pointers to PCPIs asso-
ciated with the file system. The volume type field 910
identifies the type of volume described by the fsinfo block.
In the illustrated embodiment, the volume type field 910
holds a type value that differentiates between a conven-
tional volume and an aggregate comprising one or more
flexible volumes contained therein. However, in alternate
embodiments, the volume type field 910 may differentiate

10

15

20

25

30

35

40

45

50

55

10

among other volume formats. As such, the description
of differentiating between a conventional volume or ag-
gregate should be taken as exemplary only. The inode
for the inode file 915 includes the inode containing the
root-level pointers to the inode file 860 (Fig. 8) of the file
system associated with the fsinfo block. It should be not-
ed that the inventive technique of the present invention
may also be utilized with flexible volumes within an ag-
gregate.

[0059] As noted, use of the novel volume type field
enables the storage systemto interpret appropriately var-
ious file system data structures contained within a vol-
ume. In the illustrative embodiment, the file system dif-
ferentiates between a conventional volume and an ag-
gregate. That is, upon identifying a conventional volume
format, the file system interprets the data contained with-
in the on-disk structures in accordance with the conven-
tional volume model. Similarly, upon identifying a flexible
volume, the file system utilizes the flexible volume/ag-
gregate paradigm for interpreting data within the on-disk
structures. For example, the file system may properly
differentiate between a conventional vbn format and a
flexible pvbn/vvbn pair format when traversing the buffer
trees associated with the different volumes.

[0060] This differentiation is necessary when process-
ing file operations directed to the volume. As the various
types of volumes (conventional, aggregate, etc.) may uti-
lize differing formats of block pointers within various on-
disk structures, such as indirect blocks and/or inodes.
Thus, the write allocator 382 of storage operating system
300 may interpret block pointers differently based on the
type of volume being utilized. Fig. 10 is a flowchart de-
tailing the steps of a procedure 1000 for processing dirt-
ied blocks in a file system in accordance with an embod-
iment of the present invention. The procedure begins in
step 1005 and continues to step 1010 where a block is
dirtied in the file system. A block may be dirtied by, for
example, a write operation directed to a block or by a
pointer within the block being modified. In a typical envi-
ronment, write operations are directed to level 0 data
blocks whereas indirect blocks have pointers modified
during the write operations due to a "copy-on-write" na-
ture of the file system.

[0061] Once a block has been dirtied, the procedure
continues to step 1015 where the file system determines
the type of volume being utilized. This determination may
be made by examining the volume type field 910 of the
block 900 or, in alternate embodiments, by referencing
an in-memory variable identifying the volume type. In
such a latter embodiment, the in-memory variable may
be configured the first time a particular volume is ac-
cessed so that for each subsequent operation the fsinfo
block is not required to be loaded. If the volume type is
a conventional volume, the procedure branches to step
1020, where the file system operation uses the block al-
location bitmap structures to select a "free" physical block
within the vbn space of the volume and then selects (al-
locates) a pvbn for the physical block. In step 1025, the

19 EP 1 849 056 B9

data is written to the allocated physical block. The file
system then updates the appropriate pointer in a higher
level indirect block (or inode file "parent" block) of the
allocated block in step 1030. This step modifies the ap-
propriate pointer to reference the newly written block.
Then, in step 1035, the file system determines if it has
reached the topmost level of the buffer tree. If it has, the
procedure continues to step 1040 where the data is
flushed (written) to storage. If not, the procedure loops
back to step 1020 and processes the next higher level
of the buffer tree, which is not dirtied due to the pointer
being modified in step 1030.

[0062] If, in step 1015, the file system determines that
the volume is a flexible volume, the procedure branches
to step 1045 where block allocation proceeds in parallel
on both the flexible volume and its aggregate. Here the
file system (write allocation 382) selects a pvbn in the
aggregate and a vvbn in the flexible volume. Specifically
thefile system uses the block allocation bitmap structures
to select a free physical block within the pvbn space of
the aggregate (step 1045) and to select a vvbn from the
vvbn space of the volume (step 1050). The data is then
written to the allocated block in step 1055. The selected
vvbn/pvbn pointer pair is then written to the higher level
indirect block (or inode "parent” block) in step 1060. The
file system then determines, in step 1035, whether it has
reached the top level of the buffer tree. If so, the proce-
dure then flushes the block(s) to disk and completes in
step 1040. Otherwise, the procedure loops back to step
1045 and processes the next higher level block in the
buffer tree, which is now dirtied due to step 1060.
[0063] As can be seen from procedure 1000, the use
of the volume type value enables the storage operating
system to support multiple volume formats simultaneous-
ly. One skilled in the art will generate that various code
paths or operations may be performed for any file system
operation that differs between the different volume types.
Described above is the most common operation of writing
a dirtied block to disk, however, it should be taken as
exemplary only and should be noted that other proce-
dures may be utilized in accordance with the teachings
of the present invention.

[0064] It should be noted that the procedure 1000 is
typically performed on a delayed basis, such as when
the file system performs a write allocation routine to flush
all dirtied data to a form of persistent storage. However,
in alternate embodiments, the file system may perform
procedure 1000 as a result of each dirtying block. Addi-
tionally, while the above description describes the
processing of a dirtied block in accordance with an em-
bodiment of the present invention, the teachings herein
may be utilized in a wide variety of file system operations,
such as when the volume formats utilized by a storage
system differ. Thus, for example, when traversing a buffer
tree to obtain data from a level 0 block, the file system
determines the appropriate type of volume prior to inter-
preting the data pointers within the inode and/or indirect
blocks. If the buffer tree is a conventional volume buffer

10

15

20

25

30

35

40

45

50

55

11

20

tree, the pointers comprise vbns, whereas if the tree is a
flexible volume buffer tree, the pointers comprise pvbn/
vvbn pairs. As such, the teachings of the present inven-
tion enable a file system to effectively handle multiple
volume formats simultaneously by examining the volume
type field before performing any operations that require
differing steps and/or interpretations of the on-disk struc-
ture between volume formats.

[0065] To again summarize, the presentinvention pro-
vides a system and method for enabling a storage system
to support multiple volume formats simultaneously. In ac-
cordance with the illustrative embodiment, a volume type
field is added to a fsinfo block associated with each of
volume. The storage operating system examines the vol-
ume type field to identify the appropriate volume type of
a given volume. The storage operating system may then
interpret data, including pointers, within the various on-
disk structures of the volume in accordance with the prop-
er volume type.

[0066] As will be appreciated by one and skilled in the
art, the principles of the president intervention may be
utilized to differentiate among a plurality of differing a
volume formats. As such, while this description is written
in terms of differentiating between two different volume
formats, it should be taken as exemplary only and not a
limiting to the teachings of the present intervention. The
teachings of the president intervention may be utilized
with any number of file systems and and/or differing vol-
ume formats. Additionally, while this description has been
written in terms of differentiating between volume for-
mats, the principles of the present invention may be uti-
lized in differentiating among any form of data containers
including, for example file formats for other non-disk for-
mats.

[0067] The foregoing description has been directed to
specific embodiments of this invention. It will be apparent,
however, that other variations and modifications may be
made to the described embodiments, with the attainment
of some or all of their advantages. For instance, it is ex-
pressly contemplated that the teachings of this invention
can be implemented as software, including a computer-
readable medium having program instructions executing
on a computer, hardware, firmware, or a combination
thereof. Accordingly this description is to be taken only
by way of example and not to otherwise limit the scope
of the invention.

Claims

1. A method for permitting a storage system to support
volumes having one of a plurality of formats, the stor-
age system having a file system to logically organize
information stored on disks of the storage system as
a hierarchical structure of directories, files and
blocks, the hierarchical structure comprising a volin-
foblock that contains pointers to various fsinfo blocks
including an fsinfo block representing the active file

21 EP 1 849 056 B9 22

system, as well as fsinfo blocks representing snap-
shots associated with the active file system, wherein
storage of information is implemented as one or
more volumes, wherein in a conventional volume da-
ta blocks are organized within a volume block
number (vbn) space, wherein a flexible volume com-
prises an aggregate having one or more virtual vol-
umes contained therein, the aggregate comprising
one or more groups of disks and having its own phys-
ical volume block number (pvbn) space and each
virtual volume having its own virtual volume block
number (vvbn) space, the method comprising the
steps of:

providing a volume type field (910) in each file
system information block, the volume type field
(910) holding a type value identifying the format
of the volume, the file system information block
including a block pointer to an inode file (806)
which is a root of a buffer tree and contains in-
odes of a plurality of files, wherein the inodes
reference indirect blocks (504, 604), the indirect
blocks containing pointers (505, 608) that refer-
ence data blocks used to store the data of a file
such that the buffer tree can be traversed,
wherein the format of the pointers is a conven-
tional vbn format or a flexible pvbn/vvbn pair for-
mat,

wherein the pvbns reference locations on disks
of the aggregate, whereas the vvbns reference
locations within the virtual volume;

when processing file operations directed to a
volume, examining the volume type field (910)
in the file system information block of the volume
to identify the format of the volume; and
interpreting the pointers of the volume using the
identified format of the volume, such that the file
system may properly differentiate between the
formats of the pointers when traversing the buff-
er tree.

The method of claim 1 wherein the volumes com-
prise a physical volume.

A system for permitting a storage system to support
volumes having one of a plurality of formats, the stor-
age system having a file system to logically organize
information stored on disks of the storage system as
a hierarchical structure of directories, files and
blocks, the hierarchical structure comprising a volin-
fo block that contains pointers to various fsinfo blocks
including an fsinfo block representing the active file
system, as well as fsinfo blocks representing snap-
shots associated with the active file system, com-
prising a volinfo block that contains pointers to var-
ious fsinfo blocks including an fsinfo block represent-
ing the active file system, as well as fsinfo blocks
representing snapshots associated with the active

10

15

20

25

30

35

40

45

50

55

12

file system, wherein storage of information is imple-
mented as one or more volumes, wherein in a con-
ventional volume data blocks are organized within a
volume block number (vbn) space, wherein a flexible
volume comprises an aggregate having one or more
virtual volumes contained therein, the aggregate
comprising one or more groups of disks and having
its own physical volume block number (pvbn) space
and each virtual volume having its own virtual volume
block number (vvbn) space, the system comprising:

a volume type field (910) in each file system in-
formation block, the volume typefield (910) hold-
ing a type value identifying the format of the vol-
ume, the file system information block including
a block pointer to an inode file (806) which is a
root of a buffer tree and contains inodes of a
plurality of files,

wherein the inodes reference indirect blocks
(504, 604), the indirect blocks containing point-
ers (505, 608) that reference data blocks used
to store the data of a file such that the buffer tree
can be traversed, wherein the format of

the pointers pointers is a contional vbn format
or a flexible pvbn/vvbn pair format,

wherein the pvbns reference locations on disks
of the aggerate, whereas the vvbns reference
locations within the virtual volume;

means for, when processing file operations di-
rected to a volume, examining the volume type
field (910) in the file system information block of
the volume to identify the format of the volume;
and

means for interpreting the pointers of the volume
using the identified format of the volume, such
that the file system may properly differentiate
between the formats of the pointers when tra-
versing the buffer tree.

4. The system of claim 3 wherein the volumes comprise

a physical volume.

Patentanspriiche

1.

Verfahren, mit dem es einem Speichersystem er-
moglicht wird, Datentrédger mit einem oder einer
Mehrzahl Formate zu unterstltzen, wobei das Spei-
chersystem ein Dateisystem zur logischen Organi-
sation von Informationen hat, die auf Platten des
Speichersystems als eine hierarchische Strukturvon
Verzeichnissen, Dateien und Blécken gespeichert
sind, wobei die hierarchische Struktur einen volinfo-
Block mit Zeigern auf verschiedene fsinfo-Blécke
aufweist, die einen fsinfo-Block enthalten, der das
aktive Dateisystem reprasentiert, sowie fsinfo-Blok-
ke, die zum aktiven Dateisystem gehdrige Bildschir-
mausdrucke reprasentieren, wobei der Speicher fir

23 EP 1 849 056 B9 24

die Informationen als ein oder mehrere Datentrager
implementiert ist, wobei auf einem herkémmlichen
Datentréager Datenbldcke in einem Datentrager-
blocknummern- (vbn)-Raum organisiert sind, wobei
einflexibler Datentréger ein Aggregat mit einem oder
mehreren virtuellen Datentrédgern aufweist, wobei
das Aggregat eine oder mehrere Plattengruppen
aufweist und seinen eigenen physikalischen Daten-
tragerblocknummern- (vbn)-Raum hat, und wobei je-
der virtuelle Datentréager seinen eigenen virtuellen
Datentragerblocknummern- (vvbn)-Raum hat, wo-
bei das Verfahren die Schritte aufweist:

Bereitstellen eines Datentragertypfeldes (910)
in jedem Dateisystem-Informationsblock, wobei
das Datentragertypfeld (910) einen Typwert ent-
halt,

der das Format des Datentragers identifiziert,
wobei der Dateisystem-Informationsblock einen
Blockzeiger auf eine Inode-Datei (806) enthalt,
bei der es sich um eine Wurzel eines Puffer-
baums handelt und die Inodes einer Mehrzahl
Dateien enthalt, wobei die Inodes auf indirekte
Blocke (504, 604) verweisen, wobei die indirek-
ten Blocke Zeiger (505, 608) enthalten, die auf
Datenbldcke verweisen, die zum Speichern der
Daten einer Datei so verwendet werden, dass
der Pufferbaum traversiert werden kann, wobei
das Format der Zeiger ein herkémmliches vbn-
Format oder ein flexibles pvbn/vvbn-Paar-For-
mat ist,

wobei die pvbn auf Speicherstellen auf den Plat-
ten des Aggregats verweisen,

wahrend die vvbn auf Speicherstellen auf dem
virtuellen Datentrager verweisen;

beim Verarbeiten von Dateioperationen, die auf
einen Datentrager gerichtet sind, Priifen des
Datentragertypfeldes (910) im Dateisystem-In-
formationsblock des Datentragers, um das For-
mat des Datentragers zu identifizieren; und
Interpretieren der Zeiger des Datentragers mit-
tels des identifizierten Formats des Datentra-
gers, so dass das Dateisystem beim Traversie-
ren des Pufferbaums einwandfrei zwischen den
Formaten der Zeiger unterscheiden kann.

Verfahren nach Anspruch 1, bei dem die Datentréger
einen physikalischen Datentrager aufweisen.

System, mit dem es einem Speichersystem ermdg-
lichtwird, Datentrager miteinem oder einer Mehrzahl
Formate zu unterstiitzen, wobei das Speichersy-
stem ein Dateisystem zur logischen Organisation
von Informationen hat, die auf Platten des Speicher-
systems als eine hierarchische Struktur von Ver-
zeichnissen, Dateien und Blécken gespeichert sind,
wobei die hierarchische Struktur einen volinfo-Block
aufweist, der Zeiger auf verschiedene fsinfo-Blocke

10

15

20

25

30

35

40

45

50

55

13

enthalt, die einen fsinfo-Block enthalten, der das ak-
tive Dateisystem reprasentiert, sowie fsinfo-Blocke,
die zum aktiven Dateisystem gehérige Bildschirm-
ausdrucke reprasentieren, wobei der Speicher fiir
die Informationen als ein oder mehrere Datentrager
implementiert ist, wobei auf einem herkdmmlichen
Datentréager Datenbldcke in einem Datentrager-
blocknummern- (vbn)-Raum organisiert sind, wobei
einflexibler Datentréger ein Aggregat mit einem oder
mehreren virtuellen Datentrdgern aufweist, wobei
das Aggregat eine oder mehrere Plattengruppen
aufweist und seinen eigenen physikalischen Daten-
tragerblocknummern- (vbn)-Raum hat, und wobei je-
der virtuelle Datentrager seinen eigenen virtuellen
Datentrégerblocknummern- (vvbn)-Raum hat, wo-
bei das System aufweist:

ein Datentragertypfeld (910) in jedem Dateisy-
stem-Informationsblock, wobei das Datentra-
gertypfeld (910) einen Typwert enthalt, der das
Format des Datentragers identifiziert, wobei der
Dateisystem-Informationsblock einen Blockzei-
ger auf eine Inode-Datei (806) enthalt, bei der
es sich um eine Wurzel eines Pufferbaums han-
delt und die Inodes einer Mehrzahl Dateien ent-
halt, wobei die Inodes auf indirekte Blokke (504,
604) verweisen, wobei die indirekten Blocke Zei-
ger (505, 608) enthalten, die auf Datenblécke
verweisen, die zum Speichern der Daten einer
Datei so verwendet werden, dass der Puffer-
baum traversiert werden kann, wobei das For-
mat der Zeiger ein herkdmmliches vbn-Format
oder ein flexibles pvbn/vvbn-Paar-Format ist,
wobei die pvbn auf Speicherstellen auf den Plat-
ten des Aggregats verweisen,

wahrend die vvbn auf Speicherstellen auf den
virtuellen Datentrégern verweisen;

beim Verarbeiten von Dateioperationen, die auf
einen Datentrager gerichtet sind, Mittel zum
Prifen des Datentragertypfeldes (910) im Da-
teisystem-Informationsblock des Datentragers,
um das Format des Datentragers zu identifizie-
ren; und

Mittel zum Interpretieren der Zeiger des Daten-
tragers mittels des identifizierten Formats des
Datentragers, so dass das Dateisystem beim
Traversieren des Pufferbaums einwandfrei zwi-
schen den Formaten der Zeiger unterscheiden
kann.

4. System nach Anspruch 3, bei dem die Datentrager

einen physikalischen Datentrager aufweisen.

Revendications

Un procédé permettant a un systéme de stockage
de prendre en charge des volumes disposant d’une

25 EP 1 849 056 B9 26

pluralité de formats, le systéme de stockage dispo-
sant d’'un systéme de fichiers pour organiser de ma-
niére logique des informations conservées en mé-
moire sur des disques du systéme de stockage sous
la forme d’une structure hiérarchique de répertoires,
defichiers et de blocs, la structure hiérarchique com-
prenant un bloc volinfo contenant des pointeurs vers
plusieurs blocs fsinfo y compris un bloc fsinfo repré-
sentant le systéme de fichiers actif, ainsi que des
blocs fsinfo représentant des instantanés associés
au systéme de fichiers actif, dans lequel le stockage
d’informations est mis en oeuvre sous la forme d'un
ou plusieurs volumes, dans lequel les blocs de don-
nées d’'un volume traditionnel sont organisés au sein
de I'espace d’'un numéro de bloc de volume (vbn),
dans lequel un volume flexible comprend un agrégat
contenant un ou plusieurs volumes virtuels, 'agrégat
comportant un ou plusieurs groupes de disques et
étant doté de son propre espace de numéro de bloc
de volume physique (pvbn) et chaque volume virtuel
possédant son propre espace de numéro de bloc de
volume virtuel (vvbn), le procédé comprenant les
opérations suivantes :

I'attribution d’'un champ de type de volume (910)
a chaque bloc de données du systéme de fi-
chiers, le champ du type de volume (910) in-
cluant une valeur de type identifiant le format du
volume, le bloc de données du systeme de fi-
chiersincluantun pointeur de bloc vers un fichier
inode (806) qui est une racine d’'une arbores-
cence de mémoire tampon et qui contient des
inodes d’'une pluralité de fichiers, dans lequel
les inodes font référence a des blocs indirects
(504, 604),

les blocs indirects contenant des pointeurs (505,
608) qui font référence a des blocs de données
utilisés pour conserver en mémoire les données
d’'un fichier, de sorte que I'arborescence de la
mémoire

tampon puisse étre traversée, dans lequel le for-
mat des pointeurs est un format vbn traditionnel
ou un format flexible de paire pvbn/vvbn,

dans lequel les pvbn font référence a des em-
placements sur les disques de I'agrégat, tandis
que les vvbnfontréférence a des emplacements
au sein du volume virtuel,

'examen, lors du traitement des opérations des
fichiers dirigées vers un volume, du champ du
type de volume (910) dans le bloc d’informations
du systéme de fichiers du volume pour identifier
le format du volume, et

l'interprétation des pointeurs du volume a I'aide
du format identifié du volume, de sorte que le
systéme de fichiers puisse correctement faire la
distinction entre les formats des pointeurs lors-
qgu’ils traversent I'arborescence de mémoire
tampon.

10

15

20

25

30

35

40

45

50

55

14

2

Le procédé selon la revendication 1 dans lequel les
volumes comprennent un volume physique.

Un systeme permettant a un systeme de stockage
de prendre en charge des volumes d’une pluralité
de formats, le systéme de stockage possédant un
systéme de fichiers pour organiser de maniére logi-
que les informations conservées en mémoire surdes
disques du systéme de stockage sous laforme d’'une
structure hiérarchique comprenant des répertoires,
des fichiers et des blocs, la structure hiérarchique
comprenant un bloc volinfo contenant des pointeurs
vers divers blocs fsinfo y compris un bloc fsinfo re-
présentant le systeme de fichiers actif, ainsi que des
blocs fsinfo représentant des instantanés associés
au systéme de fichiers actif, comprenant un bloc vo-
linfo contenant des pointeurs vers divers blocs fsinfo
y compris un bloc fsinfo représentant le systéme de
fichiers actif, ainsi que des blocs fsinfo représentant
des instantanés associés au systéme de fichiers ac-
tif, dans lequel le stockage d’informations est mis en
oeuvre sous la forme d’un ou plusieurs volumes,
dans lequel des blocs de données d’un volume tra-
ditionnel sont organisés au sein d’'un espace de nu-
méro de bloc de volume (vbn), danslequel unvolume
flexible comprend un agrégat contenant un ou plu-
sieurs volumes virtuels, 'agrégat comportant un ou
plusieurs groupes de disques et étant doté de son
propre espace de numéro de bloc de volume physi-
que (pvbn) et chaque volume virtuel possédant son
propre espace de numéro de bloc de volume virtuel
(vvbn), le systéme comprenant :

un champ de type de volume (910) dans chaque
bloc d'informations du systeme de fichiers, le
champ de type de volume (910) incluant une
valeur de type identifiant le format du volume,
le bloc d’informations du systéme de fichiers in-
cluant un pointeur de bloc vers un fichier inode
(806) qui est une racine d’'une arborescence de
mémoire tampon et qui contient des inodes
d’une pluralité de fichiers, dans lequel les inodes
font référence a des blocs indirects (504, 604),
les blocs indirects contenant des pointeurs (505,
608) qui font référence a des blocs de données
utilisés pour conserver en mémoire les données
d’un fichier de telle sorte que I'arborescence de
mémoire tampon puisse étre traversée, dans le-
quel le format des pointeurs est un format vbn
traditionnel ou un format flexible de paire pvbn/
vvbn,

dans lequel les pvbn font référence a des em-
placements sur des disques de I'agrégat, tandis
que les vvbn font référence a des emplacements
au sein du volume virtuel ;

un moyen, lors du traitement d’opérations des
fichiers dirigées vers un volume, d’examiner le
champ du type de volume (910) dans le bloc

27 EP 1 849 056 B9

d’informations du systéme de fichiers du volume
pour identifier le format du volume ; et

un moyen d’interpréter les pointeurs du volume

a l'aide du format identifié du volume, de sorte
que le systeme de fichiers puisse correctement 5
faire la distinction entre les formats des poin-
teurslorsqu’ils traversentl’arborescence de mé-
moire tampon.

4. Le systéme selon la revendication 3 dans lequelles 70
volumes comprennent un volume physique.

15

20

25

30

35

40

45

50

55

15

EP 1 849 056 B9

jmmeemsEEEE s ssss 1
573 ! i
PROILENT _ 57 |
100 g ' 1 (goz# LOHSAWNS) =
vivavian) 50078 ONISS |
N3QQIH ! .
! 14 0ANISH '
U [}
ort .
ANOLOSIA g .
100Y .
jmmsTmmmSssSEsSssEs- 1
[} }
—] . “
GeL | 0l1
dviN 'l Gsionsawg [
30VdS _A _ 32078 O4NIS4 i
1]
1]
| T4 0:NISA | —
55T e e ee————- =
s 0078
AAVINANS OANIOA
................ -
— “ _
gzt - R T ; gor “
avin =] (NaLSAS 3114 3NLDY) [
NIV ¥O4 ! %0079 O4NISH _
ALY [@emmmed 5714 SAONI ! |
' 114 O2NIS '
1 1

- L Tuomes

00!

16

EP 1 849 056 B9

(1] %4 952 AvyyyY ¥sia

gze
H¥31dvav
3OVHOLS

144

¢ Ol

ore
(o7z

H3ldvav
MHOMLIN

gce
J

00g
W3LSAS

ONILVH3d0
3IDVHOLS

44
H0SS300™d

244

AHOWINW

(44
W3LSAS IOVHOILS

1N3MD
13Xovd
0se

cie
NOLLYOI1ddV

00¢

17

EP 1 849 056 B9

¢ Old

OI¢

oIt

00¢

0%t $S300V $S300Y
_ via3an vIQ3aw
WILSAS
NETN e 7= —
7 i
233 PIE 9iE PIE
d da dol
o0d oL n)
1123 -
57 9z
ISOS! In
W3LSA —_ _ ||
aivy S — 143 445 oce
YIS dltH | sdID SaN e
3INAOW 8ie
139uVL ISOS sdva
— ze¢c
8E WILSAS 3114 HOLYDOTIV SLIHM
098 INCAOW MSIAA
SZ€ In

18

EP 1 849 056 B9

SIZE 14

I
I
[
I
|
TIME STAMPS 16 |
|
I
|
|
|
I

uID 418
GID 420
_____________________ I
DATA 450 :
|
DIRTY BIT 460 [
|

——— — — — —— —— — $it ret (oo oy et S s Gy v e Fm— wweed

19

LEVEL
1
BLOCKS

LEVEL
0
BLOCKS

LEVEL

BLOCKS

LEVEL

BLOCKS

EP 1 849 056 B9

INODE 502
POINTER POINTER
INDIRECT BLOCK 504 INDIRECT BLOCK 504
POINTER POINTER POINTER POINTER
-5_0—5 oo -5—0—5 M eoe &5
DATA DATA DATA DATA
BLOCK XY’ BLOCK BLOCK coe BLOCK
506 506 506 506
r |
FI G 5 FILE 500
INODE 602
PVBN/VVVBN PVBN/VVBN
POINTER PAIR sse | POINTER PAIR
608 608
INDIRECT BLOCK 604 INDIRECT BLOCK 604
PVBN/NVBN PVBN/VYVBN PVBN/VVBN PVBN/VWBN
POINTER POINTER POINTER POINTER
PAIR e PAIR PAIR eee PAIR
608 608 608 608
DATA DATA DATA DATA
BLOCK (XY} BLOCK BLOCK see BLOCK
606 606 606 606
FILE 600

FIG. 6

20

EP 1 849 056 B9

760

0
L RAID GROUP

VWOL 710
FILE
708

706

AGGREGATE 700
QTREE

DIR
704

702

LUN

RAID PLEX 750

FIG. 7

760

RAID GROUP J

21

EP 1 849 056 B9

22

567 ILVLS ONV ALILNZAK .
68 SNLV.S INIM440ENITNO- ! 068 314738V 3OVHOLS
Z68 IWYN TOAA- —
078 T4 W3LSASTS
QISAMAYM
p— 0S8
o8 oM ote
AMOLOTMIA AMOLOTMIa
1004 100
viva viva
Vi g A R -
N3aaiH N3aaiH w mu_ H_
078 028
AHOLOTMIA AHOLOTHIA
1008 = 1008 [
gog 918
dvI AV
F0vas [Fovds [.
006 08
%0018 50078
598 04NIsH 55 0aNISH
AV . I e
ANVINWNS . AUVINANS
[]
i
=1 098 006 258 ci8] 908 508 208
AV 14 %0078 soo1a | € dvi 314 %0078 %0078
TAUDY] TCONI OaNIS3 =] O4NITOA IOV @] 3AONI OdNISH |¢=f O:NITON
[]
. o7
YN AJ
HINMO
058 T0AA +— l_f
008

EP 1 849 056 B9

PCPI POINTERS 905

" VOLUME TYPE 910
FILE ID 915
920

FIG. 9

23

900

EP 1 849 056 B9

1005

1000

~— 1010

DIRTY A BLOCK IN FILE SYSTEM

1015
¢CONVENTIONAL WHAT TYPE FLEXIBLE

v
v /

1020
ALLOCATE PVBEN ALLOCATE PVBN
FOR DATA FOR DATA
/1025 | ' ¢ 1050
WRITE DATA TO SELECT WEN FOR
ALLOCATED BLOCK FLEXIBLE VOLUME
1030 l - 1055
Z WRITE DATA TO
UPDATE POINTER IN ALLOCATED BLOCK
HIGHER LEVEL |
INDIRECT BLOCK * 1060
UPDATE PVBN/VVBN

POINTER IN HIGHER
LEVEL INDIRECT
BLOCK

1035

YES REACHED YES

TOP LEVEL OF

BUFFER TREE?

FIG. 10

24

EP 1 849 056 B9
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European

patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

« US 20020083037 A1 [0010] « US 21591702 A [0037]
+ US 836817 A [0015] [0043] + US 5819292 A [0041]
+ US 5129088 A [0016] + US 836090 A [0056]

* US 20040030822 A1 [0016]

Non-patent literature cited in the description

¢ D.A.Patterson ; G. A. Gibson ; R. H. Katz. A Case
for Redundant Arrays of Inexpensive Disks (RAID).
Proceedings of the International Conference on
Management of Data (SIGMOD), June 1988 [0003]

25

	bibliography
	description
	claims
	drawings

