(19) |
 |
|
(11) |
EP 1 864 758 B9 |
(12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
(15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see Description |
(48) |
Corrigendum issued on: |
|
22.12.2010 Bulletin 2010/51 |
(45) |
Mention of the grant of the patent: |
|
21.07.2010 Bulletin 2010/29 |
(22) |
Date of filing: 25.05.2007 |
|
(51) |
International Patent Classification (IPC):
|
|
(54) |
Working depth adjusting devices for rotary tools
Vorrichtungen zur Anpassung der Arbeitstiefe für rotierende Werkzeuge
Dispositifs pour le réglage de la profondeur de travail pour outils rotatifs
|
(84) |
Designated Contracting States: |
|
DE FR GB |
(30) |
Priority: |
07.06.2006 JP 2006158289
|
(43) |
Date of publication of application: |
|
12.12.2007 Bulletin 2007/50 |
(73) |
Proprietor: Makita Corporation |
|
Anjo-shi, Aichi-ken (JP) |
|
(72) |
Inventor: |
|
- Yamada, Yukihiko
Anjo-shi
Aichi-ken (JP)
|
(74) |
Representative: Kramer - Barske - Schmidtchen |
|
European Patent Attorneys
Landsberger Strasse 300 80687 München 80687 München (DE) |
(56) |
References cited: :
EP-A- 0 747 177 EP-A- 1 782 924
|
EP-A- 1 655 105 US-A1- 2003 000 347
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to working depth adjusting devices that are mounted
to rotary tools, such as screwdrivers and drills, in order to adjust a working depth,
e.g., a driving depth of screws and a depth of drilled holes.
[0002] In general, a driving depth adjusting device is mounted to a front portion of a screwdriver
and is operable to adjust a driving depth of screws into a workpiece. A driver bit
is mounted within the adjusting device and extends forwardly from the adjusting device.
Therefore, in order to change a driver bit to another driver bit, it is necessary
to remove the adjusting device from the screwdriver.
[0003] Japanese Utility Model Registration
No. 2510156 and
U.S. Patent No. 6758116 teach driving depth adjusting devices that can be removed from a tool body of a screwdriver.
[0004] According to Japanese Utility Model Registration
No. 2510156, a driving depth adjusting device includes an operation sleeve operable for adjusting
a driving depth. The operation sleeve is attached to the front portion of a tool body
of a screwdriver by means of a threaded portion provided on the operation sleeve and
a corresponding thread portion provided on the front portion of the tool body. Rotating
the operation sleeve changes the distance between the operation sleeve and the front
portion of the tool body, so that an extending distance of a driver bit from the operation
sleeve can be changed in order to adjust the driving depth. In addition, the operation
sleeve can be removed from the tool body by rotating the operation sleeve in order
to completely disengage the threaded portion of the operation sleeve from the thread
portion of the tool body.
[0005] According to
U.S. Patent No. 6758116, a driving depth adjusting device has resilient hinges with engaging tabs that can
engage a tool body. In order to remove the adjusting device from the tool body, the
resilient hinges can be deformed to disengage the engaging tabs from the tool body.
[0006] However, in order to remove the adjusting device of Japanese Utility Model Registration
No. 2510156, it is necessary to rotate the operation sleeve by several times for disengaging
the threaded portions from each other. Therefore, the removing and mounting operations
take much time and there has been a problem that the operability is not good. In addition,
because the removing operation is troublesome, an operation for loosening screws cannot
be rapidly performed. Thus, it is necessary to remove the adjusting device in order
to perform the screw loosening operation.
[0007] In case of the arrangement of
U.S. Patent No. 6758116, there is a backlash between the adjusting device and the tool body within a range
of resilient deformation of the resilient hinges. Therefore, it is difficult to reliably
hold the adjusting device against the tool body.
[0009] Thus, there is a need in the art for a working depth adjusting device that can be
easily mounted to and removed from a tool body and can be reliably held against the
tool body.
[0010] One aspect according to the present invention includes working depth adjusting devices
for a rotary tool that has a tool body and a spindle rotatable about an axis. A tool
bit is attached to the spindle so as to be rotatably driven. The rotating tool bit
can be pressed against a workpiece for processing the workpiece. The working depth
adjusting device includes an adjusting member, an intermediate member and an operation
member. The adjusting member can be attached to the front portion of the tool body
and can move along the axis of the spindle, so that the position of the adjusting
member can be adjusted relative to the tool bit with respect to a working depth direction.
The intermediate member is rotatably mounted to the adjusting member. The adjusting,
member moves in the working depth direction as the intermediate member rotates. The
operation member is operable to rotate relative to the intermediate member between
a lock position and an unlock position. The intermediate member has a first engaging
member. When the operation member is rotated to the lock position, the first engaging
member engages the tool body, and the engagement of the first engaging member is maintained
by the operation member, so that the working depth adjusting device can be prevented
from being removed from the tool body. When the operation member is rotated to the
unlock position, the first engaging member is disengaged from the tool body, so that
the working depth adjusting device can be removed from the tool body.
[0011] Because the working depth adjusting device can be mounted by engaging the first engaging
member of the intermediate member with the tool body and can be removed by disengaging
the first engaging member from the tool body, it is no longer necessary to rotate
the operation member by several times as required in the conventional device using
the thread engaging construction. It is only necessary for rotating the operation
member between the lock position and the unlock position. Therefore, the mounting
and removing operation can bc easily performed.
[0012] In addition, because the working depth adjusting device can be easily and rapidly
mounted and removed, it is possible to effectively perform the operation of the rotary
tool. For example, in the case that the rotary tool is a power screwdriver, the operation
for loosening screws can be effectively performed.
[0013] Further, because the working depth adjusting device can be mounted to the tool body
through engagement of the engaging member with the tool body and the engaging member
is locked in the engaging position by the operation member, the working depth adjusting
device can be firmly mounted without permitting substantial movement of the device
as in the conventional construction that utilizes resiliently engaging tabs.
[0014] In one embodiment, the first engaging member is engageable with the tool body in
a diametrical direction. The intermediate member further includes a second engaging
member engageable with and disengageable from the operation member in response to
movement in a rotational direction of the operation member. When the operation member
is rotated to the lock position, the second engaging member is disengaged from the
operation member to permit rotation of the operation member relative to the intermediate
member, and the first engaging member engages the tool body, and the engagement of
the first engaging member is locked by the operation member. When the operation member
is rotated to the unlock position, the operation member and the intermediate member
are brought to rotate together by the second engaging member, and the first engaging
member can be disengaged from the tool body to permit rotation and the movement in
a removing direction of the intermediate member relative to the tool body.
[0015] With this arrangement, when the operation member is in the lock position, the second
engaging member is disengaged from the operation member, while the first engaging
member engages the tool body. When the operation member is in the unlock position,
the intermediate member is integrated with the operation member with respect to rotation,
so that the intermediate member rotates with the operation member as the operation
member is rotated. As the intermediate member rotates, the adjusting member moves
along the working depth direction, so that the working depth of the tool bit into
the workpiece can be adjusted.
[0016] In another embodiment, the first engaging member is a ball. The tool body has an
engaging recess for engaging the ball. When the operation member is rotated to the
lock position, the ball engages the engaging recess of the tool body and is held in
position. When the operation member is rotated to the unlock position, the ball is
permitted to be removed from the engaging recess.
[0017] With this arrangement, the working depth adjusting device can be reliably and firmly
mounted to the tool body through engagement of the ball and the engaging recess of
the tool body.
[0018] Another aspect according to the present invention includes adjusting devices that
include an adjusting member, an intermediate member, a first lock device and a second
lock device. The adjusting member is adapted to be mounted to a tool body of a rotary
tool such that the adjusting member can move along an axial direction but cannot rotate
about an axis. The operation member is rotatable between a lock position and an unlock
position. The intermediate member is rotatably disposed between the adjusting member
and the operation member and is threadably engaged with the adjusting member, so that
the adjusting member moves along the axial direction as the intermediate member rotates.
The first lock device can releasably lock the intermediate member against the tool
body. The second lock device can releasably lock the operation member against the
intermediate member.
[0019] A further aspect of the present invention includes adjusting devices that include
a first member, a second member and a lock device. The first member can be movably
mounted to a tool body of a rotary tool. The second member is operable by an operator.
The lock device can relesably lock the first member against the tool body and can
relesably lock the first member against the second member in response to the operation
of the second member. A third member may be coupled to the first member, so that the
third member can move relative to the tool body in response to the movement of the
second member when the first member is unlocked from the tool body but is locked against
the second member. In the preferred embodiment, the first member is an intermediate
member, the second member is an operation member, and the third member is an adjusting
member.
[0020] Additional objects, features, and advantages, of the present invention will be readily
understood after reading the following detailed description together with the claims
and the accompanying drawings, in which:
FIG. 1 is an exploded perspective view of a working depth adjusting device according
to an embodiment of the present invention;
FIG. 2 is a vertical sectional view of the working depth adjusting device and a front
portion of a rotary tool and showing the working depth adjusting device removed from
the rotary tool;
FIG. 3 is a vertical sectional view of the working depth adjusting device and showing
the working depth adjusting device in a lock position;
FIG. 4 is a cross sectional view taken along line (4)-(4) in FIG. 3;
FIG. 5 is a vertical sectional view similar to FIG. 3 but showing the working depth
adjusting device in an unlock position, where relief recesses are positioned on the
radially outer side of steel balls and second engaging arms are displaced radially
inner side.
FIG. 6 is a cross sectional view taken along line (6)-(6) in FIG. 5 and showing an
operation member rotated by an angle of θ1 in the clockwise direction relative to
an intermediate member and a retainer portion of a gear housing from the position
shown in FIG. 4;
FIG. 7 is a vertical sectional view similar to FIG. 5 but showing the state where
an adjusting member can be moved to advance or retreat by the rotation of the intermediate
member that is rotated together with the operation member, and the steel balls 24
are moved into relief recesses and are removed from engaging recesses of the gear
housing.
FIG. 8 is a cross sectional view taken along line (8)-(8) in FIG. 7 and showing the
operation member rotated further by an angle of θ2 in the clockwise direction together
with the intermediate member relative to the retainer portion of the gear housing
from the position shown in FIG. 6.
[0021] An embodiment according to the present invention will now be described with reference
to FIGS. 1 to 8. Referring to FIGS. 1 to 3, a working depth adjusting device 20 of
this embodiment is adapted to be mounted to a power screwdriver 1 as an example of
a power tool.
[0022] A substantially cylindrical tubular gear housing 3 is attached to a body housing
2a of a tool body 2 of the screwdriver 1. A reduction gear mechanism (not shown) is
disposed within the gear housing 3 in order to reduce the rotational speed of a motor
(not shown) disposed within the tool body 2. As shown in FIG. 3, a drive shaft 5 is
rotatably supported within the body housing 2a via a bearing 4. A drive gear 6 (a
spur gear in this embodiment) is fixedly attached to the drive shaft 5. The rotation
of the motor is transmitted to the drive shaft 5 via the reduction gear mechanism
and the drive gear 6.
[0023] Drive-side clutch teeth 6a are provided on a front end face (right end face as viewed
in FIG. 3) of the drive gear 6. A thrust bearing 7 is disposed on the rear side (left
side as viewed in FIG. 3) of the drive gear 6 in order to bear against the thrust
force that may be applied to the drive gear 6 during the tightening operation of screws.
[0024] A front portion of the driver shaft 5 is slidably inserted into a support hole 8b
formed in a rear portion of a spindle 8, so that the spindle 8 can rotate about the
same axis as the drive shaft 5 and can move relative to the drive shaft 5 in the axial
direction. In addition, the spindle 8 is supported by the gear housing 3 via a bearing
9 such that the spindle 8 can rotate about its axis and can move in the axial direction
relative to the gear housing 3. Driven-side clutch teeth 8a are provided on the rear
end face of the spindle 8. As the spindle 8 retreats or moves leftward as viewed in
FIG. 3, the driven-side clutch teeth 8a engage the drive-side clutch teeth 6a, so
that the rotation of the driver gear 6 can be transmitted to the spindle 8.
[0025] A compression spring 10 is interposed between the front end of the drive shaft 5
and the bottom of the support hole 8b and serves to bias the spindle 8 forward or
rightward as viewed in FIG. 3. Therefore, when no load is applied to the spindle 10,
the spindle 8 is held in an advanced position shown in FIGS. 2 and 3, where the rear
end portion of the spindle 8 axially contact with the corresponding wall portion of
the gear housing 3. When the spindle 8 is in the advanced position, the driven-side
clutch teeth 8a do not engage the drive-side clutch teeth 6a, so that no rotation
is transmitted to the spindle 8a and the drive shaft 5 rotates idle. As shown in FIG.
3, in order to drive a screw S, with the screw S set to a front end of a drive bit
12 (that will be described later), the entire rotary tool 1 is pressed against a workpiece
W, so that the driver bit 12 as well as the spindle 8 moves leftward as viewed in
FIG. 3, causing engagement between the driven-side clutch teeth 8a and the drive side
clutch teeth 6a for transmitting the rotation of the drive shaft 5 to the spindle
8.
[0026] As the screw S is driven into the workpiece W, the entire rotary tool 1 moves toward
the workpiece W and a contact portion 21a of a working depth adjusting device 20 (that
will be described later) subsequently contacts with the workpiece W. With the contact
surface 21 a contacted with the workpiece W, the screw S is further driven into the
workpiece W by the rotating spindle 8 that moves forwardly relative to the drive shaft
5 with the aid of the compression spring 10 until the driven-side clutch teeth 8a
of the spindle 8 is disengaged from the drive-side clutch 6a. The driving operation
of the screw S is then completed.
[0027] As shown in FIG. 3, the spindle 8 extends forwardly to a position adjacent to the
front end of the gear housing 3 with respect to the axial direction. A mount hole
8c is formed in the front portion of the spindle 8 and has the same axis as the spindle
8. The driver bit 12 is inserted into the mount hole 8c and is fixed in position relative
to the spindle 8, so that the drive bit 12, the spindle 8 and the drive shaft 5 extend
along the same axis (indicated by alphabet "J" in FIG. 3).
[0028] A steel ball 14 is radially movably received within a corresponding radial hole formed
in the spindle 8 and is biased by a leaf spring 13 in a direction toward the mount
hole 8c. The steel ball 14 can engage an annular removal prevention recess 12b formed
in a mount shaft portion 12a of the driver bit 12. Therefore, the driver bit 12 can
be prevented from being removed from the mount hole 8c even if vibrations are applied
during the driving operation. The mount shaft portion 12a of the driver bit 12 can
be easily removed from the mount hole 8c by forcibly withdrawing the mount shaft portion
12a against the engaging force of the resiliently biased steel ball 14. Therefore,
the drive bit 12 can be easily changed to another driver bit.
[0029] The front portion of the gear housing 3 includes a guide portion 3a and a retainer
portion 3b each having a cylindrical tubular configuration and having the same axis
as the axis J. The guide portion 3a is positioned on the front side of the retainer
portion 3b and has a smaller outer diameter than the outer diameter of the retainer
portion 3b. A pair of guide recesses 3c are formed in the outer circumferential surface
of the guide portion 3a at positions diametrically opposing to each other. The guide
recesses 3c have a predetermined width and extend thought the length of the guide
portion 3a in the axial direction. A plurality of engaging recesses 3d are formed
in the outer circumferential surface of the retainer portion 3b at regular intervals
in the circumferential direction. In this embodiment twelfth engaging recesses 3d
are provided. Each of the engaging recesses 3d has a substantially semicircular cross
section. The engaging recesses 3d have a width in the circumferential direction of
the retainer portion 3b in order to engage steel balls 24 that will be explained later.
The engaging recesses 3d have a length in the axial direction of the retainer portion
3b, which is slightly greater than the diameter of the steel balls 24.
[0030] The guide portion 3a and the retainer portion 3b are used for mounting the working
depth adjusting device 20 to the gear housing 3. The working depth adjusting device
20 generally includes an adjusting member 21, an intermediate member 22 and an operation
member 23. The adjusting member 21 is movable along the axis J. The intermediate member
22 is rotatably connected to the adjusting member 21. The operation member 23 is rotatably
supported on the intermediate member 22 and is movable between a lock position and
an unlock position.
[0031] In this embodiment, each of the adjusting member 21, the intermediate member 22 and
the operation member 23 has a substantially cylindrical tubular configuration and
is molded by resin. The front portion of the adjusting member 21 is configured as
the contact portion 21a for contacting, with the workpiece W. The rear portion of
the adjusting member 21 is configured as a threaded portion 21b with an external thread
and a pair of guide projections 21c formed on its inner circumferential surface. The
guide projections 21c are elongated in directions parallel to the axis J.
[0032] As described previously, as the screwdriver 1 with the screw S set to the driver
bit 12 is pressed against the workpiece W, the driver bit 12 and the spindle 8 retreat
against the biasing force of the compression spring 10, so that the driven-side clutch
teeth 8a of the spindle 8 engage with the drive-side clutch teeth 6a of the drive
gear 6. The engagement between the driven-side clutch teeth 8a and the drive-side
clutch teeth 6a occurs when the front end of the driver bit 12 has moved to a position
that is rearward of the front end of the contact portion 21a. Hence, as the screw
S is driven into the workpiece W, the front end of the contact portion 21a contacts
with the workpiece W. After the front end of the contact portion 21a has contacted
with the workpiece W, the screw S is further driven as the rotating spindle 8 moves
forwardly with the aid of the compression spring 10. As the rotating spindle 8 moves
forwardly, the engagement between the driven-side clutch teeth 8a and the drive-side
clutch teeth 6a becomes shallower and is eventually released. As a result, the drive
shaft 5 rotates idle and the driving operation of the screw S is completed.
[0033] The driving depth of the screw S into the workpiece W can be adjusted by changing
the position of the contact portion 21a of the working depth adjusting device 20 relative
to the tool body 2. Thus, if the adjusting member 21 is moved rightward relative to
the tool body 2, the tightening depth of the screw S decreases. On the contrary, if
the adjusting member 21 is moved leftward relative to the tool body 2, the tightening
depth of the screw S increases. For example, the adjusting member 21 can be adjusted
such that the front end of the driver bit 12 is aligned with the front end of the
contact portion 21a of the adjusting member 21 when the driven-side clutch teeth 8a
is disengaged from the drive-side clutch teeth as a result of movement of the driver
bit 12 in a tightening direction (rightward as viewed in FIG. 3) of the screw S during
the driving operation of the screw S. This adjustment enables the screw S to be driven
into the workpiece W by such a depth that the head of the screw S is positioned to
be substantially flush with the surface of the workpiece W.
[0034] As shown in FIG. 3, in the assembled state of the working depth adjusting device
20 to the tool body 2, the rear portion of the adjusting member 21 receives the guide
portion 3a of the gear housing 3 and the guide projections 21c of the adjusting member
21 respectively slidably engage the guide recesses 3c of the guide portion 3a without
substantial clearance between each guide projection 21c and wall surfaces of the corresponding
guide recess 3c facing thereto. Therefore, the adjusting member 21 is prevented from
rotating relative to the gear housing 3 but is slidably movable in the direction of
the axis J relative to the gear housing 3.
[0035] On the other hand, the rear portion of the adjusting member 21 is received within
the front portion of the intermediate member 22. An internal threaded portion is formed
on the inner circumferential surface of the front portion of the intermediate member
22 and engages the thread portion 21b formed on the rear portion of the adjusting
member 21. Therefore, as the intermediate member 22 is rotated relative to the gear
housing 3, the adjusting member 21 moves relative to the gear housing 3 along the
axis J of the spindle 8 due to engagement between the internal threaded portion 22b
and the thread portion 21b, because the adjusting member 21 is prevented from rotating
relative to the gear housing 3.
[0036] Three first engaging arms 22b and three second engaging arms 22c extend rearward
from the rear portion of the intermediate member 22 and are arranged alternately in
the circumferential direction. As shown in FIG. 4, the three first engaging arms 22b
are spaced equally from each other in the circumferential direction. Also, the three
second engaging arms 22c are spaced equally from each other in the circumferential
direction. Further, each of the second engaging arms 22c is spaced equally from the
two adjacent first engaging arms 22b. A retaining hole 22d is formed in the rear end
portion of each of the first engaging arms 22b in order to retain the steel ball 24
in such a manner that the steel ball 24 can move within the retaining hole 22d in
the radial direction as viewed in FIG. 4 (in the direction of thickness of the first
engaging arm 22b). The radially inner-side diameter of the retaining hole 22d is set
to be slightly smaller than the diameter of the steel ball 24. Therefore, the steel
ball 24 is prevented from being removed in the direction radially inward from the
retaining hole 22d.
[0037] As shown in FIGS. 3 and 4, in the assembled state, the first and second engaging
arms 22b and 22c enter a clearance provided between the retainer portion 3b of the
gear housing 3 and the operation member 23. In the state shown in FIG. 4, all three
steel balls 24 retained at the rear ends of the three first engaging arms 22b are
in engagement with three of the engaging recesses 3d formed in the retainer portion
3b of the gear housing 3.
[0038] In the state shown in FIGS. 3 and 4, the operation member 23 is positioned at the
lock position, so that each of the steel balls 24 is prevented from moving radially
outward by the inner circumferential surface of the operation member 23. Therefore,
in this state, the working depth adjusting device 20 is fixed in position relative
to the gear-housing 3.
[0039] The thickness of the second engaging arms 22c is set to be smaller than the thickness
of the first engaging arms 22b, so that the second engaging arms 22c can resiliently
deform in the direction of thickness or in the radial direction with respect to the
intermediate member 22. Therefore, in the assembled state, the second engaging arms
22c are permitted to resiliently deform in the radial direction within a range of
the clearance provided between the retainer portion 3b and the operation member 23.
[0040] A hemispherical engaging projection 22e protrudes radially outward from the rear
end of each of the three second engaging arms 22c and engages corresponding one of
three cam recesses 23a formed in the inner circumferential surface of the operation
member 23 and space equally from each other in the circumferential direction. Each
of the cam recesses 23a has a depth in the radial direction, which continuously varies
in the circumferential direction. More specifically, the depth of each of the cam
recesses 23a is the largest at the central portion with respect to the circumferential
direction and becomes shallower in directions away from the central portion. Therefore,
when the engaging projection 22e is positioned at the central portion of the cam recess
23a, the rear portion of the second engaging arm 22c is held at the most radially
outwardly displaced position due to its resiliency (see FIGS. 3 and 4). As the operation
member 23 is rotated in a clockwise direction as indicated by an outline arrow in
FIG. 4 or in a counterclockwise direction, the engaging projection 22e of the second
engaging arm 22c moves to a position having a shallower depth of the cam recess 23a,
so that the rear portion of the second engaging arm 22c is resiliently deformed to
be displaced radially inward.
[0041] A pair of position retaining recesses 23b are formed in the inner circumferential
surface of the operation member 23 in continuity with opposite ends in the circumferential
direction of each of the cam recesses 23a. When the operation member 23 has rotated
in the clockwise direction as shown in FIG. 6 by an angle of θ1 from the position
shown in FIG. 4, the engaging projection 22e of each second engaging arm 22c engages
one of the position retaining recess 23b positioned in the counterclockwise direction
as viewed in FIG. 4 of the corresponding cam recess 23a. On the other hand, when the
operation member 23 has rotated in the counterclockwise direction by an angle of θ1
from the position shown in FIG. 4, the engaging projection 22e of each second engaging
arm 22c engages the other of the position retaining recesses 23b positioned in the
clockwise direction as viewed in FIG. 4 of the corresponding cam recess 23a. With
the engaging projection 22e of each second engaging arm 22c engaged with either of
the position retaining recesses 23b, the operation member 23 is integrated with the
intermediate member 22 with respect to rotation. In other words, the operation member
23 is prevented from rotating relative to the intermediate member 22.
[0042] In addition to the cam recesses 23a, six relief recesses 23c are formed in the inner
circumferential surface of the operation member 23. More specifically, two relief
recesses 23c are positioned between two adjacent cam recesses 23a in the circumferential
direction so as to radially oppose to the corresponding first engaging arm 22b of
the intermediate member 22 as shown in FIG. 4. In the state shown in FIG. 4, each
steel ball 24 does not engage any of the corresponding two relief recesses 23c but
is positioned between the two relief recesses 23c with respect to the circumferential
direction. Therefore, each steel ball 24 is held to engage the corresponding engaging
recess 3d of the gear housing 3 and is prevented from being removed from the engaging
recess 3d. Hence, the intermediate member 22 is reliably fixed in position in the
circumferential direction relative to the gear housing 3 without causing rotational
movement due to vibrations or like external forces.
[0043] When the operation member 23 has been rotated by the angle of θ1, the engaging projection
22e of each of the second engaging arms 22c engages one of the position retaining
recesses 23b at opposite ends of the corresponding cam recess 23c as described previously.
At the same time, each steel ball 24 is positioned to radially oppose to one of the
corresponding two relief recesses 23c as shown in FIG. 6. Therefore, each steel ball
24 is allowed to move radially outward into the relief recess 23c so as to be disengaged
from the corresponding engaging recess 3d of the gear housing 3. With the steel balls
24 thus disengaged from the corresponding engaging recesses 3d, the intermediate member
22 can be removed from the retainer portion 3b of the gear housing 3 as shown in FIG.
2.
[0044] In this way, by rotating the operation member 23 by the angle of θ1 from the position
shown in FIG. 4, the operation member 23 can be locked with respect to rotation against
the intermediate member 22 due to engagement of the engaging projections 22e of the
second engaging arms 22c with the position retaining recesses 23b of the operation
member 23. At the same time, the intermediate member 22 is permitted to rotate about
the axis J relative to the retainer portion 3b of the gear housing 3 because the steel
balls 24 can move in the radial direction for disengaging from the engaging recesses
3d.
[0045] As the operation member 23 is further rotated by an angle of θ2 from the position
shown in FIG. 6, the intermediate member 22 rotates together with the operation member
23 by the same angle of θ2 as shown in FIG. 8. Thus, in the state shown in FIG. 8,
the operation member 23 has rotated by an angle of the sum of θ1 and θ2 from the position
shown in FIG. 4 and the intermediate member 22 has rotated by the angle of θ2 from
the position shown in FIG. 4.
[0046] As the intermediate member 22 rotates relative to the gear housing 3, the adjusting
member 21 moves along the axis J relative to the gear housing 3, because the threaded
portion 22a of the intermediate member is in engagement with the threaded portion
21b of the adjusting member 21, while the rotation of the adjusting member 21 relative
to the gear housing 3 is prevented by the engagement between the guide projections
21c of the adjusting member 21 and the guide recesses 3c of the guide portion 3a of
the gear housing 3.
[0047] Because the adjusting member 21 moves along the axis J, the position of the contact
portion 21a of the adjusting member 21 relative to the driver bit 12 changes. Therefore,
it is possible to change the driving depth of the screw S into the workpiece W.
[0048] In this embodiment, the threaded portion 22a of the intermediate member and the threaded
portion 21b of the adjusting member 21 are formed as right-hand threads. Therefore,
as the operation member 23 is rotated in the clockwise direction (as indicated by
the outline arrow in FIG. 4), the adjusting member 21 retreats into the intermediate
member 22 or moves leftward as viewed in FIG. 3. In this case, the driving depth of
the screw S is increased.
[0049] On the contrary, as the operation member 23 is rotated by the angle of θ1 in the
counterclockwise direction (in the direction opposite to the direction indicated by
the outline arrow in FIG. 4) from the position shown in FIG. 4, each of the engaging
projections 22e of the second engaging arms 22c engages the other of the position
retaining recesses 23b at opposite ends of the corresponding cam recess 23c, i.e.,
the position retaining recess 23b that is positioned on the opposite side of the position
retaining recess 23b, with which the engaging projection 22e engages as shown in FIG.6
in the case that the operation member 23 is rotated in the clockwise direction.
[0050] In this way, in either case that the operation member 23 is rotated in the clockwise
direction or the counterclockwise direction from a lock position where each of the
engaging projections 22e is positioned centrally between the position retaining recesses
23b of the corresponding cam recess 23a, each engaging projection 22e can engage either
one of the position retaining recesses 23b, enabling rotation of the intermediate
member 22 together with the operation member 23.
[0051] Also, in the case that the operation member 23 has rotated by the angle of θ1 in
the counterclockwise direction, each of the steel balls 24 is positioned to radially
oppose to any one of the relief recesses 23c of the operation member 23 and is enabled
to be disengaged from the corresponding engaging recess 3d of the gear housing 3.
Therefore, it is possible to remove the intermediate member 22 from the gear housing
3 by withdrawing the intermediate member 22 in the direction along the axis J. In
addition, by further rotating the operation member 23 over the angle of θ1 in the
counterclockwise direction, it is possible to rotate the intermediate member 22 in
order to axially move the adjusting member 21 relative to the gear housing 3. In this
case, the adjusting member 21 moves rightward as viewed in FIG. 3, so that the driving
depth of the screw S can be decreased.
[0052] As described above, according to this embodiment, the working depth adjusting device
20 can be removed from the gear housing 3 by rotating the operation member 23 from
a lock position to an unlock position by the angle of θ1, which is a relatively small
angle, in either the clockwise direction or the counterclockwise direction for enabling
the steel balls 24 to be removed from the engaging recesses 3d.
[0053] In order to mount the working depth adjusting device 20 to the gear housing 3, the
operator positions the operation member 23 at the unlock position relative to the
intermediate member 22, so that the engaging projections 22e engage the position retaining
recesses 23b. Thereafter, the guide portion 3a and the retaining portion 3b of the
gear housing 3 are inserted into the working depth adjusting device 20. Subsequently,
the operation member 23 is rotated from the unlock position toward the lock position.
At the initial stage of rotation, the intermediate member 22 rotates together with
the operation member 23 due to engagement between the engaging projections 22e and
the position retaining recesses 23b. As the intermediate member 22 further rotates,
the steel balls 24 engage the engaging recesses 3d of the gear housing 3 so as to
be disengaged from the relief recesses 23c. Therefore, further rotation of the operation
member 23 results disengagement between the engaging projections 22e and the position
retaining recesses 23b, because the intermediate member 22 is held in position relative
to the gear housing 3 due to engagement of the steel balls 24 with the engaging recesses
3d. When the engaging projections 22e have moved to the central positions of the cam
recesses 23a, the steel balls 24 are held to engage with the engaging recesses 3d
of the gear housing 3 so as not to move in the radial direction (see FIG. 4). The
mounting operation of the intermediate member 22 and eventually the entire working
depth adjusting device 20 can be thus mounted to the gear housing 3.
[0054] Because the working depth adjusting device 20 can be removed from the gear housing
3 or can be mounted to the gear housing 3 by rotating the operation member 23 by the
angle of θ1 that is a relatively small angle, it is possible to easily and rapidly
perform the removing operation or the mounting operation of the working depth adjusting
device 20 without need of rotating the operation member 23 by a large angle or by
several times.
[0055] In addition, the operation member 23 is reliably locked by the engagement of three
steel balls 24 with the engaging recesses 3d of the gear housing 3 without substantial
clearances between the steel balls and the inner walls of the engaging recesses 3d.
Because the steel balls 24 are prevented from moving in the radial direction by the
opposing wall surface of the operation member 23, the steel balls 24 are further reliably
held in position. Therefore, the working depth adjusting device 20 can be firmly mounted
to the tool body 2 in comparison with the conventional mounting construction that
utilizes the resiliency of the engaging claws.
[0056] Further, the driving depth of the screw S can be easily adjusted by rotating the
operation member 23 from the lock position shown in FIG. 4 toward the unlock position.
Thus, as the operation member 23 is rotated over the angle of θ1, the intermediate
member 22 rotates relative to the adjusting member 21 together with the operation
member 23, so that the adjusting member 21 moves along the axis J.
[0057] The above embodiment can be modified in various ways. For example, the steel balls
24 may be replaced with engaging projections that extend radially inward from the
rear ends of the first engaging arms 22b and are engageable with corresponding engaging
recesses formed in the gear housing 3. In this connection, the first engaging arms
22b may be configured to resiliently deform in order to enable movement of the engaging
projections in the radial direction. When in the lock position, the engaging projections
of the first engaging arms 22b closely engage the engaging recesses of the gear housing
3, while the inner circumferential surface of the operation member 23 prevents the
engaging projections of the first engaging arms from moving in the radialy outward
direction. Also with this arrangement, the working depth adjusting device 20 can be
firmly mounted to the tool body 2, because no substantial movement of the engaging
projections of the first engaging arms 22b occurs even in the event that external
force has been applied to the adjusting device 20.
[0058] Further, although the above embodiment has been described in connection with the
power screwdriver 1, the working depth adjusting device 20 can be applied to a power
drill to which a drill bit is attached and rotated for drilling a workpiece.
[0059] Furthermore, although the position retaining recesses 23b are provided on opposite
ends of each cam recess 23a, the position retaining recesses 23b may be eliminated.
Thus, the intermediate member 22 may be locked against the operation member 23 when
the second engaging arms 22c are wedged at their engaging projections 22e between
the operation member 23 and the retaining portion 3b of the gear housing 3.
[0060] Furthermore, three first engaging arms 22b and three second engaging arms 22c are
arranged alternately at equal intervals in the circumferential direction, the number
of the first engaging arms 22b and the number of the second engaging arms 22c can
be selectively determined. In addition, the positions of the first engaging arms 22b
and the second engaging arms 22c can be arbitrarily determined. In response to change
of the number and the positions of the first engaging arms 22b and the second engaging
arms 22c, the number and the positions of the steel balls 24 (or engaging projections)
and the cam recesses 23a may be changed.
It is explicitly stated that all features disclosed in the description and/or the
claims are intended to be disclosed separately and independently from each other for
the purpose of original disclosure as well as for the purpose of restricting the claimed
invention independent of the composition of the features in the embodiments and/or
the claims. It is explicitly stated that all value ranges or indications of groups
of entities disclose every possible intermediate value or intermediate entity for
the purpose of original disclosure as well as for the purpose of restricting the claimed
invention, in particular as limits of value ranges.
1. A working depth adjusting device (20) for a rotary tool (1) having a tool body (2)
and a spindle (8) rotatable about an axis (J), wherein a tool bit (12) can be attached
to the spindle (8) so as to be rotatably driven, and the rotating tool bit (12) can
be pressed against a workpiece (W) for processing the workpiece (W), the working depth
adjusting device (20) comprising:
an adjusting member (21) constructed to be attached to the front portion of the tool
body (2) and movable along the axis (J) of the spindle (8), so that the position of
the adjusting member (21) can be adjusted relative to the tool bit (12) with respect
to a working depth direction;
an intermediate member (22) rotatably mounted to the adjusting member (21), wherein
the adjusting member (21) is moved in the working depth direction as the intermediate
member (22) rotates; and
an operation member (23) operable to rotate relative to the intermediate member (22)
between a lock position and an unlock position;
wherein the intermediate member (22) has a first engaging member (24);
wherein when the operation member (23) is rotated to the lock position, the first
engaging member (24) engages the tool body (2), and the engagement of the first engaging
member (24) is maintained by the operation member (23), so that the working depth
adjusting device (20) can be prevented from being removed from the tool body (2);
and
wherein when the operation member (23) is rotated to the unlock position, the first
engaging member (24) is disengageable from the tool body (2), so that the working
depth adjusting device (20) can be removed from the tool body (2).
2. The working depth adjusting device (20) as in claim 1,
wherein the first engaging member (24) is engageable with the tool body (2) in a diametrical
direction with respect to a rotational axis of the intermediate member (22),
wherein the intermediate member (22) further includes a second engaging member (22e)
engageable with and disengageable from the operation member (23) in response to movement
in a rotational direction of the operation member (23);
wherein when the operation member (23) is rotated to the lock position, the second
engaging member (22e) is disengaged from the operation member (23) to permit rotation
of the operation member (23) relative to the intermediate member (22), and the first
engaging member (24) engages the tool body (2), and the engagement of the first engaging
member (24) is locked by the operation member (23); and
wherein when the operation member (23) is rotated to the unlock position, the operation
member (23) and the intermediate member (22) are brought to rotate together by the
second engaging member (22e), and the first engaging member (24) can be disengaged
from the tool body (2) to permit rotation and the movement in a removing direction
of the intermediate member (22) relative to the tool body (2).
3. The working depth adjusting device (20) as in claim 1 or 2,
wherein the first engaging member comprises a ball (24); and
wherein the tool body (2) has an engaging recess (3d) for engaging the ball (24);
wherein when the operation member (23) is rotated to the lock position, the ball (24)
engages the engaging recess (3d) of the tool body (2) and is held in position; and
wherein when the operation member (23) is rotated to the unlock position, the ball
(24) is permitted to be removed from the engaging recess (3d).
4. The working depth adjusting device (20) as in claim 2 or 3,
wherein the working depth adjusting device (20) comprises a plurality of first engaging
members (24) and a plurality of second engaging members (22e) arranged in the rotational
direction.
5. The working depth adjusting device (20) as in claim 4, wherein the plurality of first
engaging members (24) and the plurality of second engaging members (22e) are arranged
alternately in the rotational direction.
6. The working depth adjusting device (20) as in claim 1 further comprising
a first lock device (24, 3d) having the first engaging member (24) and constructed
to releasably lock the intermediate member (22) against the tool body (2); and
a second lock device (22e, 23b) constructed to releasably lock the operation member
(23) against the intermediate member (22), wherein the adjusting member (21) cannot
rotate about the axis;
the intermediate member (22) is rotatably disposed between the adjusting member (21)
and the operation member (23) and threadably engaged with the adjusting member (21),
so that the adjusting member (21) moves along the axial direction as the intermediate
member (22) rotates.
7. The working depth adjusting device (20) as in claim 6,
wherein the first lock device (24, 3d) is constructed to lock the intermediate member
(22) against the tool body (2) when the second lock device (22e, 23b) unlocks the
operation member (23) from the intermediate member (22); and
wherein the first lock device (24, 3d) is constructed to unlock the intermediate member
(22) from the tool body (2) when the second lock device (22e, 23b) locks the operation
member (23) against the intermediate member (22).
8. The working depth adjusting device (20) as in claim 6 or 7,
wherein the first lock device (24, 3d) comprises:
the first engaging member (24) movable together with the intermediate member (22)
in a rotational direction;
an engaging recess (3d) formed in the tool body (2) and engageable with the engaging
member (24); and
a holder (23) constructed to hold the engaging member (24) in engagement with the
engaging recess (3d).
9. The working depth adjusting device (20) as in claim 8,
wherein the engaging recess (3d) is formed in a radially outer surface of the tool
body (2);
wherein the holder comprises a wall portion of a radially inner wall of the operation
member (23);
wherein when the operation member (23) is in the lock position, the wall portion radially
opposes to the engaging recess (3d), so that the engaging member (24) can be prevented
from being removed from the engaging recess (3d).
10. The working depth adjusting device (20) as in claim 9,
wherein the first lock device (20) further comprises a relief recess (23c) formed
in the radially inner wall of the operation member (23);
wherein when the operation member (23) is in the unlock position, the relief recess
(23c) radially opposes to the engaging recess (3d), so that the engaging member (24)
can be moved from the engaging recess (3d) into the relief recess (23c), enabling
rotation of the intermediate member (22) relative to the tool body (2).
11. The working depth adjusting device (20) as in claim 9 or 10, wherein the engaging
member comprises a ball (24) radially movably disposed within the intermediate member
(22).
12. The working depth adjusting device (20) as in claim 10 or 11, wherein the first lock
device (24, 3d) comprises a plurality of engaging recesses (3d), a plurality of wall
portions, and a plurality of relief recesses (23c) arranged in the rotational direction
of the operation member (23).
13. The working depth adjusting device (20) as in any one of claims 6 to 12,
wherein the second lock device (22e, 23b) comprises a projection (22c) formed on a
radially outer surface of the intermediate member (22), and a position retaining recess
(23b) formed in a radialy inner wall of the operation member (23);
wherein the projection (22e) can removably engage the position retaining recess (23b)
when the operation member (23) is in the unlock position.
14. The working depth adjusting device (20) as in claim 13,
wherein the second lock device (22e, 23b) further includes a cam recess (23a) formed
in the operation member (23) in continuity with the position retaining recess (23b)
in the rotational direction;
wherein the projection (22e) engages the cam recess (23a) such that the projection
(22e) can move in the rotational direction relative to the cam recess (23a) when the
operation member (23) is in the lock position.
15. The working depth adjusting device (20) as in claim 14, wherein the second lock device
(22e, 23b) comprises a plurality of projections (22e), a plurality of position retaining
recesses (23b), and a plurality of cam recesses (23a) respectively formed in continuity
with the position retaining recesses (23b) in the rotational direction of the operation
member (23).
16. The working depth adjusting device (20) as in claim 14, wherein two position retaining
recesses (23b) are positioned at opposite ends of each cam recess (23a) in the rotational
direction.
17. The working depth adjusting device (20) as in any one of claims 1 to 16, wherein each
of the adjusting member (21), the operation member (23) and the intermediate member
(22) has a substantially cylindrical tubular configuration and the adjusting member
(21), the operation member (23) and the intermediate member (22) are disposed coaxially
with each other.
18. A rotary tool (1) comprising the working depth adjusting device (20) as in any one
of claims 1 to 17.
19. The rotary tool as in claim 18, wherein the rotary tool is a power screwdriver (1),
so that the tool bit (12) is pressed against the workpiece (W), while a screw (S)
is engaged by the tool bit (12) and positioned between the tool bit (12) and the workpiece
(W), when the screw (S) is driven into the workpiece (W) by the screwdriver (1).
20. The rotary tool (1) comprising the working depth adjusting device (20) as in any one
of claims 1 to 19 wherein
the spindle (8) is axially non-movably disposed within the tool body (2);
the tool bit (12) is adapted to be attached to a front portion of the spindle (8)
and to extend along the same axis (J) as the spindle (8); and
the rotational axis of the adjusting member (21) is parallel to the axis of the tool
bit (12), so that the position of the adjusting member (21) can be adjusted with respect
to the axial direction relative to the tool bit (12).
21. The working depth adjusting device (20) as in any one of claims 6 to 20, wherein
the operation member (23) is operable by an operator; and
the first and the second lock devices (24, 23c, 22e, 23b) are operable in response
to the operation of the operation member (23).
1. Arbeitstiefeneinstellvorrichtung (20) für ein Rotationswerkzeug (1), das einen Werkzeugkörper
(2) und eine Spindel (8), die um eine Achse (J) drehbar ist, aufweist, wobei ein Werkzeugeinsatz
(12) an der Spindel (8) derart befestigt werden kann, dass er drehbar angetrieben
wird, und der sich drehende Werkzeugeinsatz (12) gegen ein Werkstück (W) zum Bearbeiten
des Werkstücks (W) gedrückt werden kann, die Arbeitstiefeneinstellvorrichtung (20)
enthaltend
ein Einstellbauteil (21), das konstruiert ist zum Befestigtwerden an dem vorderen
Abschnitt des Werkzeugkörpers (2) und zum Bewegbarsein entlang der Achse (J) der Spindel
(8), so dass die Position des Einstellbauteils (21) relativ zu dem Werkzeugeinsatz
(12) bezüglich einer Arbeitstiefenrichtung eingestellt werden kann,
ein Zwischenbauteil (22), das drehbar an dem Einstellbauteil (21) montiert ist, wobei
das Einstellbauteil (21) in der Arbeitstiefenrichtung bewegt wird, wenn sich das Zwischenbauteil
(22) dreht, und
ein Bedienbauteil (23), das zum Drehen relativ zu dem Zwischenbauteil (22) zwischen
einer Verriegelposition und einer Entriegelposition bedienbar ist,
bei der das Zwischenbauteil (22) ein erstes Eingriffsbauteil (24) aufweist,
bei der, falls das Bedienbauteil (23) in die Verriegelposition gedreht ist, das erste
Eingriffsbauteil (24) in den Werkzeugkörper (2) eingreift und der Eingriff des ersten
Eingriffsbauteils (24) durch das Bedienbauteil (23) derart aufrechterhalten wird,
dass verhindert werden kann, dass die Arbeitstiefeneinstellvorrichtung (20) von dem
Werkzeugkörper (2) entfernt wird, und
bei der, falls das Bedienbauteil (23) in die Entriegelposition gedreht wird, das erste
Eingriffsbauteil (24) von dem Werkzeugkörper (2) derart außer Eingriff bringbar ist,
dass die Arbeitstiefeneinstellvorrichtung (20) von dem Werkzeugkörper (2) entfernt
werden kann.
2. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 1,
bei der das erste Eingriffsbauteil (24) mit dem Werkzeugkörper (2) in einer diametralen
Richtung bezüglich einer Rotationsachse des Zwischenbauteils (22) in Eingriff bringbar
ist,
bei der das Zwischenbauteil (22) weiter ein zweites Eingriffsbauteil (22e) aufweist,
das mit dem Bedienbauteil (23) als Reaktion auf eine Bewegung in einer Drehrichtung
des Bedienbauteils (23) in Eingriff bringbar und außer Eingriff bringbar ist,
bei der, falls das Bedienbauteil (23) in die Verriegelposition gedreht ist, das zweite
Eingriffsbauteil (22e) außer Eingriff von dem Bedienbauteil (23) zum Erlauben einer
Drehung des Bedienbauteils (23) relativ zu dem Zwischenbauteil (22) gebracht ist,
und das erste Eingriffsbauteil (24) im Eingriff mit dem Werkzeugkörper (2) ist, und
der Eingriff des ersten Eingriffsbauteils (24) durch das Bedienbauteil (23) verriegelt
ist, und
bei der, falls das Bedienbauteil (23) in die Entriegelposition gedreht ist, das Bedienbauteil
(23) und das Zwischenbauteil (22) durch das zweite Eingriffsbauteil (22e) dazu gebracht
werden, sich gemeinsam zu drehen, und das erste Eingriffsbauteil (24) von dem Werkzeugkörper
(2) zum Erlauben einer Drehung und der Bewegung in einer Entfernrichtung des Zwischenbauteils
(22) relativ zu dem Werkzeugkörper (2) außer Eingriff gebracht werden kann.
3. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 1 oder 2,
bei der das erste Eingriffsbauteil eine Kugel (24) aufweist, und
bei der der Werkzeugkörper (2) eine Eingriffsaussparung (3d) zum Eingreifen der Kugel
(24) aufweist,
bei der, falls das Bedienbauteil (23) in die Verriegelposition gedreht wird, die Kugel
(24) im Eingriff mit der Eingriffsaussparung (3d) des Werkzeugkörpers (2) ist und
in der Position gehalten wird, und
bei der, falls das Bedienbauteil (23) in die Entriegelposition gedreht wird, es der
Kugel (24) erlaubt ist, aus der Eingriffsaussparung (3d) entfernt zu werden.
4. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 2 oder 3,
bei der die Arbeitstiefeneinstellvorrichtung (20) eine Mehrzahl von ersten Eingriffsbauteilen
(24) und eine Mehrzahl von zweiten Eingriffsbauteilen (22e) aufweist, die in der Drehrichtung
angeordnet sind.
5. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 4, bei der die Mehrzahl von ersten
Eingriffsbauteilen (24) und die Mehrzahl von zweiten Eingriffsbauteilen (22e) abwechselnd
in der Drehrichtung angeordnet sind.
6. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 1, weiter enthaltend
eine erste Verriegelvorrichtung (24, 3d), die das erste Eingriffsbauteil (24) aufweist
und die zum lösbaren Verriegeln des Zwischenbauteils (22) gegen den Werkzeugkörper
(2) konstruiert ist, und
eine zweite Verriegelvorrichtung (22e, 22b), die zum lösbaren Verriegeln des Bedienbauteils
(23) gegen das Zwischenbauteil (22) konstruiert ist,
bei der das Einstellbauteil (21) nicht um die Achse drehen kann,
das Zwischenbauteil (22) drehbar zwischen dem Einstellbauteil (21) und dem Bedienbauteil
(23) angeordnet und schraubbar mit dem Einstellbauteil (21) derart im Eingriff ist,
dass das Einstellbauteil (21) sich entlang der Axialrichtung bewegt, wenn sich das
Zwischenbauteil (22) dreht.
7. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 6,
bei der die erste Verriegelvorrichtung (24, 3d) zum Verriegeln des Zwischenbauteils
(22) gegen den Werkzeugkörper (2) konstruiert ist, falls die zweite Verriegelvorrichtung
(22e, 23b) das Bedienbauteil (23) von dem Zwischenbauteil (22) entriegelt, und
bei der die erste Verriegelvorrichtung (24, 3d) zum Entriegeln des Zwischenbauteils
(22) von dem Werkzeugkörper (2) konstruiert ist, falls die zweite Verriegelvorrichtung
(22e, 23b) das Bedienbauteil (23) gegen das Zwischenbauteil (22) verriegelt.
8. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 6 oder 7,
bei der die erste Verriegelvorrichtung (24, 3d) aufweist:
das erste Eingriffsbauteil (24), das zusammen mit dem Zwischenbauteil (22) in einer
Drehrichtung bewegbar ist;
eine Eingriffsaussparung (3d), die in dem Werkzeugkörper (2) ausgebildet ist und mit
dem Eingriffsbauteil (24) in Eingriff bringbar ist; und
einen Halter (23), der zum Halten des Eingriffsbauteils (24) im Eingriff mit der Eingriffsaussparung
(3d) konstruiert ist.
9. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 8,
bei der die Eingriffsaussparung (3d) in einer radialen Außenfläche des Werkzeugkörpers
(2) ausgebildet ist,
bei der der Halter einen Wandabschnitt einer radialen Innenwand des Bedienbauteils
(23) aufweist,
bei der, falls das Bedienbauteil (23) in der Verriegelposition ist, der Wandabschnitt
derart radial gegenüber der Eingriffsaussparung (3d) liegt, dass das Eingriffsbauteil
(24) daran gehindert werden kann, aus der Eingriffsaussparung (3d) entfernt zu werden.
10. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 9,
bei der die erste Verriegelvorrichtung (20) weiter eine Freigabeaussparung (23c),
die in der radialen Innenwand des Bedienbauteils (23) ausgebildet ist, aufweist,
bei der, falls das Bedienbauteil (23) in der Entriegelposition ist, die Freigabeaussparung
(23c) radial gegenüber der Eingriffsaussparung (3d) liegt, so dass das Eingriffsbauteil
(24) aus der Eingriffsaussparung (3d) in die Freigabeaussparung (23c) bewegt werden
kann, was eine Drehung des Zwischenbauteils (22) relativ zu dem Werkzeugkörper (2)
ermöglicht.
11. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 9 oder 10, bei der das Eingriffsbauteil
eine Kugel (24) aufweist, die radial bewegbar in dem Zwischenbauteil (22) angeordnet
ist.
12. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 10 oder 11, bei der die erste
Verriegelvorrichtung (24, 3d) eine Mehrzahl von Eingriffsaussparungen (3d), eine Mehrzahl
von Wandabschnitten und eine Mehrzahl von Freigabeaussparungen (23c) aufweist, die
in der Drehrichtung des Bedienbauteils (23) angeordnet sind.
13. Arbeitstiefeneinstellvorrichtung (20) nach einem der Ansprüche 6 bis 12,
bei der die zweite Verriegelvorrichtung (22e, 23b) einen Vorsprung (22e), der auf
einer radialen Außenfläche des Zwischenbauteils (22) ausgebildet ist, und eine Positionshalteaussparung
(23b), die in der radialen Innenwand des Bedienbauteils (23) ausgebildet ist, aufweist,
bei der der Vorsprung (22e) lösbar in die Positionshalteaussparung (23b) eingreifen
kann, falls das Bedienbauteil (23) in der Entriegelposition ist.
14. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 13,
bei der die zweite Verriegelvorrichtung (22e, 23b) weiter eine Kurvenaussparung (23a),
die in dem Bedienbauteil (23) in stetigem Verlauf mit der Positionshalteaussparung
(23b) in der Drehrichtung ausgebildet ist, aufweist,
bei der der Vorsprung (22e) in die Kurvenaussparung (23a) derart eingreift, dass der
Vorsprung (22e) sich in der Drehrichtung relativ zu der Kurvenaussparung (23a) bewegen
kann, falls das Bedienbauteil (23) in der Verriegelposition ist.
15. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 14, bei die zweite Verriegelvorrichtung
(22e, 23b) eine Mehrzahl von Vorsprüngen (22e), eine Mehrzahl von Positionshalteaussparungen
(23b) und eine Mehrzahl von Kurvenaussparungen (23a) aufweist, die jeweils in stetigem
Verlauf mit den Positionshalteaussparungen (23b) in der Drehrichtung des Bedienbauteils
(23) ausgebildet sind.
16. Arbeitstiefeneinstellvorrichtung (20) nach Anspruch 14, bei der zwei Positionshalteaussparungen
(23b) an entgegengesetzten Enden jeder Kurvenaussparung (23a) in der Drehrichtung
positioniert sind.
17. Arbeitstiefeneinstellvorrichtung (20) nach einem der Ansprüche 1 bis 16, bei der das
Einstellbauteil (21), das Bedienbauteil (23) und das Zwischenbauteil (22) einen im
Wesentlichen zylindrischen röhrenförmigen Aufbau aufweisen und das Einstellbauteil
(21), das Bedienbauteil (23) und das Zwischenbauteil (22) koaxial zueinander angeordnet
sind.
18. Rotationswerkzeug (1) mit der Arbeitstiefeneinstellvorrichtung (20) nach einem der
Ansprüche 1 bis 17.
19. Rotationswerkzeug nach Anspruch 18, bei dem das Rotationswerkzeug ein Elektroschrauber
(1) ist, so dass der Werkzeugeinsatz (12) gegen das Werkstück (W) gedrückt wird, während
eine Schraube (S) mittels des Werkzeugeinsatzes (12) im Eingriff ist und zwischen
dem Werkzeugeinsatz (12) und dem Werkstück (W) positioniert ist, falls die Schraube
(S) durch den Schrauber (1) in das Werkstück (W) getrieben wird.
20. Rotationswerkzeug (1) mit der Arbeitstiefeneinstellvorrichtung (20) nach einem der
Ansprüche 1 bis 19, bei der,
die Spindel (8) axial nicht bewegbar in dem Werkzeugkörper (2) angeordnet ist, und
der Werkzeugeinsatz (12) zum Befestigt werden an dem vorderen Abschnitt der Spindel
(8) und zum Erstrecken entlang derselben Achse (J) wie die Spindel (8) angepasst ist,
die Drehachse des Einstellbauteils (21) parallel zu der Achse des Werkzeughalters
(12) ist, so dass die Position des Einstellbauteils (21) bezüglich der Axialrichtung
relativ zu dem Werkzeughalter (12) eingestellt werden kann.
21. Arbeitstiefeneinstellvorrichtung (20) nach einem der Ansprüche 6 bis 20, bei der
das Bedienbauteil (23) durch einen Bediener bedienbar ist, und
die erste und zweite Verriegelvorrichtung (24, 23c, 22e, 23b) als Reaktion auf die
Betätigung des Bedienbauteils (23) bedienbar sind.
1. Dispositif de réglage de profondeur de travail (20) pour un outil rotatif (1) ayant
un corps d'outil (2) et une broche (8) pouvant tourner autour d'un axe (J), dans lequel
une mèche d'outil (12) peut être fixée à la broche (8) de manière à être entraînée
en rotation, et la mèche d'outil rotative (12) peut être comprimée contre une pièce
(W) pour traiter la pièce (W), le dispositif de réglage de profondeur de travail (20)
comprenant :
un élément de réglage (21) conçu pour être fixé à la partie avant du corps d'outil
(2) et mobile le long de l'axe (J) de la broche (8), de sorte que la position de l'élément
de réglage (21) puisse être ajusté par rapport à la mèche d'outil (12) en se référant
à une direction de profondeur de travail ;
un élément intermédiaire (22) monté à rotation sur l'élément de réglage (21), dans
lequel l'élément de réglage (21) est déplacé dans le sens de la profondeur de travail
lorsque l'élément intermédiaire (22) tourne ; et
un élément d'actionnement (23) qui est à même de tourner autour de l'élément intermédiaire
(22) entre une position de verrouillage et une position de déverrouillage ;
dans lequel l'élément intermédiaire (22) a un premier élément d'engagement (24) ;
dans lequel, lorsque l'on fait tourner l'élément d'actionnement (23) dans la position
de verrouillage, le premier élément d'engagement (24) s'engage sur le corps d'outil
(2), et l'engagement du premier élément d'engagement (24) est maintenu par l'élément
d'actionnement (23), de sorte que l'on puisse empêcher le retrait du dispositif de
réglage de profondeur de travail (20) du corps d'outil (2) ; et
dans lequel, lorsque l'on fait tourner l'élément d'actionnement (23) dans la position
de déverrouillage, le premier élément d'engagement (24) peut être dégagé du corps
d'outil (2), de sorte que le dispositif de réglage de profondeur de travail (20) puisse
être retiré du corps d'outil (2).
2. Dispositif de réglage de profondeur de travail (20) selon la revendication 1,
dans lequel le premier élément d'engagement (24) peut être engagé sur le corps d'outil
(2) dans une direction diamétrale par rapport à un axe de rotation de l'élément intermédiaire
(22) ;
dans lequel l'élément intermédiaire (22) comprend en outre un second élément d'engagement
(22e) pouvant s'engager sur l'élément d'actionnement (23) et se dégager de celui-ci
en réponse à un mouvement dans un sens de rotation de l'élément d'actionnement (23)
;
dans lequel, lorsqu'on fait tourner l'élément d'actionnement (23) dans une position
de verrouillage, le second élément d'engagement (22e) est dégagé de l'élément d'actionnement
(23) pour permettre une rotation de l'élément d'actionnement (23) par rapport à l'élément
intermédiaire (22), et le premier élément d'engagement (24) s'engage sur le corps
d'outil (2), et l'engagement du premier élément d'engagement (24) est verrouillé par
l'élément d'actionnement (23) ; et
dans lequel, lorsqu'on fait tourner l'élément d'actionnement (23) dans une position
de déverrouillage, l'élément d'actionnement (23) et l'élément intermédiaire (22) sont
amenés en rotation conjointe par le second élément d'engagement (22e), et le premier
élément d'engagement (24) peut être dégagé du corps d'outil (2) pour permettre la
rotation et le mouvement dans un sens de retrait de l'élément intermédiaire (22) par
rapport au corps d'outil (2).
3. Dispositif de réglage de profondeur de travail (20) selon la revendication 1 ou 2,
dans lequel le premier élément d'engagement comprend une bille (24) ; et
dans lequel le corps d'outil (2) présente un évidement d'engagement (3d) pour s'engager
sur la bille (24) ;
dans lequel, lorsqu'on fait tourner l'élément d'actionnement (23) dans la position
de verrouillage, la bille (24) s'engage sur l'évidement d'engagement (3d) du corps
d'outil (2) et est maintenue en position ; et
dans lequel, lorsqu'on fait tourner l'élément d'actionnement (23) dans la position
de déverrouillage, la bille (24) peut être retirée de l'évidement d'engagement (3d).
4. Dispositif de réglage de profondeur de travail (20) selon la revendication 2 ou 3,
dans lequel le dispositif de réglage de profondeur de travail (20) comprend une pluralité
de premiers éléments d'engagement (24) et une pluralité de seconds éléments d'engagement
(22e) aménagés dans la direction de rotation.
5. Dispositif de réglage de profondeur de travail (20) selon la revendication 4, dans
lequel la pluralité de premiers éléments d'engagement (24) et la pluralité de seconds
éléments d'engagement (22e) sont aménagées en alternance dans la direction de rotation.
6. Dispositif de réglage de profondeur de travail (20) selon la revendication 1, comprenant
en outre un premier dispositif de verrouillage (24, 3d) ayant le premier élément d'engagement
(24) et conçu pour verrouiller de manière amovible l'élément intermédiaire (22) contre
le corps d'outil (2) ; et
un second dispositif de verrouillage (22e, 23b) conçu pour verrouiller de manière
amovible l'élément d'actionnement (23) contre l'élément intermédiaire (22), dans lequel
l'élément de réglage (21) ne peut tourner autour de l'axe ;
l'élément intermédiaire (22) est monté à rotation entre l'élément de réglage (21)
et l'élément d'actionnement (23) et engagé par vissage sur l'élément de réglage (21),
de sorte que l'élément de réglage (21) se déplace le long de la direction axiale à
mesure que l'élément intermédiaire (22) tourne.
7. Dispositif de réglage de profondeur de travail (20) selon la revendication 6,
dans lequel le premier dispositif de verrouillage (24, 3d) est conçu pour verrouiller
l'élément intermédiaire (22) contre le corps d'outil (2) lorsque le second dispositif
de verrouillage (22e, 23b) déverrouille l'élément d'actionnement (23) de l'élément
intermédiaire (22) ; et
dans lequel le premier dispositif de verrouillage (24, 3d) est conçu pour déverrouiller
l'élément intermédiaire (22) du corps d'outil (2) lorsque le second dispositif de
verrouillage (22e, 23b) verrouille l'élément d'actionnement (23) contre l'élément
intermédiaire (22).
8. Dispositif de réglage de profondeur de travail (20) selon la revendication 6 ou 7,
dans lequel le premier dispositif de verrouillage (24, 3d) comprend :
le premier élément d'engagement (24) mobile conjointement avec l'élément intermédiaire
(22) dans une direction de rotation ;
un évidement d'engagement (3d) formé dans le corps d'outil (2) et pouvant être engagé
sur l'élément d'engagement (24) ; et
un support (23) conçu pour maintenir l'élément d'engagement (24) en engagement sur
l'évidement d'engagement (3d).
9. Dispositif de réglage de profondeur de travail (20) selon la revendication 8,
dans lequel l'évidement d'engagement (3d) est formé dans une surface radialement externe
du corps d'outil (2) ;
dans lequel le support comprend une partie d'une paroi radialement interne de l'élément
d'actionnement (23) ;
dans lequel, lorsque l'élément d'actionnement (23) est dans la position de verrouillage,
la partie de paroi s'oppose radialement à l'évidement d'engagement (3d), de sorte
que l'on puisse empêcher le retrait de l'élément d'engagement (24) de l'évidement
d'engagement (3d).
10. Dispositif de réglage de profondeur de travail (20) selon la revendication 9,
dans lequel le premier dispositif de verrouillage (20) comprend en outre un évidement
en relief (23c) formé dans la paroi radialement interne de l'élément d'actionnement
(23) ;
dans lequel, lorsque l'élément d'actionnement (23) est dans la position de déverrouillage,
l'évidement en relief (23c) s'oppose radialement à l'évidement d'engagement (3d),
de sorte que l'on puisse déplacer l'élément d'engagement (24) de l'évidement d'engagement
(3d) dans l'évidement en relief (23c), ce qui permet la rotation de l'élément intermédiaire
(22) par rapport au corps d'outil (2).
11. Dispositif de réglage de profondeur de travail (20) selon la revendication 9 ou 10,
dans lequel l'élément d'engagement comprend une bille (24) disposée de manière mobile
radialement dans l'élément intermédiaire (22).
12. Dispositif de réglage de profondeur de travail (20) selon la revendication 10 ou 11,
dans lequel le premier dispositif de verrouillage (24, 3d) comprend une pluralité
d'évidements d'engagement (3d), une pluralité de parties de paroi et une pluralité
d'évidements en relief (23c) ménagées dans la direction de rotation de l'élément d'actionnement
(23).
13. Dispositif de réglage de profondeur de travail (20) selon l'une quelconque des revendications
6 à 12,
dans lequel le second dispositif de verrouillage (22e, 23b) comprend une saillie (22e)
formée sur une surface radialement externe de l'élément intermédiaire (22), et un
évidement de retenue de position (23b) formé dans une paroi radialement interne de
l'élément d'actionnement (23) ;
dans lequel la saillie (22e) peut s'engager de manière amovible sur l'évidement de
retenue de position (23b) lorsque l'élément d'actionnement (23) est dans la position
déverrouillée.
14. Dispositif de réglage de profondeur de travail (20) selon la revendication 13,
dans lequel le second dispositif de verrouillage (22e, 23b) comprend en outre un évidement
de came (23a) formé dans l'élément d'actionnement (23) en continuité avec l'évidement
de retenue de position (23b) dans la direction de rotation ;
dans lequel la saillie (22e) s'engage sur l'évidement de came (23a) de sorte que la
saillie (22e) puisse se déplacer dans la direction de rotation par rapport à l'évidement
de came (23a) lorsque l'élément d'actionnement (23) est dans la position de verrouillage.
15. Dispositif de réglage de profondeur de travail (20) selon la revendication 14, dans
lequel le second dispositif de verrouillage (22e, 23b) comprend une pluralité de saillies
(22e), une pluralité d'évidements de retenue de position (23b), et une pluralité d'évidements
de came (23a) formée respectivement dans la continuité avec les évidements de retenue
de position (23b) dans la direction de rotation de l'élément d'actionnement (23).
16. Dispositif de réglage de profondeur de travail (20) selon la revendication 14, dans
lequel deux évidements de retenue de position (23b) sont positionnés aux extrémités
opposées de chaque évidement de came (23a) dans la direction de rotation.
17. Dispositif de réglage de profondeur de travail (20) selon l'une quelconque des revendications
1 à 16, dans lequel chaque élément choisi parmi l'élément de réglage (21), l'élément
d'actionnement (23) et l'élément intermédiaire (22) a une configuration tubulaire
sensiblement cylindrique et l'élément de réglage (21), l'élément d'actionnement (23)
et l'élément intermédiaire (22) sont disposés coaxialement l'un avec l'autre.
18. Outil rotatif (1) comprenant le dispositif de réglage de profondeur de travail (20)
selon l'une quelconque des revendications 1 à 17.
19. Outil rotatif selon la revendication 18, dans lequel l'outil rotatif est un tournevis
électrique (1), de sorte que la mèche d'outil (12) soit pressée contre la pièce (W),
tandis qu'une vis (S) est engagée sur la mèche d'outil (12) et positionnée entre la
mèche d'outil (12) et la pièce (W), lorsque la vis (S) est enfoncée dans la pièce
(W) par le tournevis (1).
20. Outil rotatif (1) comprenant le dispositif de réglage de profondeur de travail (20)
selon l'une quelconque des revendications 1 à 19, dans lequel :
la broche (8) est disposée non mobile axialement à l'intérieur du corps d'outil (2)
;
la mèche d'outil (12) est à même d'être fixée à une partie avant de la broche (8)
et de s'étendre le long du même axe (7) que la broche (8) ; et
l'axe de rotation de l'élément de réglage (21) est parallèle à l'axe de la mèche d'outil
(12), de sorte que la position de l'élément de réglage (21) puisse être réglée par
rapport à la direction axiale de la mèche d'outil (12).
21. Dispositif de réglage de profondeur de travail (20) selon l'une quelconque des revendications
6 à 20, dans lequel :
l'élément d'actionnement (23) est actionnable par un opérateur ; et
les premier et second dispositifs de verrouillage (24, 23c, 22e, 23b) peuvent être
actionnés en réponse au fonctionnement de l'élément d'actionnement (23).
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description