[0001] The invention relates to a method of supplying steam into a fabrics storage compartment
of a laundry treatment device, and a treatment apparatus having a control unit controlling
the steam supply to the fabrics storage compartment.
[0002] In a conventional condenser dryer as proposed in
DE 102 60 151 A1 a steam evaporating device is arranged in an air channel for supplying the circulated
air into a drum. In the evaporating device the heat of a heater normally used for
heating the circulated air heats and evaporates water which is supplied into a cup
located in the air channel. During steam supply into the rotating drum, a fan in the
circulation channel is operated such that the steam is blown from the channel into
the drum. The efficiency of the steam supply is lowered in that the air is circulated
through the drum such that a portion of the steam introduced into the drum is again
flown out of the drum into the exit channel where it then may condensate at a condenser
and other elements in the air passages. Further, the steam generated in the air channel
can condense and inhomogeneously cool down at or close to the channel walls and the
backside of the drum wall prior or during inlet into the drum.
[0003] It is an object of the invention to provide a steam supplying method for supplying
steam to a fabric storage compartment and to provide a treatment apparatus in which
at the one side the precision of the steam treatment is improved and on the other
hand the risk of damage or negative effects on fabrics from steam treatment are reduced.
[0004] The invention is defined in claims 1, 3, 16 and 18, respectively. Particular embodiments
are set out in the dependent claims.
[0005] It has been observed that when introducing the steam into the storage compartment
of a treatment apparatus like a dryer at least a portion of the steam may condensate
and form droplets, wherein the droplets formed in cold areas of the delivery path
to the fabrics result in low temperature droplets or the condensation in areas of
hot temperature steam supply may result in high temperature droplets. In both cases
the contact of the fabrics to be treated with the steam droplets may result in adverse
effect to the fabrics or to the efficiency of the fabrics treatment. Due to inhomogeneities
in temperature and/or dampness at the locations where the droplets hit the fabrics
or textiles as compared to areas where the textile is in contact with the hot steam
only, significant differences in the steam treatment effect may arise. For example
wrinkles may form due to different elasticity of the fabrics being non-uniformly dampened,
partially overheating of the fabrics with the hot droplets, decoloration effects,
different efficiencies of additives added to the steam treatment and the like may
result. To avoid the formation of droplets, the inventors propose two solutions which
are fully compatible with each other and which are preferably combined with each other.
According to the first approach (claims 1 and 16) and before starting the steam supply
into the storage compartment, optimum starting conditions are provided such that when
starting the steam supply, the likelihood of droplet formation is significantly reduced.
According to the other approach or solution (claims 3 and 18) the processing conditions
in the storage compartment are directly or indirectly monitored and the steam supply
parameters are adapted in dependency of the monitored internal conditions for droplet
prevention.
[0006] According to claim 1, a steam supplying method is provided in which the steam is
supplied into a fabrics storage compartment of a treatment apparatus. The treatment
apparatus is for example a dryer or a washing machine providing refreshment functionality
or any other treatment apparatus having a storage compartment through which air, preferably
drying air, is ventilated. The steam supplying method can for example be implemented
as a subroutine of a refreshment cycle, an anti-crease cycle during a drying procedure,
or an anti-crease phase after the drying of the laundry stored in the storage compartment.
Preferably the steam is supplied directly into the storage compartment. This means
that the steam injection is made at a location having a direct and contact-free path
from the point of injection to the storage compartment's inner volume. Alternatively
but not preferably the steam may be supplied indirectly into the storage compartment,
for example by injecting the steam into an air guiding channel connected to the storage
compartment.
[0007] For preparing the start of the steam supply into the storage compartment, the air
or drying air is blown through the storage compartment until a predefined temperature
and/or humidity has been achieved. If for example dry laundry is loaded into the storage
compartment, it is not required to dry the laundry by the air (in particular drying
air) and instead the temperature of the laundry, the air passed through the storage
compartment or circulated through the storage compartment, and elements in contact
with the circulated or injected air are heated up to a predefined temperature. As
the condensation effect is mainly induced by the contact or mixture of the steam with
the air flowing through the storage compartment, of course the air temperature is
the most relevant parameter in this case. Preferably, the predefined temperature is
somewhat above typical ambient temperatures, for example about 35, 40 or 50°C. If
the laundry or fabrics loaded into storage compartment is already wet or damp, for
example after a previous washing process, the humidity of the air within the storage
compartment and/or the humidity of the laundry is set to a predefined humidity level,
for example a residual or relative humidity of 3%, 5% or 10%. Preferably, the predefined
temperature and the predefined humidity are both set by the pre-drying process, as
the steam condensation behavior depends on the air temperature as well as on the (already
existing) air humidity.
[0008] The air ventilated through the storing compartment may be heated or cooled or neither
nor (air with ambient or internal temperature is ventilated). Air heating is effected
by activation of a heating device. Cooling is effected by activating a cooling device
like a condenser (e.g. used in a condenser air dryer) and/or cold ambient air from
outside the treatment apparatus is sucked into the treatment apparatus - at least
partially forming the ventilated air.
[0009] According to claim 2 and after the starting phase of supplying steam into the storage
compartment, the steam supply is continued wherein the steam flow and/or the temperature
of the steam is set in dependency of at least one process parameter. This means that
in this embodiment the steam supply is not continued with the predefined flow and/or
temperature, but the flow and/or temperature is adjusted according to the current
operation process parameters which may vary after having started the steam supply
process. For example, the air humidity changes in the storage compartment after the
steam supply has been started and at the same time the rate of change of the air humidity
depends on the amount of laundry or fabrics loaded in the storage compartment and/or
the type of fabrics stored therein. If, for example, the current process parameters
change, the steam flow and/or the temperature are correspondingly adapted in reaction
thereto such that the effect of avoiding the droplet formation during the steam supply
is maintained even over a longer period of steam supply. A steam supply period lasts
for example longer than one minute, two minutes, or lies in a range of three to seven
minutes.
[0010] The subject matter of claim 3 also provides the effects and advantages of claim 2,
while according to claim 3 it is not necessary that the steam supply sequence is started
at a predefined temperature and/or humidity in the storing compartment. For example,
the steam supply may be started with a very low steam supply rate which inherently
avoids the risk of forming droplets, and then the steam supply flow rate can be increased
in reaction to the detected process parameters allowing a higher steam flow rate.
In an alternative embodiment for the starting phase, the steam supply sequence is
started at a low level or from a zero steam flow rate and is successively increased
to a predefined steam flow rate. Thereafter the steam flow rate is preferably adjusted
according to claim 3.
[0011] The process parameters relevant for setting the steam flow and/or the temperature
of the steam are one or more the following:
- the air humidity, wherein the steam flow rate is for example decreased with increasing
air humidity;
- the air temperature, wherein the steam flow rate is for example increased with increasing
air temperature;
- the air temperature, wherein the steam temperature is reduced with increasing air
temperature;
- the air flow through the storage compartment, wherein the steam flow rate is increased
with increasing flow through the storage compartment to compensate the effect of exhausting
at least a portion of the supplied steam when circulating the air through the storage
compartment; and
- the rotation speed of a drum forming the storage compartment, wherein the steam flow
rate is increased with increasing rotation speed which results in a higher redistribution
rate of the laundry in the drum and a higher air agitation (at least as long the spinning
speed is not reached and the laundry is tumbling within the drum).
[0012] According to a preferred embodiment, the approach to the predefined temperature or
generally the current air temperature is detected in the storage compartment as the
most relevant measurement location having an effect onto the steam condensation. Preferably
the air temperature is detected at a surface or a wall of the air guiding and enclosing
walls of the apparatus or fabrics storage compartment. For example the air temperature
is detected at the storing compartment's surface or wall (e.g. drum wall). In alternative
embodiments or in addition thereto the temperature can be measured in an air flow
path or in an air circulation path or also preferably at a location close to the injection
point for the steam supply.
[0013] Alternatively or additionally the air humidity is preferably detected at the same
locations as the air temperature detection locations. Preferably the humidity is detected
together with the temperature (at the same location), such that there is a direct
correlation between the temperature and humidity at one location. Preferably, the
humidity of the air is derived from the humidity detection of the laundry which is
often implemented by an electrical conductivity measurement at the inner walls of
the drum.
[0014] The values of the temperature and/or humidity for observing the approach to the predetermined
temperature and/or predetermined humidity for adjusting the steam supply in dependency
of these process parameters, are preferably detected or monitored periodically, permanently,
intermittently or the like, such that the progress or changes in the process parameter
conditions (e.g. temperature/humidity) can be steadily used to correct and optimize
the steam flow and/or temperature. This is correspondingly valid for the other process
parameters, if changing over time, and is considered for determining the steam flow
and/or temperature.
[0015] Preferably in the method of claim 1 and the apparatus of claim 16 at least the predetermined
steam flow rate (preferably also or alternatively the predetermined temperature) is
calculated on the basis of the predefined air temperature and the predefined air humidity
using the below formula for calculating the dew point. Preferably additional parameters
are considered (which can partially be determined by experiments) in calculating or
determining the predetermined flow rate (and the predetermined temperature), like
the laundry weight, the drum volume, the temperature drop during transport of the
steam from the steam supplying device to the injection point, the drum rotation speed
and the like.
Correspondingly for the method of claim 3 and the apparatus of claim 18 the steam
flow (and preferably also the steam temperature) are calculated on the basis of the
detected air temperature and detected air humidity (the most relevant process parameters)
the same way as for claims 1 and 16.
[0016] For example the following formula is convenient to calculate the dew point in degrees
Celsius to within ±0.4 °C. It is valid for 0 °C < T < 60 °C ; 0.01 < RH < 1.0; and
0 °C < Td < 50 °C , where T = temperature in degrees Celsius
RH = is the relative humidity as a fraction (not percent)
Td = the dew point temperature to be calculated
and the formula is:

where

and a = 17.27, b = 237.7 °C, and In is the natural logarithm.
[0017] It is to be noted that the setting of the steam flow and/or the temperature of the
steam supplied to the compartment in dependency of the drying process parameter(s)
can be used for example for maximizing the steam flow up to a limit below the condensation
or droplet forming such that due to the high steam flow rate the time required to
supply a predefined steam amount into the compartment is reduced. Alternatively or
additionally the temperature of the steam is minimized, for example, to reduce energy
consumption during steam generation and/or to treat delicate textiles with steam at
as low temperature as possible.
[0018] According to a preferred embodiment the steam flow rate and/or the temperature of
the steam is adapted or set by setting a supplying flow rate of liquid to a first
heating device of the steam generator. Or the heating activity of the steam generator
is adapted in dependency of the predefined temperature and/or humidity or the monitored
temperature and/or humidity during the steam supply sequence. For example, the liquid
flow rate to the steam generator is increased to increase the steam flow rate while
at the same time the heating power is increased to maintain the steam supply at a
constant steam temperature.
[0019] In an embodiment the temperature of the steam can be monitored and the steam temperature
signal can be used in a closed-loop configuration to adjust the heating and evaporation
of the liquid for steam generation in dependency of the current steam temperature
signal. Steam temperature is for example detected within the steam generator (steam
supplying unit), at a pipe guiding the steam from the steam generator to the injection
location, in or at a nozzle injecting the steam, or a combination of temperatures
measured at these temperature detection locations.
[0020] In a preferred embodiment the air flow through the storage compartment is reduced
or stopped such that the steam is not exhausted out of the storing compartment during
air circulation or ventilation. This also avoids steam condensation outside the storage
compartment.
[0021] In a further embodiment, the duration of steam supply and/or the total amount of
steam supplied to the drum is set in dependency or is dependent of the process parameters,
preferably the air temperature and/or the air humidity. The duration and/or steam
amount may be set at the beginning of the steam supply phase, or preferably it is
adjusted under continued monitoring of the process parameters which gives an indication
when the steam treatment has reached a predetermined end level. For example the air
temperature is allowed only to increase to a predetermined level during steam supply
to avoid damages to the fabrics (e.g. the predetermined temperature level itself depends
on the fabrics type). And/or a maximum air or laundry humidity represents an end point
for steam supply.
[0022] The treatment apparatus according to claims 19 or 21 are provided with a control
unit which is adapted to control or operate the treatment apparatus such that the
effects described above in relation to the method claims are fully applicable also
for the operation of the treatment apparatus using the respective functional components
of the treatment apparatus.
[0023] Reference is made in detail to an exemplary embodiment of the invention, an example
of which is illustrated in the accompanying drawings, which show:
- Fig. 1
- an overview of functional elements of a dryer,
- Fig. 2
- a block diagram of signal and control transmissions between functional elements of
the dryer,
- Fig. 2A
- input/output parameters input to and output from a control unit; and
- Fig. 3
- a temperature profile over time of a heater element in a steam generator.
[0024] Fig. 1 schematically shows some functional elements of a tumble dryer 2. In the dryer
2 the laundry to be treated or dried is stored in a drum 6 driven by a motor 4 via
a belt 8. Rotational speed and rotation direction of the motor 4 can be controlled
by a control unit 50 (CPU) shown in Fig. 2. The motor rotation is coupled via a freewheel
10 to a fan 12 arranged in an inlet channel 14 for blowing air into the drum 6 in
a forward rotation direction of the motor 4. In reverse rotation direction of the
motor 4 the freewheel decouples the fan shaft from the motor shaft such that the fan
12 is not driven. The loading side of the drum 6 is connected to an outlet channel
16 wherein the exhaust air first passes a fluff filter 18 before entering into the
outlet 16.
[0025] When operating in condenser mode, the air from the outlet channel 16 is passed through
a condenser 20 from where the circulated air is further guided through a heater 21
and then it is passed to the inlet channel 14. In the present exemplary embodiment
the tumble dryer 2 can be switched from a condensation mode, where the air is circulated
in channels 14, 16 and drum 6, and an exhaust mode, where fresh air is sucked in through
an intake channel 24 and the humidity laden air is exhausted through exhaust channel
22. Switching between condensation mode and exhaust mode is made by switching valve
26 under the control of the control unit 50. Any intermediate position between the
two modes of circulation and condensation can also be switched to by correspondingly
adjusting the position or alignment of a valve element 28 within the valve body 26.
I.e. in the three positions I, II, III shown in Fig. 1, the condensation exclusive
mode is achieved in position II of the valve element, the exhaust exclusive mode is
achieved in position III of the valve element 28, and a mixed mode is achieved in
position I of the valve element 28. It should be noted that the valve 26 could also
be positioned between the condenser 20 and the heater 21.
[0026] The humidity of the laundry in the drum is detected by a humidity sensor 30 which
is formed as a conductivity sensor. The conductivity sensor detects the electrical
conductivity of the laundry between two metallic contacts at the drums inside which
are spaced from each other. In alternate embodiments or in addition to the conductivity
sensor the air humidity of the air flown through the drum 6 can be detected at another
position in the air passage, for example at a location close to or at the fluff filter
18. Further, a second temperature sensor 44 is arranged at the loading opening of
the drum to detect the temperature of the air within the drum. As shown, the temperature
measure point is close to a nozzle 36 of an additive injector 32.
[0027] The additive injector 32 generates water steam which is supplied via supply line
34 to the nozzle 36 such that a steam jet 38 is injected into the drums inside. Under
the control of the control unit 50, a pump 40 assigned to the additive injector 32
pumps water from a water reservoir (not shown) into the additive injector 32 in which
a heating element 42 is arranged to evaporate the water. The power dissipated by heating
element 42 is also controlled by control unit 50 such that steam flow rate and/or
steam temperature are controlled by correspondingly setting the temperature within
the additive injector 32 by heating the heating element 42 and by pumping a controllable
flow of water into the additive injector 32 where the water is brought into contact
with the heating element 42. The temperature within the additive injector 32 is detected
close to the heating element 42 by a first temperature sensor 41.
[0028] In an embodiment not shown, the steam temperature is detected with an additional
temperature sensor within the steam supply pipe 34 or temperature signal of the sensor
44 is taken as the steam temperature during steam supply phases (while it is e.g.
taken as an air temperature signal in non-steam supply phases). The steam temperature
signal thus detected is also supplied to the control unit 50 and processed there to
adjust the steam temperature either by taking this signal exclusively to control operation
the heating element 42 and thereby the steam temperature, or it is taken as a correction
signal together with the temperature signal from the first temperature sensor 41 (Fig.
2) to control the operation of heating element 42.
[0029] Fig. 2 shows a block diagram of functional elements partially already shown in Fig.
1. The CPU 50 is connected to an input panel 52 and a display section 54, wherein
the user can input program options and selections at the input panel 52. For example
a refreshment program including or excluding a program option for an anti-crease phase
may be selected. Also, a user input can be made whether the drying program or refreshment
program should start with dry or with damp laundry. Further, the type of textiles
can be input and also a weight, for example in form of a volume input by selecting
between full, medium or low loaded drum.
[0030] As indicated by the arrows, the CPU 50 controls the operation of motor 4, heater
21, valve 26 and additive injector 32. Selected programs and program options can be
indicated at the display section 54 under the control of the CPU 50. Also operating
states of the dryer are indicated in the display section, for example the remaining
time until finishing the program or the like. Via a subunit 56 the CPU 50 received
measurement signals from the first temperature sensor 41, the second temperature sensor
44 and the humidity sensor 30. Of course, Figs. 1 and 2 only show some of the functional
elements and control and sensing paths which are additionally used in dryers.
[0031] For controlling and optimizing the steam supply into the drum during a steam supply
phase and in preparation for a steam supply phase, the subunit 56 receives and processes
the signals of the first and second temperature sensors and the humidity sensor 30.
In a look-up memory 56a connected to the subunit 56 optimization patterns are deposited
such that, by using the corresponding signals from sensors 30, 41 and 44, an optimum
steam flow rate and temperature for supplying the steam into the drum 6 from the additive
injector 32 is calculated. In the shown embodiment the 'calculation' means retrieval
from look-up memory 56a storing a look-up table.
[0032] Here the temperature and steam flow rate are adjusted by providing from the subunit
56 to the CPU 50 control signals which are forwarded to the pump 40 and the heating
element 42. Thereby, the steam flow rate essentially depends on the heating power
developed by heating element 42 and the pumping rate of pumping water by pump 40 to
the heating element 42. Correspondingly, the steam temperature is a function of the
heating power and the fluid flow rate generated by pump 40.
[0033] Fig. 3 shows a typical time behavior of the temperature in the additive injector
32 as detected by the first temperature sensor 41. If steam supply is required, at
t=0 the heating of the heating element 42 is started by a respective control signal
from CPU 50 (subunit 56). With the start of heating, the temperature goes up as detected
with the first temperature sensor 41. At time t
a the threshold temperature value T1 is reached and pump 40 is activated such that
the water is pumped onto the heating element 42. The injector starts steam generation,
wherein steam flow rate exiting the additive injector 32 and the steam temperature
increase after time t
a (from temperature T1) until an upper temperature value T2 is reached. At this time,
when the temperature T2 is equal to the upper limit Tmax, the heating element 42 is
switched off such that the temperature in the additive injector 32 decreases as detected
with the first temperature sensor 41. The temperature falls to lower temperature T3
which lies at a lower temperature limit Tmin whereupon the heating element 42 is activated
again and the temperature rises again up to Tmax. By this two-step control the temperature
periodically swings between the lower limit Tmin and the upper limit Tmax as long
as the steam supply is required and also as long as the limits Tmax, Tmin are not
modified (see below). By this control an average steam flow and average steam temperature
with only minimal deviations around the average values are achieved.
[0034] According to an exemplary embodiment of the invention, the threshold value T1 as
well as the lower and the upper limits Tmin, Tmax itself are not fixed, but one, two
or all three dependent on the processing conditions for processing the laundry. Together
with adapting these (one, two or three) temperatures in dependency of the process
parameters, the liquid flow rate generated by pump 40 is adapted such that the formation
of droplets in the drum or at the nozzle 36 are avoided when the steam jet 38 is injected
into the drum 6. This means that in the present exemplary embodiment dew point conditions
are stored in look-up memory 56a, wherein on the basis of the detected air temperature
(second temperature sensor 44) and the humidity (humidity sensor 30) an optimized
pumping flow rate (pump 40) and heating power or temperature (e.g. temperature limits
Tmin, Tmax) of the additive injector 32 (first temperature sensor 41) is adjusted
and controlled such that finally an optimized steam temperature and steam flow rate
of the steam exiting the nozzle 36 is effected - avoiding the formation of droplets.
[0035] In another aspect of the invention, the starting conditions for supplying the steam
from the additive injector 32 into the drum are selected such that droplet suppression
is also achieved from the beginning. According to a first approach this can be made
in that, prior to the start of the steam supply, a predefined condition in the drum
is effected, for example by heating the air in the drum 6 to a predefined temperature
and at the same time by pre-drying the laundry (if damp) to a predefined starting
humidity (which can be detected either via the laundry's humidity or the air humidity).
As soon as these predefined conditions have been achieved, the steam supply is started.
According to a second approach (or additionally), the threshold temperature T1 for
starting fluid supply to the heating element 42 is selected in dependency of the current
conditions in the drum (air temperature and/or humidity) and also the upper and lower
two-point control values Tmax and Tmin are selected in dependency of the initial conditions
(temperature and/or humidity) in the drum 6. This means that by either way the risk
of droplet forming in the starting phase of steam supply is significantly reduced.
[0036] It should be noted that according to an exemplary operation of the dryer 2 the flow
of air through the drum 6 is stopped in that the fan 12 is decoupled from the reverse
motor rotation via freewheel 10. In this case, the steam 38 injected by nozzle 36
is not blown out of the drum 6 and maximum steam efficiency is achieved at the laundry
rotated in the drum via reverse drum rotation.
[0037] Of course, the operation conditions for the additive injector 32 are also optimized
to avoid condensation within supply pipe 34 or at the nozzle 36 or inside the drum
6 at cold inner walls. The latter is avoided by the above mentioned pre-heating of
the air via heater 21 and thereby pre-heating the laundry and also the drum material.
Even if the air circulation is maintained during the steam supply phase, the steam
parameters (temperature/flow rate) can be selected such that an adverse condensation
rate at the condenser or heater 21 is avoided. The adaptation of the steam generation
parameter in dependency of the processing conditions also takes into consideration
deviations from identical processing runs, if for example an exhaust air mode is selected
and ambient air with high humidity and high temperature is sucked and blown through
drum 6.
REFERENCE NUMERAL LIST
[0038]
- 2
- tumble dryer
- 4
- motor
- 6
- drum
- 8
- belt
- 10
- freewheel
- 12
- fan
- 14
- inlet channel
- 16
- outlet channel
- 18
- fluff filter
- 20
- condenser
- 21
- heater
- 22
- exhaust channel
- 24
- intake channel
- 26
- valve
- 28
- valve element
- 30
- humidity sensor
- 32
- additive injector
- 34
- supply pipe
- 36
- nozzle
- 38
- steam jet
- 40
- pump
- 41
- first temperature sensor
- 42
- heating element
- 44
- second temperature sensor
- 50
- CPU
- 52
- input panel
- 54
- display section
- 56
- sub unit
- 56a
- look-up memory
1. Steam supplying method for supplying steam (38) to a fabrics storage compartment (6)
of a treatment apparatus (2), in particular a dryer, a refreshment apparatus or a
washing machine having drying function, comprising the steps of:
flowing air through the storage compartment (6), in particular hot or cold air, until
a predefined temperature and/or humidity has been effected; and
supplying steam (38) at a predefined flow and/or temperature to the storage compartment
(6).
2. Method according to claim 1, further comprising, after supplying the steam (38) at
a predefined flow and/or temperature, setting the steam flow and/or the temperature
of the steam (38) supplied into the storage compartment (6) in dependency of at least
one process parameter.
3. Steam supplying method for supplying steam (38) to a fabrics storage compartment (6)
of a treatment apparatus (2), in particular a dryer, a refreshment apparatus or a
washing machine having drying function, wherein the steam flow and/or the temperature
of the steam (38) supplied into the storage compartment (6) is set in dependency of
at least one process parameter.
4. Method according to claim 1, 2 or 3, further comprising, after setting the steam flow
and/or the temperature of the steam (38) supplied into the storage compartment (6)
in dependency of at least one drying process parameter, finishing the steam supply
in dependency of at least one process parameter.
5. Method according to any of the previous claims 2, 3 or 4, wherein the at least one
process parameter is at least one of the group of: the air humidity; the fabric's
humidity; the air temperature; the temperature of the surface or wall of the storage
compartment (6), in particular a drum surface temperature; the temperature of a pipe
supplying the steam (38) to the injection location (36); an air flow through the storage
compartment (6), and a rotation speed of a drum forming the storage compartment (6).
6. Method according to any of the previous claims, wherein the predefined temperature
and/or the air temperature is the temperature detected at least in one of the following
locations: in the storage compartment (6); in an air channel (14) supplying the air
to the storage compartment (6); in an air channel (16) exhausting the air from the
storage compartment (6); in proximity to or at an injection location (36) for injecting
the steam (38) into the air and/or the storage compartment (6); the temperature of
the surface or wall of the storage compartment (6), in particular a drum surface temperature;
and the temperature of a pipe supplying the steam (38) to the injection location (36).
7. Method according to any of the previous claims, wherein at least the temperature and/or
the humidity, in particular the air humidity and/or the air temperature, are monitored
permanently, intermittently or periodically.
8. Method according to any of the previous claims, wherein the air humidity is detected
in the storage compartment (6), in an air channel (14) supplying the air to the storage
compartment, in an air channel (16) exhausting the air from the storage compartment
(6), or in proximity to or at an injection location (36) for injecting the steam (38)
into the air and/or the storage compartment (6).
9. Method according to any of the previous claims, wherein the humidity of the laundry
is detected and the detected laundry humidity serves as a measure for the air humidity.
10. Method according to any of the previous claims, wherein the flow of steam (38) supplied
to the storage compartment (6) is increased the lower the detected air humidity is
and/or is increased with increasing air temperature.
11. Method according to any of the previous claims, wherein the flow of steam (38) supplied
to the storage compartment (6) is decreased with increasing air humidity and/or decreasing
air temperature.
12. Method according to any of the previous claims, wherein in dependency of the temperature
and the humidity a dew-point evaluation is performed and the flow and/or temperature
of the steam (38) is adapted in dependency of the dew-point evaluation.
13. Method according to any of the previous claims, wherein the flow of steam (38) is
a flowrate of supplying the steam to the storage compartment (6) and/or the flow of
steam is set by setting a fluid flowrate of the supply of a fluid to a first heating
device (42) adapted to generate the steam flow.
14. Method according to any of the previous claims, wherein the treatment apparatus (2)
comprises a steam generating unit (32) and wherein the operation of the steam generation
unit is adapted in dependency of the at least one process parameter, in particular
in dependency of at least one process parameter according to claim 5.
15. Method according to any of the previous claims, wherein the steam generating unit
(32) has a hysteresis temperature work function or two-step control function and the
hysteresis or the control function is adapted in dependency of the at least one drying
process parameter, in particular the detected air humidity and/or the detected air
temperature.
16. Fabrics treatment apparatus (2), in particular an exhaust air and/or condenser dryer,
a refreshment apparatus or a washing machine having drying function, comprising:
a fabrics storage compartment (6) for storing fabrics to' be treated;
a fan (12) for blowing air through the storage compartment (6), in particular drying
air;
at least one steam supplying device (32) adapted to supply steam (38);
a detection unit (30, 44) adapted to detect the air humidity and/or air temperature;
and
a control unit (50) adapted to control at least one fabrics pre-treatment sequence
and at least one steam supply sequence subsequent to the at least one pre-treatment
sequence;
wherein, in the at least one pre-treatment sequence, the control unit (50) is adapted
to receive at least one signal from the detection unit (30, 44) indicating the air
humidity and/or air temperature, and to control the fan (12) for blowing air through
the storage compartment (6) until a predefined air temperature and/or air humidity
has been effected; and
wherein the control unit (50) is adapted to control the at least steam supplying device
(32) to supply steam (38) at a predefined flow and/or temperature.
17. Apparatus according to claim 16, wherein, after supplying the steam (38) at a predefined
flow and/or temperature, the control unit (50) is adapted to control the steam flow
and/or the temperature generated by the at least one steam supplying device'(32) in
dependency of at least one process parameter.
18. Fabrics treatment apparatus (2), in particular exhaust air and/or condenser dryer,
refreshment apparatus or washing machine having drying function, comprising:
a fabrics storage compartment (6) for storing fabrics to be treated;
a fan (12) for blowing air through the storage compartment (6);
at least one steam supplying device (32) adapted to supply steam (38) to the storage
compartment (6);
a detection unit (30, 44) adapted to detect the air humidity and/or air temperature;
and
a control unit (50) adapted to control at least one steam supply sequence;
wherein the control unit (50) is adapted to receive at least one signal from the detection
unit (30, 44) indicating the air humidity and/or air temperature, and to control the
steam flow and/or the temperature generated by the at least one steam supplying device
(32) in dependency of at least one process parameter.
19. Apparatus according to claim 16, 17 or 18, comprising a first heating device (21)
adapted to heat the air to be blown into the storage compartment (6).
20. Apparatus according to any of claim 16 to 19, wherein the control unit (50) is adapted
to control the first heating device (21) during the pre-treatment sequence to heat
the air to be blown into the storage compartment (6).
21. Fabrics treatment apparatus or steam supplying method according to any of the previous
claims, wherein, during the steam supply sequence, the control unit (50) is adapted
to control the fan (12) and/or a shutter device (26) such that the air flow rate through
the storing compartment (6) is reduced and/or the air flow direction is reversed,
in particular the air flow rate is reduced to less than 50% of the nominal flow rate,
preferably less than 70% or 85% of the nominal flow rate.
22. Fabrics treatment apparatus or steam supplying method according to any of the previous
claims, wherein the at least one steam supplying device (32) comprises a second heating
device (42) adapted to heat and evaporate at least one liquid supplied to the at least
one steam supplying device.
23. Fabrics treatment apparatus according to claim 22, wherein the second heating device
(42) is adapted to be controlled by the control unit (50).
24. Fabrics treatment apparatus or steam supplying method according to claim 22 or 23,
wherein the at least one steam supplying device (32) comprises a delivering means
(40), in particular a valve or a pumping unit, adapted to supply at least one liquid
to the second heating device (42).
25. Fabrics treatment apparatus according to claim 24, wherein the delivering means (40)
is adapted to be controlled by the control unit, in particular the flow rate of the
at least one liquid supplied to the second heating device is controllable by the control
unit.
26. Fabrics treatment apparatus or steam supplying method according to any of the previous
claims, wherein the steam flow, the steam supply duration, the steam total amount
supplied during a steam treatment phase and/or the steam temperature is set in dependency
of the type of fabrics to be treated and/or the volume or weight of the fabrics to
be treated.
27. Fabrics treatment apparatus or steam supplying method according to any of the previous
claims, wherein the storage compartment (6) is a rotatable drum.
28. Fabrics treatment apparatus or steam supplying method according to any of the previous
claims, wherein the air flowable through the storage compartment (6) is an exhaust
air stream or a circulation air stream.
29. Fabrics treatment apparatus or steam supplying method according to any of the previous
claims, wherein the supplied steam (38) is one or more of the following: water steam,
water steam comprising additives, disinfectant steam, perfume steam, detergent steam,
deodorizing steam, and softener steam; wherein in particular the additive is one or
more of the following: a disinfectant, a perfume, a detergent, a deodorizer, and a
softener.