

(11) **EP 1 857 531 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

21.11.2007 Patentblatt 2007/47

(51) Int Cl.:

C10L 1/195 (2006.01)

C10L 10/14 (2006.01)

(21) Anmeldenummer: 07008848.9

(22) Anmeldetag: 02.05.2007

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

(30) Priorität: 16.05.2006 DE 102006022698

(71) Anmelder: Clariant International Ltd. 4132 Muttenz (CH)

(72) Erfinder:

- Siggelkow, Bettina 60327 Frankfurt (DE)
- Nagel, Waltraud 46147 Oberhausen (DE)
- Kupetz, Markus 46539 Dinslaken (DE)
- (74) Vertreter: Mikulecky, Klaus Clariant Produkte (Deutschland) GmbH Group Intellectual Property Am Unisys-Park 1 65843 Sulzbach (DE)

(54) Zusammensetzung von Brennstoffölen

(57) Die vorliegende Erfindung betrifft ein Brennstofföladditiv, enthaltend

A) ein Copolymer aus Ethylen und 18 bis 35 Mol-% mindestens eines Acryl- oder Vinylesters mit einem C_1 - C_{18} -Alkylrest und einem Verzweigungsgrad von weniger als 5 $\mathrm{CH_3}/100~\mathrm{CH_2}$ -Gruppen, und

B) ein Kammpolymer, enthaltend Struktureinheiten aus B1) mindestens einem Olefin als Monomer 1, welches an der olefinischen Doppelbindung wenigstens einen C_8 - C_{18} -Alkylrest trägt, und

B2) mindestens einer ethylenisch ungesättigten Dicarbonsäure als Monomer 2, welche mindestens einen über eine Estergruppe gebundenen C_8 - C_{16} -Alkylrest trägt,

worin der Parameter Q

 $Q = \sum_{i} w_{1i} \cdot n_{1i} + \sum_{j} w_{2j} \cdot n_{2j}$

worin

 w_1 der molare Anteil der einzelnen Kettenlängen n_1 in den Alkylresten von Monomer 1,

 $\rm w_2$ der molare Anteil der einzelnen Kettenlängen $\rm n_2$ in den Alkylresten der Estergruppen von Monomer 2,

 n_1 die einzelnen Kettenlängen in den Alkylresten von Monomer 1,

n₂ die einzelnen Kettenlängen in den Alkylresten der Estergruppen von Monomer 2,

i die Laufvariable für die Kettenlängen in den Alkylresten von Monomer 1, und

j die Laufvariable für die Kettenlängen in den Alkylresten der Estergruppen von Monomer 2 sind,

Werte von 23 bis 27 annimmt.

EP 1 857 531 A1

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Additiv, seine Verwendung als Kaltfließverbesserer für pflanzliche oder tierische Brennstofföle und entsprechend additivierte Brennstofföle.

[0002] Im Zuge abnehmender Welterdölreserven und der Diskussion um die Umwelt beeinträchtigende Konsequenzen des Verbrauchs fossiler und mineralischer Brennstoffe steigt das Interesse an alternativen, auf nachwachsenden Rohstoffen basierenden Energiequellen. Dazu gehören insbesondere native Öle und Fette pflanzlichen oder tierischen Ursprungs. Diese sind in der Regel Triglyceride von Fettsäuren mit 10 bis 24 C-Atomen, die einen den herkömmlichen Brennstoffen vergleichbaren Heizwert haben, aber gleichzeitig als weniger schädlich für die Umwelt angesehen werden. Biokraftstoffe, d.h. von tierischem oder pflanzlichem Material abgeleitete Kraftstoffe werden aus emeuerbaren Quellen erhalten und erzeugen bei der Verbrennung somit nur soviel CO₂, wie vorher in Biomasse umgewandelt wurde. Es ist berichtet worden, dass bei der Verbrennung weniger Kohlendioxid als durch äquivalente Menge an Erdöldestillatbrennstoff, z.B. Dieselkraftstoff, gebildet wird und dass sehr wenig Schwefeldioxid gebildet wird. Zudem sind sie biologisch abbaubar.

[0003] Aus tierischem oder pflanzlichem Material erhaltene Öle sind hauptsächlich Stoffwechselprodukte, die Triglyceride von Monocarbonsäuren umfassen und im Allgemeinen der Formel

entsprechen, in der R ein aliphatischer Rest mit 10 bis 25 Kohlenstoffatomen ist, der gesättigt oder ungesättigt sein kann. **[0004]** Im Allgemeinen enthalten solche Öle Glyceride von einer Reihe von Säuren, deren Anzahl und Sorte mit der Quelle des Öls variiert, und sie können zusätzlich Phosphoglyceride enthalten. Solche Öle können nach im Stand der Technik bekannten Verfahren erhalten werden.

[0005] Auf Grund der teilweise unbefriedigenden physikalischen Eigenschaften der Triglyceride ist die Technik dazu übergegangen, die natürlich vorkommenden Triglyceride in Fettsäureester niederer Alkohole wie Methanol oder Ethanol zu überführen.

[0006] Als Hindernis bei der Verwendung von Triglyceriden wie auch von Fettsäureestern niederer einwertiger Alkohole als Dieselkraftstoffersatz alleine oder im Gemisch mit Dieselkraftstoff hat sich deren Fließverhalten bei niedrigen Temperaturen erwiesen. Ursache dafür ist die hohe Einheitlichkeit dieser Öle im Vergleich zu Mineralölmitteldestillaten. So weist z.B. Rapsölsäuremethylester (RME) einen Cold Filter Plugging Point (CFPP) von -14°C auf. Mit den Additiven des Standes der Technik ist es bisher nicht möglich, einen für die Verwendung als Winterdiesel in Mitteleuropa geforderten CFPP-Wert von -20°C sowie für spezielle Anwendungen von -22°C und darunter sicher einzustellen. Verschärft wird dieses Problem beim Einsatz von Ölen, die größere Mengen gesättigter Fettsäureester enthalten, wie sie in zum Beispiel in Sonnenblumenölmethylester, Altfettmethylester (AME) oder Soyaölmethylester enthalten sind.

[0007] EP-A-0 665 873 offenbart eine Brennstoffölzusammensetzung, die einen Biobrennstoff, ein Brennstofföl auf Erdölbasis und ein Additiv umfasst, welches (a) ein öllösliches Ethylencopolymer oder (b) ein Kammpolymer oder (c) eine polare Stickstoffverbindung oder (d) eine Verbindung, in der mindestens eine im wesentlichen lineare Alkylgruppe mit 10 bis 30 Kohlenstoffatomen mit einem nicht polymeren organischen Rest verbunden ist, um mindestens eine lineare Kette von Atomen zu liefern, die die Kohlenstoffatome der Alkylgruppen und ein oder mehrere nicht endständige Sauerstoffatome einschließt, oder (e) eine oder mehrere der Komponenten (a), (b), (c) und (d) umfasst.

[0008] EP-A-0 629 231 offenbart eine Zusammensetzung, die einen größeren Anteil Öl, das im wesentlichen aus Alkylestern von Fettsäuren besteht, die sich von pflanzlichen oder tierischen Ölen oder beiden ableiten, gemischt mit einem geringen Anteil Mineralölkaltfließverbesserer umfasst, der ein oder mehrere der folgenden:

- (I) Kammpolymer, das Copolymer von Maleinsäureanhydrid oder Fumarsäure und einem anderen ethylenisch ungesättigten Monomer, wobei das Copolymer verestert sein kann, oder Polymer oder Copolymer von α -Olefin, oder Fumarat- oder Itaconatpolymer oder -copolymer ist,
- (II) Polyoxyalkylen-ester, -ester/ether oder eine Mischung derselben,
- (III) Ethylen/ungesättigter Ester-Copolymer,

20

15

5

10

25

30

35

40

45

50

- (IV) polarer, organischer, stickstoffhaltiger Paraffinkristallwachstumshemmstoff,
- (V) Kohlenwasserstoffpolymer,

5

10

15

20

25

30

35

40

45

50

55

- (VI) Schwefelcarboxyverbindungen und
- (VII) mit Kohlenwasserstoffresten versehenes aromatisches Stockpunktsenkungsmittel

umfasst, mit der Maßgabe, dass die Zusammensetzung keine Mischungen von polymeren Estern oder Copolymeren von Estern von Acryl- und/oder Methacrylsäure umfasst, die von Alkoholen mit 1 bis 22 Kohlenstoffatomen abgeleitet sind. [0009] EP-A-0 543 356 offenbart ein Verfahren zur Herstellung von Zusammensetzungen mit verbessertem Tieftemperaturverhalten zum Einsatz als Kraftstoffe oder Schmiermittel, ausgehend von den Estern der aus natürlichen Vorkommen erhaltenen langkettigen Fettsäuren mit einwertigen C₁-C₆-Alkoholen (FAE) dadurch gekennzeichnet, dass man

- a) an sich bekannte, zur Verbesserung des Tieftemperaturverhaltens von Mineralölen verwendete Additive PPD ("Pour Point Depressant") in Mengen von 0,0001 bis 10 Gew.-% bezogen auf die langkettigen Fettsäureester FAE zusetzt und
- b) auf eine Temperatur unterhalb des Cold Filter Plugging Point der nichtadditivierten, langkettigen Fettsäureester FAE abkühlt und
- c) die entstehenden Niederschläge (FAN) abtrennt.
- [0010] DE-A-40 40 317 offenbart Mischungen von Fettsäureniedrigalkylestern mit verbesserter Kältestabilität enthaltend
 - a) 58 bis 95 Gew.-% mindestens eines Esters im lodzahlbereich 50 bis 150, der sich von Fettsäuren mit 12 bis 22 Kohlenstoffatomen und niederen aliphatischen Alkoholen mit 1 bis 4 Kohlenstoffatomen ableitet,
 - b) 4 bis 40 Gew.-% mindestens eines Esters von Fettsäuren mit 6 bis 14 Kohlenstoffatomen und niederen aliphatischen Alkoholen mit 1 bis 4 Kohlenstoffatomen und
 - c) 0,1 bis 2 Gew.-% mindestens eines polymeren Esters.
- **[0011]** EP-A-0 153 176 offenbart die Verwendung von Polymeren auf Basis ungesättigter C_4 - C_8 -Dicarbonsäure-di-Alkylester mit mittleren Alkylkettenlängen von 12 bis 14 als Kaltfließverbesserer für bestimmte Erdöldestillatbrennstofföle. Als geeignete Comonomere werden ungesättigte Ester, insbesondere Vinylacetat, aber auch α -Olefine genannt. **[0012]** EP-A-0 153 177 offenbart ein Additivkonzentrat, das eine Kombination aus
 - I) einem Copolymer mit mindestens 25 Gew.-% eines n-Alkylesters einer monoethylenisch ungesättigten C_4 - C_8 -Mono- oder Dicarbonsäure, wobei die durchschnittliche Zahl der Kohlenstoffatome in den n-Alkylresten 12 14 ist und einem anderen ungesättigten Ester oder einem Olefin enthält, mit
 - II) einem anderen Niedertemperaturfließverbesserer für Destillatbrennstofföle umfasst.
- **[0013]** EP-A-1 491 614 offenbart Öle pflanzlicher oder tierischer Herkunft sowie deren Abmischungen mit Erdöldestillatbrennstoffölen, die zur Verbesserung ihrer Tieftemperatureigenschaften ein EthylenNinylester-Copolymer enthalten, welches mindestens 17 mol-% Vinylester enthält, und einen Verzweigungsgrad von 5 oder mehr Alkylverzweigungen pro 100 Methylengruppen aufweist.
- [0014] Mit den bekannten Additiven ist es ist es oftmals nicht möglich, Fettsäureester, insbesondere solche die in der Summe mehr als 7 Gew.-% an Palmitin- und Stearinsäuremethylester enthalten, auf einen für die Verwendung als Winterdiesel im südlichen Mitteleuropa geforderten CFPP von -10°C und im nördlichen Mitteleuropa von -20°C, sowie für spezielle Anwendungen von -22°C und darunter sicher einzustellen. Problematisch bei den bekannten Additiven ist darüber hinaus eine mangelnde Kältewechselbeständigkeit der additivierten Öle, das heißt der eingestellte CFPP-Wert der Öle steigt allmählich an, wenn das Öl längere Zeit bei wechselnden Temperaturen im Bereich seines Cloud Points oder darunter gelagert wird. Außerdem zeigen insbesondere Öle mit einem hohen Gehalt von Palmitin- und Stearinsäuremethylester eine starke Neigung zur Sedimentation bei Lagerung bei tiefen Temperaturen. Aus der Praxis ist bekannt, dass in Laborversuchen auftretende Sedimentationen der additivierten Fettsäureester in der Kälte, trotz erreichtem CFPP, zu Filterverstopfungen im Motor führen kann und somit die Verkehrsfähigkeit des Kraftstoffes nicht gegeben ist.
- [0015] Es bestand somit die Aufgabe, Additive zur Verbesserung des Kaltfließverhaltens von Fettsäureestem, die beispielsweise aus Raps-, Altfett-, Sonnenblumen- und/oder Sojaöl abgeleitet sind und die mindestens 7 Gew.-% Palmitin- und Stearinsäuremethylester enthalten, zur Verfügung zu stellen, wobei CFPP-Werte von -10°C bzw. -20 °C und darunter einzustellen sind und der eingestellte CFPP-Wert auch bei längerer Lagerung des Öls im Bereich seines Cloud Points bzw. darunter konstant bleibt. Außerdem sollten diese Additive dazu beitragen, die Sedimentationsneigung dieser Öle zu verhindern, so dass, auch nach mehrtägiger Lagerung der Fettsäureester, diese homogen und fließfähig bleiben

und auch ihr CFPP sich nicht verändert.

[0016] Überraschenderweise wurde nun gefunden, dass ein Ethylencopolymere und Kammpolymere enthaltendes Additiv ein ausgezeichneter Fließverbesserer für solche Fettsäureester ist.

[0017] Gegenstand der Erfindung ist ein Additiv, enthaltend

5

- A) ein Copolymer aus Ethylen und 18 bis 35 Mol-% mindestens eines Acryl- oder Vinylesters mit einem C_1 - C_{18} -Alkylrest und einem Verzweigungsgrad von weniger als 5 $CH_3/100$ CH_2 -Gruppen, und
- B) ein Kammpolymer, enthaltend Struktureinheiten aus

10

15

- B1) mindestens einem Olefin als Monomer 1, welches an der olefinischen Doppelbindung wenigstens einen C_8 - C_{18} -Alkylrest trägt, und
- B2) mindestens einer ethylenisch ungesättigten Dicarbonsäure als Monomer 2, welche mindestens einen über eine Estergruppe gebundenen C_8 - C_{16} -Alkylrest trägt,

worin der Parameter Q

20

30

35

40

45

50

55

$$Q = \sum_{i} w_{1i} \cdot n_{1i} + \sum_{j} w_{2j} \cdot n_{2j}$$

25 worin

 w_1 der molare Anteil der einzelnen Kettenlängen n_1 in den Alkylresten von Monomer 1,

w₂ der molare Anteil der einzelnen Kettenlängen n₂ in den Alkylresten der Estergruppen von Monomer 2,

 ${\it n_1}$ die einzelnen Kettenlängen in den Alkylresten von Monomer 1,

n₂ die einzelnen Kettenlängen in den Alkylresten der Estergruppen von Monomer 2,

i die Laufvariable für die Kettenlängen in den Alkylresten von Monomer 1, und

j die Laufvariable für die Kettenlängen in den Alkylresten der Estergruppen von Monomer 2 sind,

[0018] Werte von 23 bis 27 annimmt.

[0019] Ein weiterer Gegenstand der Erfindung ist eine Brennstoffölzusammensetzung, enthaltend ein Brennstofföl tierischen oder pflanzlichen Ursprungs und das oben definierte Additiv.

[0020] Ein weiterer Gegenstand der Erfindung ist die Verwendung des oben definierten Additivs zur Verbesserung der Kaltfließeigenschaften von Brennstoffölen tierischen oder pflanzlichen Ursprungs.

[0021] Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Verbesserung der Kaltfließeigenschaften von Brennstoffölen tierischen oder pflanzlichen Ursprungs, indem man Brennstoffölen tierischen oder pflanzlichen Ursprungs das oben definierte Additiv zusetzt.

[0022] In einer bevorzugten Ausführungsform der Erfindung nimmt Q Werte von 24 bis 26 an.

[0023] Unter Kettenlänge von Olefinen wird hier die Kettenlänge des monomeren Olefins abzüglich der beiden olefinisch gebundenen C-Atome verstanden. Bei Olefinen mit nicht endständigen Doppelbindungen, wie z.B. Olefinen mit Vinylidengruppierung, ist die Kettenlänge gleich der Gesamtkettenlänge des Olefins, abzüglich der beiden olefinisch gebundenen Kohlenstoffatome.

[0024] Betrachtet man nicht die monomeren Olefine, sondern die aus den Olefinen B1) und den Dicarbonsäureestern B2) gebildeten Polymere, so ist die Kettenlänge die Länge der Alkylreste, die - durch das Olefin in das Polymer eingebracht - vom Polymerrückgrat abgehen.

[0025] Als Ethylen-Copolymere A) eignen sich vorzugsweise solche, die 18 bis 35 Mol-% eines oder mehrerer Vinylund/oder (Meth)acrylester und 65 bis 82 Gew.-% Ethylen enthalten. Besonders bevorzugt sind Ethylen-Copolymere mit
18,5 bis 27 Mol-% mindestens eines Vinylesters. Geeignete Vinylester leiten sich von Fettsäuren mit linearen oder
verzweigten Alkylgruppen mit 1 bis 30 C-Atomen ab. Bevorzugte Ethylen-Copolymere weisen eine Schmelzviskosität
V₁₄₀ von mindestens 5, vorzugsweise 10 bis 100, insbesondere 20 bis 60 mPas auf.

[0026] Beispiele für geeignete Vinylester sind Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylhexanoat, Vinylheptanoat, Vinyloctanoat, Vinyllaurat und Vinylstearat sowie auf verzweigten Fettsäuren basierende Ester des Vinylalkohols wie Vinyl-iso-butyrat, Pivalinsäurevinylester, Vinyl-2-ethylhexanoat, iso-Nonansäurevinylester, Neononansäurevinylester, Neodecansäurevinylester und Neoundecansäurevinylester. Als Comonomere ebenfalls geeignet sind Ester der Acryl-

und Methacrylsäure mit 1 bis 20 C-Atomen im Alkylrest wie Methyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat, n- und isoButyl(meth)acrylat, Hexyl-, Octyl-, 2-Ethylhexyl-, Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl(meth) acrylat. Geeignet sind auch Mischungen aus zwei, drei, vier oder auch mehreren dieser Comonomere.

[0027] Weitere bevorzugte Copolymere enthalten neben Ethylen und 18 bis 35 Mol-% Vinylestern noch 0,5 bis 10 Mol-% Olefine mit 3 bis 10 C-Atomen, wie beispielsweise Propen, Buten, Isobutylen, Hexen, 4-Methylpenten, Octen, Diisobutylen und/oder Norbornen.

[0028] Die Copolymere A haben bevorzugt gewichtsmittlere Molekulargewichte Mw, gemessen mittels Gelpermeationchromatographie (GPC) gegen Polystyrolstandards in THF von 1000 bis 10000, insbesondere 1500 bis 5000 g/mol. Ihre mittels ¹H-NMR-Spektroskopie (400 MHz mit CDCl₃ als Lösungsmittel) bestimmten Verzweigungsgrade sind kleiner als 5, bevorzugt kleiner als 4 CH₃/100 CH₂-Gruppen. Die Methylgruppen stammen aus den Kurz- und Langkettenverzweigungen, und nicht aus einpolymerisierten Comonomeren.

[0029] Die Copolymere (A) sind durch die üblichen Copolymerisationsverfahren wie beispielsweise Suspensionspolymerisation, Lösungsmittelpolymerisation, Gasphasenpolymerisation oder Hochdruckmassepolymerisation herstellbar. Bevorzugt wird die Hochdruckmassepolymerisation bei Drucken von 50 bis 400 MPa, bevorzugt 100 bis 300 MPa und Temperaturen von 100 bis 300°C, bevorzugt 150 bis 250°C durchgeführt. In einer besonders bevorzugten Herstellungsvariante erfolgt die Polymerisation in einem Mehrzonenreaktor, wobei die Temperaturdifferenz zwischen den Peroxiddosierungen entlang des Rohrreaktors möglichst niedrig gehalten wird, d.h. < 50°C, bevorzugt < 30°C, insbesondere <15°C. Bevorzugt differieren die Temperaturmaxima in den einzelnen Reaktionszonen dabei um weniger als 30°C, besonders bevorzugt um weniger als 20°C und speziell um weniger als 10°C.

[0030] Die Reaktion der Monomeren wird durch Radikale bildende Initiatoren (Radikalkettenstarter) eingeleitet. Zu dieser Substanzklasse gehören z.B. Sauerstoff, Hydroperoxide, Peroxide und Azoverbindungen wie Cumolhydroperoxid, t-Butylhydroperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(2-ethylhexyl)peroxid-carbonat, t-Butylperpivalat, t-Butylpermaleinat, t-Butylperbenzoat, Dicumylperoxid, t-Butylcumylperoxid, Di-(t-butyl)peroxid, 2,2'-Azo-bis(2-methylpropanonitril), 2,2'-Azo-bis(2-methylbutyronitril). Die Initiatoren werden einzeln oder als Gemisch aus zwei oder mehr Substanzen in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Monomerengemisch, eingesetzt.

[0031] Die Hochdruckmassepolymerisation wird in bekannten Hochdruckreaktoren, z.B. Autoklaven oder Rohrreaktoren, diskontinuierlich oder kontinuierlich durchgeführt, besonders bewährt haben sich Rohrreaktoren. Lösungsmittel wie aliphatische und/oder aromatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische, Benzol oder Toluol, können im Reaktionsgemisch enthalten sein. Bevorzugt ist die im Wesentlichen lösungsmittelfreie Arbeitsweise. In einer bevorzugten Ausführungsform der Polymerisation wird das Gemisch aus den Monomeren, dem Initiator und, sofern eingesetzt, dem Moderator, einem Rohrreaktor über den Reaktoreingang sowie über einen oder mehrere Seitenäste zugeführt. Bevorzugte Moderatoren sind beispielsweise Wasserstoff, gesättigte und ungesättigte Kohlenwasserstoffe wie beispielsweise Propan oder Propen, Aldehyde wie beispielsweise Propionaldehyd, n-Butyraldehyd oder iso-Butyraldehyd, Ketone wie beispielsweise Aceton, Methylethylketon, Methylisobutylketon, Cyclohexanon und Alkohole wie beispielsweise Butanol. Die Comonomeren wie auch die Moderatoren können dabei sowohl gemeinsam mit Ethylen als auch getrennt über Seitenströme in den Reaktor dosiert werden. Hierbei können die Monomerenströme unterschiedlich zusammengesetzt sein (EP-A-0 271 738 und EP-A-0 922 716).

[0032] Als geeignete Co- bzw. Terpolymere sind beispielsweise zu nennen: Ethylen-Vinylacetat-Copolymere mit 10 - 40 Gew.-% Vinylacetat und 60 - 90 Gew.-% Ethylen;

die aus DE-A-34 43 475 bekannten Ethylen-Vinylacetat-Hexen-Terpolymere;

20

30

35

40

45

50

die in EP-A-0 203 554 beschriebenen Ethylen-Vinylacetat-Diisobutylen-Terpolymere; die aus EP-A-0 254 284 bekannte Mischung aus einem Ethylen-Vinylacetat-Diisobutylen-Terpolymerisat und einem Ethylen/Vinylacetat-Copolymer;

die in EP-A-0 405 270 offenbarten Mischungen aus einem Ethylen-Vinylacetat-Copolymer und einem Ethylen-Vinylacetat-N-Vinylpyrrolidon-Terpolymerisat;

die in EP-A-0 463 518 beschriebenen Ethylen/Vinylacetat/iso-Butylvinylether-Terpolymere;

die aus EP-A-0 493 769 bekannten Ethylen/Vinylacetat/Neononansäurevinylester bzw. Neodecansäurevinylester-Terpolymere, die außer Ethylen 10-35 Gew.-% Vinylacetat und 1-25 Gew.-% der jeweiligen Neoverbindung enthalten;

die in EP-A-0 778 875 beschriebenen Terpolymere aus Ethylen, einem ersten Vinylester mit bis zu 4 C-Atomen und einem zweiten Vinylester, der sich von einer verzweigten Carbonsäure mit bis zu 7 C-Atomen oder einer verzweigten, aber nicht tertiären Carbonsäure mit 8 bis 15 C-Atomen ableitet;

die in DE-A-196 20 118 beschriebenen Terpolymere aus Ethylen, dem Vinylester einer oder mehrerer aliphatischer C_2 -bis C_{20} -Monocarbonsäuren und 4-Methylpenten-1;

die in DE-A-196 20 119 offenbarten Terpolymere aus Ethylen, dem Vinylester einer oder mehrerer aliphatischer C_2 - bis C_{20} -Monocarbonsäuren und Bicyclo[2.2.1]hept-2-en;

die in EP-A-0 926 168 beschriebenen Terpolymere aus Ethylen und wenigstens einem olefinisch ungesättigten Comonomer, das eine oder mehrere Hydroxylgruppen enthält.

[0033] Bevorzugt werden Mischungen gleicher oder verschiedener Ethylencopolymere eingesetzt. Besonders bevor-

zugt unterscheiden sich die den Mischungen zu Grunde liegenden Polymere in mindestens einem Charakteristikum. Beispielsweise können sie unterschiedliche Comonomere enthalten, unterschiedliche Comonomergehalte, Molekulargewichte und/oder Verzweigungsgrade aufweisen. Das Mischungsverhältnis der verschiedenen Ethylencopolymere liegt dabei bevorzugt zwischen 20:1 und 1:20, bevorzugt 10:1 bis 1:10, insbesondere 5:1 bis 1:5.

[0034] Die Copolymere B leiten sich bevorzugt von Dicarbonsäuren B2 und deren Derivaten wie Estern und Anhydriden ab. Bevorzugt sind Maleinsäure, Fumarsäure, Itaconsäure und speziell Maleinsäureanhydrid.

[0035] Als Comonomere sind Monoolefine B1 mit 10 bis 20, insbesondere mit 12 - 18 C-Atomen besonders geeignet. Diese sind bevorzugt linear und die Doppelbindung ist vorzugsweise endständig wie beispielsweise bei Dodecen, Tridecen, Tetradecen, Pentadecen, Hexadecen, Heptadecen und Octadecen.

[0036] Das molare Verhältnis von Dicarbonsäuren/derivaten zu Olefin bzw. Olefinen im Polymer ist bevorzugt im Bereich 1: 1,5 bis 1,5:1, speziell ist es equimolar. In untergeordneten Mengen von bis zu 20 Mol-%, bevorzugt < 10 Mol-%, speziell < 5 Mol-% können in den Copolymeren B auch weitere Comonomere außer B1 und B2 enthalten sein, die mit Dicarbonsäuren/derivaten und den genannten Olefinen copolymerisierbar sind. Solche Comonomere sind beispielsweise Olefine mit 2 bis 50 Kohlenstoffatomen, Allylpolyglykolether, C₁-C₃₀-Alkyl(meth)acrylate, Vinylaromaten oder C1-C20-Alkylvinylether. Des gleichen werden vorzugsweise in untergeordneten Mengen Poly(isobutylene) mit Molekulargewichten von bis zu 5.000 g/mol eingesetzt, wobei hochreaktive Varianten mit hohem Anteil an endständigen Vinylidengruppen bevorzugt sind. Diese weiteren Comonomere werden bei der Berechnung des für die Wirksamkeit entscheidenden Faktors Q nicht berücksichtigt.

[0037] Allylpolyglykolether entsprechen der allgemeinen Formel

25

30

40

45

50

55

10

$$CH_{2} = C$$

$$\downarrow \\
H_{2}C - O - (CH_{2} - CH - O)_{m} - R^{3}$$

$$\downarrow \\
R^{2}$$

35 worin

> R^1 Wasserstoff oder Methyl,

 R^2 Wasserstoff oder C₁-C₄-Alkyl,

m eine Zahl von 1 bis 100,

 R^3

 $\begin{array}{l} C_1\text{-}C_{24}\text{-}\text{Alkyl},\ C_5\text{-}C_{20}\text{-}\text{Cycloalkyl},\ C_6\text{-}C_{18}\text{-}\text{Aryl oder -C(O)-R}^4,\\ C_1\text{-}C_{40}\text{-}\text{Alkyl},\ C_5\text{-}C_{10}\text{-}\text{Cycloalkyl oder }C_6\text{-}C_{18}\text{-}\text{Aryl, bedeuten}. \end{array}$

[0038] Die Herstellung der erfindungsgemäßen Copolymere B) erfolgt vorzugsweise bei Temperaturen zwischen 50 und 220°C, insbesondere 100 bis 190°C. Das bevorzugte Herstellungsverfahren ist die lösemittelfreie Massepolymerisation, es ist jedoch auch möglich, die Polymerisation in Gegenwart aprotischer Lösemittel wie Benzol, Toluol, Xylol oder von höher siedenden aromatischen, aliphatischen oder isoaliphatischen Lösemitteln bzw. Lösemittelgemischen wie Kerosin oder Solvent Naphtha durchzuführen. Besonders bevorzugt ist die Polymerisation in wenig moderierenden, aliphatischen oder isoaliphatischen Lösemitteln. Der Lösemittelanteil im Polymerisationsgemisch liegt im Allgemeinen zwischen 10 und 90 Gew.-%, bevorzugt zwischen 35 und 60 Gew.-%. Bei der Lösungspolymerisation kann die Reaktionstemperatur durch den Siedepunkt des Lösemittels oder durch Arbeiten unter Unter- oder Überdruck besonders einfach eingestellt werden.

[0039] Die mittlere Molekülmasse Mw der erfindungsgemäßen Copolymere B beträgt im allgemeinen zwischen 1.200 und 200.000 g/mol, insbesondere zwischen 2.000 und 100.000 g/mol, gemessen mittels Gelpermeationschromatographie (GPC) gegen Polystyrolstandards in THF. Erfindungsgemäße Copolymere B müssen in praxisrelevanten Dosiermengen öllöslich sein, das heißt sie müssen sich in dem zu additivierenden Öl bei 50°C rückstandsfrei lösen.

[0040] Die Reaktion der Monomeren wird durch Radikale bildende Initiatoren (Radikalkettenstarter) eingeleitet. Zu dieser Substanzklasse gehören z.B. Sauerstoff, Hydroperoxide und Peroxide wie z.B. Cumolhydroperoxid, t-Butylhydroperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(2-ethylhexyl)peroxid-carbonat, t-Butylperpivalat, t-Butylpermalein-

at, t-Butylperbenzoat, Dicumylperoxid, t-Butylcumylperoxid, Di-(t-butyl)peroxid, sowie Azoverbindungen wie z.B. 2,2'-Azo-bis(2methylpropanonitril) oder 2,2'-Azo-bis(2-methylbutyronitril). Die Initiatoren werden einzeln oder als Gemisch aus zwei oder mehr Substanzen in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Monomerengemisch, eingesetzt.

[0041] Die Copolymere können entweder durch Umsetzung von Malein-, Fumar- und/oder Itaconsäure bzw. deren Anhydriden mit dem entsprechenden Alkohol und anschließende Copolymerisation oder durch Copolymerisation von Olefin bzw. Olefinen mit mindestens einer ungesättigten Dicarbonsäure oder deren Derivat wie beispielsweise Itaconund/oder Maleinsäureanhydrid und anschließende Umsetzung mit Alkoholen hergestellt werden. Bevorzugt wird eine Copolymerisation mit Anhydriden durchgeführt und das entstandene Copolymer nach der Herstellung in einen Ester und/oder einen Diester überführt.

[0042] Diese Veresterung erfolgt in beiden Fällen beispielsweise durch Umsetzung mit 0,8 bis 2,5 mol Alkohol pro mol Anhydrid, bevorzugt mit 1,0 bis 2,0 mol Alkohol pro mol Anhydrid bei 50 bis 300°C. Bei Einsatz von ca. 1 mol Alkohol pro mol Anhydrid entstehen Halbester. Hier werden Veresterungstemperaturen von ca. 70 bis 120°C bevorzugt. Bei Einsatz größerer Mengen Alkohol, bevorzugt 2 Mol Alkohol pro Mol Anhydrid entstehen bei 100 - 300°C, bevorzugt 120 - 250°C Diester. Das Reaktionswasser kann dabei mittels eines Inertgasstroms abdestilliert oder in Gegenwart eines organischen Lösemittels mittels azeotroper Destillation ausgetragen werden. Bevorzugt werden dazu 20-80, insbesondere 30-70, speziell 35-55 Gew.-% mindestens eines organischen Lösemittels eingesetzt. Als Halbester werden hier Copolymere mit Säurezahlen von 30 - 70 mg KOH/g, bevorzugt von 40 - 60 mg KOH/g betrachtet. Copolymere mit Säurezahlen von weniger als 40, speziell weniger als 30 mg KOH/g werden als Diester betrachtet. Besonders bevorzugt sind Halbester.

[0043] Geeignete Alkohole sind insbesondere linear, sie können jedoch auch untergeordnete Mengen, z. B. bis zu 30 Gew.-%, bevorzugt bis zu 20 Gew.-% und speziell bis zu 10 Gew.-% (in 1- oder 2-Position) verzweigte Alkohole enthalten. Besonders bevorzugt sind Octanol, Decanol, Undecanol, Dodecanol, Tridecanol, Tetradecanol, Pentadecanol und Hexadecanol. Durch Einsatz von Mischungen verschiedener Olefine bei der Polymerisation und Mischungen verschiedener Alkohole bei der Veresterung kann die Wirksamkeit weiter auf spezielle Fettsäureesterzusammensetzungen angepasst werden.

[0044] Besonders bevorzugte Copolymere B enthalten Halbester primärer Alkohole als Monomer B2.

20

30

35

40

45

50

55

[0045] Durch Einsatz von Mischungen verschiedener Olefine bei der Polymerisation und Mischungen verschiedener Alkohole bei der Veresterung kann die Wirksamkeit weiter auf spezielle Fettsäureesterzusammensetzungen angepasst werden

[0046] In einer bevorzugten Ausführungsform können die Additive neben den Bestandteilen A und B noch Polymere und Copolymere auf Basis von C_{10} - C_{24} -Alkylacrylaten oder -methacrylaten enthalten (Bestandteil C). Diese Poly(alkylacrylate) und -methacrylate weisen Molekulargewichte Mw von 800 bis 1.000.000 g/mol auf, und leiten sich vorzugsweise von Capryl-, Caprin-, Undecyl-, Lauryl-, Myristyl-, Cetyl-, Palmitoleyl-, Stearylalkohol oder deren Mischungen wie beispielsweise Kokos-, Palm- Talgfett-oder Behenylalkohol ab.

[0047] In einer bevorzugten Ausführungsform werden Mischungen verschiedener Copolymere B eingesetzt, wobei der Mittelwert (Gewichtsmittel) der Parameter Q der Mischungskomponenten Werte von 23 bis 27 und bevorzugt Werte von 24 bis 26 annimmt.

[0048] Das Mischungsverhältnis der erfindungsgemäßen Additivbestandteile A und B beträgt (in Gewichtsteilen) 20: 1 bis 1:20, vorzugsweise 10:1 bis 1:10, insbesondere 5:1 bis 1:5. Der Anteil der Komponente C an den Formulierungen aus A, B und C kann bis zu 40 Gew.-% betragen; bevorzugt ist er weniger als 20 Gew.-%, insbesondere zwischen 1 und 10 Gew.-%, bezogen auf das Gesamtgewicht von A, B und C.

[0049] Die erfindungsgemäßen Additive werden Ölen in Mengen von 0,001 bis 5 Gew.-%, bevorzugt 0,005 bis 1 Gew.-% und speziell 0,01 bis 0,6 Gew.-% zugesetzt. Dabei können sie als solche oder auch gelöst bzw. dispergiert in Lösemitteln, wie z.B. aliphatischen und/oder aromatischen Kohlenwasserstoffen oder Kohlenwasserstoffgemischen wie z.B. Toluol, Xylol, Ethylbenzol, Decan, Pentadecan, Benzinfraktionen, Kerosin, Naphtha, Diesel, Heizöl, Isoparaffine oder kommerziellen Lösemittelgemischen wie Solvent Naphtha, [®]Hydrosol A 200 N, [®]Shellsol A 150 ND, [®]Caromax 20 LN, [®]Shellsol AB, [®]Solvesso 150, [®]Solvesso 150 ND, [®]Solvesso 200, [®]Exxsol-, [®]Isopar- und [®]Shellsol D-Typen eingesetzt werden. Bevorzugt sind sie in Brennstofföl tierischen oder pflanzlichen Ursprungs auf Basis von Fettsäurealkylestern gelöst. Bevorzugt enthalten die erfindungsgemäßen Additive 1 - 80 %, speziell 10 - 70 %, insbesondere 25 - 60 % Lösemittel.

[0050] In einer bevorzugten Ausführungsform handelt es sich bei dem Brennstofföl, das häufig auch als "Biodiesel" oder "Biokraftstoff" bezeichnet wird, um Fettsäurealkylester aus Fettsäuren mit 12 bis 24 C-Atomen und Alkoholen mit 1 bis 4 C-Atomen. Gewöhnlich enthält ein größerer Teil der Fettsäuren ein, zwei oder drei Doppelbindungen.

[0051] Beispiele für Öle, die sich von tierischem oder pflanzlichem Material ableiten, und in denen das erfindungsgemäße Additiv verwendet werden kann, sind Rapsöl, Korianderöl, Sojaöl, Baumwollsamenöl, Sonnenblumenöl, Ricinusöl, Olivenöl, Erdnussöl, Maisöl, Mandelöl, Palmkernöl, Kokosnussöl, Senfsamenöl, Rindertalg, Knochenöl, Fischöle und gebrauchte Speiseöle. Weitere Beispiele schließen Öle ein, die sich von Weizen, Jute, Sesam, Scheabaumnuß, Arachisöl

und Leinöl ableiten. Die auch als Biodiesel bezeichneten Fettsäurealkylester können aus diesen Ölen nach im Stand der Technik bekannten Verfahren abgeleitet werden. Rapsöl, das eine Mischung von mit Glycerin partiell veresterten Fettsäuren ist, ist bevorzugt, da es in großen Mengen erhältlich ist und in einfacher Weise durch Auspressen von Rapssamen erhältlich ist. Des Weiteren sind die ebenfalls weit verbreiteten Öle von Altfett, Palmöl, Sonnenblumen und Soja sowie deren Mischungen mit Rapsöl bevorzugt.

[0052] Besonders geeignet als Biokraftstoffe sind niedrige Alkylester von Fettsäuren. Hier kommen beispielsweise handelsübliche Mischungen der Ethyl-, Propyl-, Butyl- und insbesondere Methylester von Fettsäuren mit 14 bis 22 Kohlenstoffatomen, beispielsweise von Laurinsäure, Myristinsäure, Palmitinsäure, Palmitolsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Ricinolsäure, Elaeostearinsäure, Linolsäure, Linolensäure, Eicosansäure, Gadoleinsäure, Docosansäure oder Erucasäure in Betracht, die bevorzugt eine lodzahl von 50 bis 150, insbesondere 90 bis 125 haben. Mischungen mit besonders vorteilhaften Eigenschaften sind solche, die hauptsächlich, d. h. zu mindestens 50 Gew.-%, Methylester von Fettsäuren mit 16 bis 22 Kohlenstoffatomen und 1, 2 oder 3 Doppelbindungen enthalten. Die bevorzugten niedrigeren Alkylester von Fettsäuren sind die Methylester von Ölsäure, Linolensäure und Erucasäure.

[0053] Handelsübliche Mischungen der genannten Art werden beispielsweise durch Spaltung und Veresterung bzw. durch Umesterung von tierischen und pflanzlichen Fetten und Ölen mit niedrigen aliphatischen Alkoholen erhalten. Des gleichen sind auch gebrauchte Speiseöle als Ausgangsprodukte geeignet. Zur Herstellung von niedrigeren Alkylestern von Fettsäuren ist es vorteilhaft, von Fetten und Ölen mit hoher lodzahl auszugehen, wie beispielsweise Sonnenblumenöl, Rapsöl, Korianderöl, Castoröl (Ricinusöl), Sojaöl, Baumwollsamenöl, Erdnussöl oder Rindertalg. Niedrigere Alkylester von Fettsäuren auf Basis einer neuen Rapsölsorte, deren Fettsäurekomponente zu mehr als 80 Gew.-% von ungesättigten Fettsäuren mit 18 Kohlenstoffatomen abgeleitet ist, sind bevorzugt.

20

30

35

40

45

50

55

[0054] Somit ist ein Biokraftstoff ein Öl, das aus pflanzlichem oder tierischem Material oder beidem erhalten wird oder ein Derivat derselben, welches als Kraftstoff und insbesondere als Diesel oder Heizöl verwendet werden kann. Obwohl viele der obigen Öle als Biokraftstoffe verwendet werden können, sind zum einen Pflanzenölderivate bevorzugt, wobei besonders bevorzugte Biokraftstoffe Alkylesterderivate von Rapsöl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl, Olivenöl oder Palmöl sind, wobei Rapsölsäuremethylester, Sonnenblumenölsäuremethylester, Palmölsäuremethylester und Sojaölsäuremethylester ganz besonders bevorzugt sind. Auf Grund der hohen Nachfrage nach Biokraftstoffen, weichen immer mehr Hersteller von Fettsäuremethylestern auf andere Rohstoffquellen mit höherer Verfügbarkeit aus. Besonders zu erwähnen ist hier Altfettöl, welches als Altfettölmethylester als Biodiesel alleine oder in Abmischung mit anderen Fettsäuremethylestern, wie z.B. Rapsölsäuremethylester, Sonnenblumenölsäuremethylester, Palmölsäuremethylester und Sojaölsäuremethylester verwendet wird. Außerdem sind Mischungen aus Rapsölmethylester mit Sojaölmethylester oder eine Mischung aus Sojaölmethylester und Palmölmethylester oder eine Mischung aus Sojaölmethylester und Palmölmethylester besonders zu erwähnen.

[0055] Das Additiv kann dem zu additivierenden Öl gemäß im Stand der Technik bekannten Verfahren eingebracht werden. Wenn mehr als eine Additivkomponente oder Coadditivkomponente verwendet werden soll, können solche Komponenten zusammen oder separat in beliebiger Kombination in das Öl eingebracht werden.

[0056] Mit den erfindungsgemäßen Additiven lässt sich der CFPP-Wert von Biodiesel auf Werte von -10°C und unter -20°C und zum Teil auf Werte von unter -25°C einstellen, wie sie für die Vermarktung für einen Einsatz insbesondere im Winter gefordert werden. Des gleichen wird der Pour Point von Biodiesel durch den Zusatz der erfindungsgemäßen Additive herabgesetzt. Die erfindungsgemäßen Additive sind besonders vorteilhaft in problematischen Ölen, die einen hohen Anteil aufweisen an Estern der gesättigter Fettsäuren Palmitinsäure und Stearinsäure von mehr als 7 Gew.-% wie sie beispielsweise in Fettsäuremethylestern aus Altfettöl, Sonnenblumen und Soja enthalten sind. Es gelingt mit den erfindungsgemäßen Additiven somit auch, Mischungen aus Rapsölsäuremethylester und/ oder Altfettölmethylester und/oder Sonnenblumen- und/oder Sojaölfettsäuremethylester auf CFPP-Werte von-10°C bzw. -20°C und darunter einzustellen. Es gelingt mit den erfindungsgemäßen Additiven somit auch, Altfettölmethylester oder Sonnenblumenoder Sojaölfettsäuremethylester auf CFPP-Werte von -10°C bzw. -20°C und darunter einzustellen. Darüber hinaus haben die so additivierten Öle eine gute Kältewechselstabilität, das heißt der CFPP-Wert bleibt auch bei Lagerung unter winterlichen Bedingungen konstant und neigen bei konstanten tiefen Temperaturen (z.B. -10°C oder -22°C) nicht zur Sedimentation.

[0057] Zur Herstellung von Additivpaketen für spezielle Problemlösungen können die erfindungsgemäßen Additive auch zusammen mit einem oder mehreren öllöslichen Co-Additiven eingesetzt werden, die bereits für sich allein die Kaltfließeigenschaften von Rohölen, Schmierölen oder Brennölen verbessern. Beispiele solcher Co-Additive sind polare Verbindungen, die eine Paraffindispergierung bewirken (Paraffindispergatoren) sowie öllösliche Amphiphile.

[0058] Die erfindungsgemäßen Additive können in Mischung mit Paraffindispergatoren eingesetzt werden. Paraffindispergatoren reduzieren die Größe der Paraffinkristalle und bewirken, dass die Paraffinpartikel sich nicht absetzen, sondern kolloidal mit deutlich reduziertem Sedimentationsbestreben, dispergiert bleiben. Als Paraffindispergatoren haben sich sowohl niedermolekulare wie auch polymere, öllösliche Verbindungen mit ionischen oder polaren Gruppen wie z. B. Aminsalze und/oder Amide bewährt. Besonders bevorzugte Paraffindispergatoren enthalten Umsetzungsprodukte

sekundärer Fettamine mit 20 bis 44 C-Atomen, insbesondere Dicocosamin, Ditalgfettamin, Distearylamin und Dibehenylamin mit Carbonsäuren und deren Derivaten. Besonders bewährt haben sich Paraffindispergatoren, die durch Reaktion aliphatischer oder aromatischer Amine, vorzugsweise langkettiger aliphatischer Amine, mit aliphatischen oder aromatischen Mono-, Di-, Tri- oder Tetracarbonsäuren oder deren Anhydriden erhalten werden (vgl. US 4 211 534). Des gleichen sind Amide und Ammoniumsalze von Aminoalkylenpolycarbonsäuren wie Nitrilotriessigsäure oder Ethylendiamintetraessigsäure mit sekundären Aminen als Paraffindispergatoren geeignet (vgl. EP 0 398 101). Andere Paraffindispergatoren sind Copolymere des Maleinsäureanhydrids und α,β-ungesättigter Verbindungen, die gegebenenfalls mit primären Monoalkylaminen und/oder aliphatischen Alkoholen umgesetzt werden können (vgl. EP 0 154 177) und die Umsetzungsprodukte von Alkenylspirobislactonen mit Aminen (vgl. EP 0 413 279 B1) und nach EP-A-0 606 055 A2 Umsetzungsprodukte von Terpolymeren auf Basis α,β-ungesättigter Dicarbonsäureanhydride, α,β-ungesättigter Verbindungen und Polyoxyalkylenether niederer ungesättigter Alkohole.

[0059] Das Mischverhältnis (in Gewichtsteilen) der erfindungsgemäßen Additive mit Paraffindispergatoren beträgt 1: 10 bis 20:1, vorzugsweise 1:1 bis 10:1.

[0060] Die mit dem erfindungsgemäßen Additiv behandelten Öle können auch aus Erdöl gewonnenen Mitteldestillaten zugesetzt werden. Die so erhaltenen Mischungen aus Biokraftstoff und Mitteldestillat können ihrerseits mit Kälteadditiven wie Fließverbesserer oder Wachsdispergatoren, sowie Performance Packages versetzt werden.

[0061] Das Mischungsverhältnis zwischen Biokraftstoff und Mitteldestillaten kann zwischen 1:99 und 99:1 liegen. Besonders bevorzugt sind Mischungsverhältnisse von Biobrennstoff:Mitteldestillat = 3:97 bis 30:70.

[0062] Als Mitteldestillat bezeichnet man insbesondere solche Mineralöle, die durch Destillation von Rohöl gewonnen werden und im Bereich von 120 bis 450°C sieden, beispielsweise Kerosin, Jet-Fuel, Diesel und Heizöl. Vorzugsweise werden solche Mitteldestillate verwendet, die 0,05 Gew.-% Schwefel und weniger, besonders bevorzugt weniger als 350 ppm Schwefel, insbesondere weniger als 200 ppm Schwefel und in speziellen Fällen weniger als 50 ppm Schwefel enthalten. Es handelt sich dabei im Allgemeinen um solche Mitteldestillate, die einer hydrierenden Raffination unterworfen wurden, und die daher nur geringe Anteile an polyaromatischen und polaren Verbindungen enthalten. Vorzugsweise handelt es sich um solche Mitteldestillate, die 95 %-Destillationspunkte unter 370°C, insbesondere 350°C und in Spezialfällen unter 330°C aufweisen. Auch synthetische Treibstoffe, wie sie zum Beispiel nach dem Fischer-Tropsch-Verfahren zugänglich sind, sind als Mitteldestillate geeignet.

[0063] Die Additive können allein oder auch zusammen mit anderen Additiven verwendet werden, z.B. mit anderen Stockpunkterniedrigern oder Entwachsungshilfsmitteln, mit Antioxidantien, Cetanzahlverbesserern, Dehazern, Demulgatoren, Detergenzien, Dispergatoren, Entschäumern, Farbstoffen, Korrosionsinhibitoren, Leitfähigkeitsverbesserern, Schlamminhibitoren, Odorantien und/oder Zusätzen zur Erniedrigung des Cloud-Points.

Beispiele

35 **[0064]**

20

30

40

45

50

55

Tabelle 1 Charakterisierung der eingesetzten Ethylen-Copolymere

	- about Constant Grant G							
Beispiel	Beispiel Comonomer(e)		CH ₃ /100CH ₂	Gehalt an Vinylester				
A1 (V)	(V) Ethylen/VAC/ Neodecansäurevinylester		4,2	13,3 mol%				
A2	Ethylen / VAC	52 mPas	4,0	20,2 mol%				
A3 (V)	Ethylen / VAC	154 mPas	3,0	16,7 mol%				
A4 (V)	Ethylen / VAC	125 mPas	3,0	13,8 mol%				
VAC = Essigsäurevinylester								

Der Vinylestergehalt wurde mittels Pyrolyse und anschließender Titration gemessen.

Die Viskosität (V₁₄₀) wurde mit einem Haake Reostress 600 Viskosimeter gemessen.

Der Verzweigungsgrad (CH₃/100CH₂) wurde an einem ¹H-NMR-Gerät mit 400 MHz in CDCl₃ gemessen, und mittels Integration der einzelnen Signale errechnet.

Tabelle 2 Charakterisierung der eingesetzten Kammpolymere

Beispiel	Comonomere	Alkohol / Amin	Q	Säurezahl [mg KOH/g]
B1	MSA-co-C ₁₄ / ₁₆ -α-Olefin (1:0,5:0,5)	C ₁₂ /C ₁₆ Alkohol (85 %:15 %)	25,6	49,9
B2	MSA-co-C ₁₄ / ₁₆ -α-Olefin (1:0,5:0,5)	C ₁₂ Alkohol	25,0	48,2

(fortgesetzt)

Beispie	Comonomere	Alkohol / Amin	Q	Säurezahl [mg KOH/g]
В3	MSA-co-C ₁₄ / ₁₆ -α-Olefin (1:0,5:0,5)	C ₁₂ Alkohol	23,0	51,1

Tabelle 3 Acrylate

5

10

15

20

25

30

35

40

45

50

55

C1	Poly(octadecylacrylat), K-Wert 32
C2	Poly(behenylacrylat), K-Wert 18

Tabelle 4 Charakterisierung der Testöle

Öl - Nr.:	CFPP [°C]	Zusammensetzung
E1	-16	RME
E2	-13	RME / AME 90:10
E3	-11	RME / AME 80:20
E4	-12	RME / SoyaME 92:8
E5	-12	RME/SoyaME 80:20
E6	-9	RME/SoyaME 60:40
E7	-8	RME / PME 85:15
I		

SoyaME = Soyamethylester RME = Rapsölmethylester PME = Palmölmethylester

AME = Altfettmethylester

Tabelle 5 Methylesterverteilung der Testöle

	E1	E2	E3	E4	E5	E6	E7
C16:0	4,27	6,81	5,58	5,22	5,8	7,14	11,18
C18:0	0,92	2,35	2,35	1,01	1,94	2,25	2,25
C18:1	59,48	54,55	54,88	55,94	53,08	43,93	52,87
C18:2	29,56	20,79	21,84	23,48	25,27	32,04	19,43
C18:3	1,58	9,58	9,58	9,59	8,31	7,47	8,81
C20:1/2/3	1,48	1,49	1,61	1,43	1,33	1,09	1,23
C20:0	0,63	0,66	0,67	0,64	0,65	0,6	0,63
C22:0	0,23	0,39	0,44	0,39	0,39	0,39	0,34

In den folgenden Tabellen ist das Mischungsverhältnis nach Gewicht der Additive A, B und C wie A:B = 4:1, oder, wenn C in den Mischungen vorhanden ist, A:B:C = 4:1:0,2. Die Gesamtmenge an Additiv geht aus dem Tabellenkopf hervor.

Tabelle 6 CFPP - Austestung in Testöl E1

Bsp. Kammpolymer		Ethylencopolymer	Polyacrylat	1000 ppm	1200 ppm	1500 ppm
1	B1	A2		-23	-25	-27
2 (V)	B1	A1		-17	-19	-21

Tabelle 7 CFPP - Austestung in Testöl E2

Bsp.	Kammpolymer	Ethylencopolymer	Polyacrylat	1000ppm	1200ppm	1500ppm
3 (V)	B1	A1	-	-12	-14	-17
4	B1	A2	C1	-13	-18	-22
5	B1	A2		-13	-17	-21
6(V)	B2	A4		-14	-15	-15

Tabelle 8 CFPP- Austestung in Testöl E3

Bsp.	Kammpolymer	Ethylencopolymer	Polyacrylat	800 ppm	1000 ppm	1500 ppm
7 (V)	B1	A1		-11	-17	-20
8	B1	A2		-20	-22	-25
9(V)	B1	A3		-11	-15	-15

Tabelle 9 CFPP - Austestung in Testöl E4

Bsp.	Kammpolymer	Ethylencopolymer	Polyacrylat	1200 ppm	1500 ppm	2000 ppm
10 (V)	B1	A1		-17	-19	-21
11	B1	A2		-21	-22	-23
12	B1	A2	C1	-20	-22	-23
13(V)	B1	A3		-15	-17	-17
14(V)	B2	A3		-14	-17	-17

Tabelle 10 CFPP - Austestung in Testöl E5

Bsp.	Kammpolymer	Ethylencopolymer	Polyacrylat	1500 ppm	2000 ppm
15 (V)	B1	A1		-18	-20
16	B1	A2		-20	-24
17 (V)	B1	A4		-16	-18

Tabelle 11 CFPP - Austestung in Testöl E6

Bsp.	Kammpolymer	Ethylencopolymer	Polyacrylat	2000 ppm
18 (V)	B1	A1	-	-17
19	B1	A2	C2	-21
20	B1	A2		-20
21 (V)	В3	A4		-18

Tabelle 12 CFPP - Austestung in Testöl E7

Bsp.	Kammpolymer	Ethylencopolymer	Polyacrylat	4000	5000
22(V)	B1	A1	1	-10	-14

(fortgesetzt)

Bsp.	Kammpolymer	Ethylencopolymer	Polyacrylat	4000	5000
23 (V)	В3	A3		-10	-14
24	B1	A2		-14	-16

Patentansprüche

5

10

15

20

25

30

35

40

45

1. Brennstofföladditiv, enthaltend

- A) ein Copolymer aus Ethylen und 18 bis 35 Mol-% mindestens eines Acryl-oder Vinylesters mit einem C₁-C₁₈-Al-kylrest und einem Verzweigungsgrad von weniger als 5 CH₃/100 CH₂-Gruppen, und
- B) ein Kammpolymer, enthaltend Struktureinheiten aus
- B1) mindestens einem Olefin als Monomer 1, welches an der olefinischen Doppelbindung wenigstens einen C_8 - C_{18} -Alkylrest trägt, und
- B2) mindestens einer ethylenisch ungesättigten Dicarbonsäure als Monomer 2, welche mindestens einen über eine Estergruppe gebundenen C₈-C₁₆-Alkylrest trägt,

worin der Parameter Q

$$Q = \sum_{i} w_{1i} \cdot n_{1i} + \sum_{j} w_{2j} \cdot n_{2j}$$

worin

 w_1 der molare Anteil der einzelnen Kettenlängen n_1 in den Alkylresten von Monomer 1,

w₂ der molare Anteil der einzelnen Kettenlängen n₂ in den Alkylresten der Estergruppen von Monomer 2,

 n_1 die einzelnen Kettenlängen in den Alkylresten von Monomer 1,

n₂ die einzelnen Kettenlängen in den Alkylresten der Estergruppen von Monomer 2,

i die Laufvariable für die Kettenlängen in den Alkylresten von Monomer 1, und

j die Laufvariable für die Kettenlängen in den Alkylresten der Estergruppen von Monomer 2 sind,

Werte von 23 bis 27 annimmt.

- Brennstofföladditiv nach Anspruch 1, worin Q Werte von 24 bis 26 annimmt.
- 3. Brennstofföladditiv nach Anspruch 1 und/oder 2, worin Bestandteil A) 18,5 bis 27 mol-% mindestens eines Vinylesters umfasst.
- 4. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 3, worin Bestandteil A) 0,5 bis 10 mol-% Olefine mit 3 bis 10 Kohlenstoffatomen umfasst.
- **5.** Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 4, worin der Verzweigungsgrad des Bestandteils A) kleiner als 4 CH₃/100 CH₂-Gruppen, bestimmt mittels ¹H-NMR-Spektroskopie, ist.
- 6. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 5, worin die Olefine die Bestandteil B1) bilden, α-Olefine sind.
 - 7. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 6, worin das molare Verhältnis der Comonomere B1) zu den Comonomeren B2) im Copolymer B) zwischen 1,5:1 und 1:1,5 liegt.
- 8. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 7, worin das Copolymer B neben den Comonomeren B1) und B2) noch bis zu 20 mol-% weiterer, von B1) und B2) verschiedenen Comonomeren umfasst, ausgewählt aus Olefinen mit weniger als 10 und mehr als 20 Kohlenstoffatomen, Allylpolyglykolethern C₁-C₃₀-Alkyl

(meth)-acrylate, Vinylaromaten oder C_1 - C_{20} -Alkylvinylethern, sowie Polyisobutenen mit Molekulargewichten von bis zu 5.000 g/mol.

- 9. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 8, worin der Bestandteil A) eine Schmelzviskosität
 V₁₄₀ von 5 bis 100 mPas aufweist.
 - **10.** Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 9, worin der Bestandteil A) ein Molekulargewicht Mw von 1000 bis 10000 g/mol aufweist.
- 11. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 10, worin der Bestandteil B) ein Molekulargewicht Mw von 1200 bis 200.000 g/mol aufweist.

15

20

25

30

35

40

45

50

55

- **12.** Brennstoffölzusammensetzung, enthaltend ein Brennstofföl pflanzlichen oder tierischen Ursprungs und ein Brennstofföladditiv gemäß einem oder mehreren der Ansprüche 1 bis 11.
- 13. Brennstoffölzusammensetzung nach Anspruch 12, worin das Brennstofföl eine Mischung von Fettsäureestern von C_{1} bis C_{4} -Alkoholen umfasst.
- **14.** Brennstoffölzusammensetzung nach Anspruch 13, worin die Fettsäureester Stearinsäuremethylester und Palmitinsäuremethylester in einem Anteil von mindestens 7 Gew.-% umfassen.
 - **15.** Verwendung eines Brennstofföladditivs gemäß einem oder mehreren der Ansprüche 1 bis 11 zur Verbesserung des Kälteverhaltens von Brennstoffölen pflanzlichen oder tierischen Ursprungs.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 07 00 8848

	EINSCHLÄGIGE	DOKUMENTE		
Kategorie	Kennzeichnung des Dokun der maßgebliche	nents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
Х	EP 1 541 664 A (CLA 15. Juni 2005 (2005 * Absatz [0033]; Ar Tabelle 5 *	5-06-15)	1,2,4-15	INV. C10L1/195 C10L10/14
A	EP 1 605 031 A (CLA 14. Dezember 2005 (* Tabelle 1 *	 RRIANT GMBH [DE]) 2005-12-14) 	1-15	
				RECHERCHIERTE SACHGEBIETE (IPC)
Der vo	Recherchenort	rde für alle Patentansprüche erstellt Abschlußdatum der Recherche	7 Pon	Prüfer
	München	7. September 200	/ Ber	trand, Samuel
X : von Y : von ande A : tech O : nich	ATEGORIE DER GENANNTEN DOKUMENTE n besonderer Bedeutung allein betrachtet n besonderer Bedeutung in Verbindung mit einer leren Veröffentlichung derselben Kategorie hnologischer Hintergrund htschriftliche Offenbarung ischenliteratur T: der Erfindung zugrunde lieger E: älteres Patentdokument, das n and dem Anmeldeatum ver D: in der Anmeldung angeführte L: aus anderen Gründen angefü htschriftliche Offenbarung S: Mitglied der gleichen Patentfe		kument, das jedoo dedatum veröffen g angeführtes Dok nden angeführtes	h erst am oder licht worden ist kunnent Dokument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 07 00 8848

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

07-09-2007

	lm Recherchenbericht angeführtes Patentdokument		Datum der Mitglied(er) der Veröffentlichung Patentfamilie		Datum der Veröffentlichu	
EP	1541664	А	15-06-2005	CA 2489752 A1 DE 10357877 A1 JP 2005171260 A KR 20050058225 A US 2005126071 A1	11-06-200 28-07-200 30-06-200 16-06-200 16-06-200	
EP	1605031	A	14-12-2005	CA 2509679 A1 DE 102004028495 A1 JP 2005350675 A US 2005274064 A1	11-12-200 05-01-200 22-12-200 15-12-200	

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- EP 0665873 A [0007]
- EP 0629231 A [0008]
- EP 0543356 A [0009]
- DE 4040317 A [0010]
- EP 0153176 A [0011]
- EP 0153177 A [0012]
- EP 1491614 A [0013]
- EP 0271738 A [0031]
- Li 02/1/30 A [0031]
- EP 0922716 A [0031]
 DE 3443475 A [0032]
- EP 0203554 A [0032]
- EP 0254284 A [0032]

- EP 0405270 A [0032]
- EP 0463518 A [0032]
- EP 0493769 A [0032]
- EP 0778875 A [0032]
- DE 19620118 A [0032]
- DE 19620119 A [0032]
- EP 0926168 A [0032]
- US 4211534 A [0058]
- EP 0398101 A [0058]
- EP 0154177 A [0058]
- EP 0413279 B1 [0058]
- EP 0606055 A [0058]