

(11)

EP 1 870 460 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:
Corrected version no 1 (W1 B1)
 Corrections, see
 Claims DE 2
 Claims EN 2

(48) Corrigendum issued on:
05.12.2012 Bulletin 2012/49

(45) Date of publication and mention
 of the grant of the patent:
30.05.2012 Bulletin 2012/22

(21) Application number: **06730889.0**

(22) Date of filing: **31.03.2006**

(51) Int Cl.:
C12N 15/09 (2006.01) **C07K 14/78 (2006.01)**
C12N 5/10 (2006.01) **C12P 21/02 (2006.01)**

(86) International application number:
PCT/JP2006/306941

(87) International publication number:
WO 2006/106970 (12.10.2006 Gazette 2006/41)

(54) **METHODS OF PRODUCING PROTEINS HAVING TRIPLE-HELIX STRUCTURE**

VERFAHREN ZUR HERSTELLUNG VON PROTEINEN MIT TRIPPELHELIXSTRUKTUR

PROCEDE POUR LA PRODUCTION D'UNE PROTEINE AYANT UNE STRUCTURE TRI-
 HELICOIDALE

(84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR	• KIMURA, Akio, OSAKA PREFECTURAL INST. -PUB. HEALTH Osaka-shi, Osaka 5370025 (JP)
(30) Priority: 31.03.2005 JP 2005102999	• KISAKI, Hiroshi, FUSO PHARMACEUTICAL IND. LTD. Osaka-shi, Osaka, 5368523 (JP)
(43) Date of publication of application: 26.12.2007 Bulletin 2007/52	• KESHI, Hiroyuki, FUSO PHARMACEUTICAL IND. LTD. Osaka-shi, Osaka, 5368523 (JP)
(60) Divisional application: 11002042.7 / 2 383 338 11002048.4 / 2 390 326	• UEYAMA, Hiroshi, FUSO PHARMACEUTICAL IND. LTD. Osaka-shi, Osaka 5368523 (JP)
(73) Proprietors: <ul style="list-style-type: none"> • FUSO PHARMACEUTICAL INDUSTRIES, LTD. Osaka-shi Osaka 541-0045 (JP) • OSAKA PREFECTURAL GOVERNMENT Osaka-shi, Osaka 540-8570 (JP) 	• NISHIHARA, Mizuki, c/o WORLD INTEC CO., LTD., 3-chome Chuo-ku, Tokyo 103-022 (JP)
(72) Inventors: <ul style="list-style-type: none"> • KASE, Tetsuo, OSAKA PREFECTURAL INST. -PUB. HEALTH Osaka-shi, Osaka 5370025 (JP) 	(74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Leopoldstrasse 4 80802 München (DE)
	(56) References cited: JP-A- 07 501 939 JP-A- 2000 508 544

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- FUKUI NAOSHI ET AL: "Processing of type II procollagen amino propeptide by matrix metalloproteinases" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 3, 18 January 2002 (2002-01-18), pages 2193-2201, XP002503361 ISSN: 0021-9258
- FUKUDA K. ET AL.: 'Formation of recombinant triple-helical [α 1(IV)] α 2(IV) collagen molecules in CHO cells' BIOCHEM. BIOPHYS. RES. COMMUN. vol. 231, 1997, pages 178 - 182, XP003002950
- FRISCHHOLZ S. ET AL.: 'Characterization of human type X procollagen and its NC-1 domain expressed as recombinant proteins in HEK293 cells' J. BIOL. CHEM. vol. 273, 1998, pages 4547 - 4555, XP003002951
- IMAMURA Y. ET AL.: 'Bone morphogenetic protein-1 processes the NH₂-terminal propeptide, and a furin-like proprotein convertase processes the COOH-terminal propeptide of pro- α 1(V) collagen' J. BIOL. CHEM. vol. 273, 1998, pages 27511 - 27517, XP003002952
- BULLEID N.J. ET AL.: 'Recombinant expression systems for the production of collagen' BIOCHEM. SOC. TRANS. vol. 28, 2000, pages 350 - 353, XP008019428
- STACEY A. ET AL.: 'Rescue of type I collagen-deficient phenotype by retroviral-vector-mediated transfer of human pro α 1(I) collagen gene into Mov-13 cells' J. VIROL. vol. 61, 1987, pages 2549 - 2554, XP003002953
- ALA-KOKKO L. ET AL.: 'Expression of a human cartilage procollagengene (COL2A1) in mouse 3T3 cells' J. BIOL. CHEM. vol. 266, 1991, pages 14175 - 14178, XP003002954

DescriptionTechnical Field

5 [0001] The present invention relates to methods of producing proteins having a triple-helix structure. More specifically, the present invention relates to methods of producing human collagen or partial peptides of human collagen. An objective of the present invention is to provide human collagen and partial peptides of human collagen that are safe for the living body and can be easily purified and obtained, and methods of producing them. More specifically, the present invention is to provide methods of producing human collagen and partial peptides thereof, by stably transducing Chinese hamster 10 ovary (CHO) cells with a mammalian expression vector into which human collagen cDNA has been inserted.

Background Art

15 [0002] Collagen is a protein that is distributed to almost all tissues of the body including the skin, bone and cartilage, and is well known to play important functions such as maintaining structures of tissues and organs by providing scaffolds for cells. Meanwhile, collagen is a bioabsorbable material that is decomposed by collagenases secreted from fibroblasts and collagenases present in phagocytes. Collagen is considered to be useful as a biomaterial because it is a biocompatible and bioabsorbable material as described above. Thus far, collagen has been used as a biomaterial for covering wounded skin and is reported to improve healing (Non-Patent Documents 1 and 2).

20 [0003] Forty percent of total collagen exists in the skin, and 70% or more of the dry weight of the skin and tendon is collagen; thus, collagen is important for developing artificial skin. It is applied as a useful material for cell and organ culture techniques, which gives great expectation in its applications in the booming field of regeneration medicine. It has been also pointed out that collagen (type II collagen) may be used to suppress articular rheumatism by oral intake (Non-Patent Documents 3 and 4). As a source material for such collagen, those derived from tissues of large non-human 25 animals such as pigs and cows have been mainly used.

[Non-Patent Document 1] Surg. Forum, 10, 303 (1960)

[Non-Patent Document 2] J. Surg. Res., 10, 485-491 (1970)

[Non-Patent Document 3] Lancet, 342, 799 (1993)

[Non-Patent Document 4] Science, 261, 1727-1730 (1993)

30 [Patent Document 1] Japanese Patent Application Kokai Publication No. (JP-A) H10-179169 (unexamined, published Japanese patent application)

Disclosure of the Invention

35 [Problems to be solved by the invention] .

[0004] As described above, collagen is useful as a biomaterial or medicine for regeneration therapy and live organ transplantation, but the collagen used so far is derived from tissues of large non-human animals such as pigs and cows. Although collagen is a protein with low immunogenicity by nature, it is reported that when collagen from a xenogenic 40 animal is transplanted, implanted or administered as a biomaterial, immune reactions are induced at a low frequency (J. Immunol., 136, 877-882 (1986), Biomaterials, 11, 176-180 (1990)). In addition, the use of cow-derived collagen has become impossible due to the problem of prion contamination in cows. Furthermore, there is no guarantee that problems similar to prion contamination will not occur in animals such as pigs which are currently used for collagen extraction. From the above-mentioned aspects, it is preferable to use human-derived collagen as a biomaterial to be directly applied 45 to the human body. However, extraction and purification of collagen from human tissues not only have ethical and technical problems, but is also qualitatively problematic in that the collagen obtained forms unspecific cross-linkages and is difficult to purify.

[0005] In order to obtain non-immunogenic collagen that is free from risk of pathogen contamination and easy to isolate and purify, collagen production using gene recombination techniques has been studied (Biochem. Soc., 28, 350-353 50 (2000)). However, it is very complicated to prepare an expression vector for introducing into host cells, a cDNA encoding a collagen molecule whose molecular weight is more than 100,000. In addition, conventional methods have low productivity and are far from practical application. Furthermore, it is known that collagen molecules have a triple-helix structure in which three peptides are associated.

This structure is formed as a result of several modifications to primary translation products of the gene (N. Engl. J. Med., 55 311, 376-386 (1984)); however, only specific cells are thought to have such modification ability.

[0006] Attempts have been made to produce recombinant human collagen by using mouse fibroblasts, hamster lung cells and the like as a host (Proc. Natl. Acad. Sci. USA., 84, 764-768 (1987), J. Biol. Chem., 264, 20683-20687 (1989)). Although the collagen produced in these examples have a normal molecular structure, they are mixed collagen molecules

of collagen gene products from both human and the host cell. In an example where human type II collagen was expressed (Biochem. J., 298, 31-37 (1994)), the amount produced was as small as 0.5 to 1 mg per liter of culture medium, and the type II collagen expressed by the introduced cDNA was found to be contaminated with a significant amount of host-derived type II collagen. Thus, it was necessary to separate endogenous type II collagen from type II collagen derived from the introduced gene.

[0007] In addition to the above-mentioned examples, there are examples of expressing human collagen using yeasts (Japanese Patent Kohyo Publication No. (JP-A) H7-501939 (unexamined, published Japanese national phase publication corresponding to a non-Japanese international publication)), insect cells (Japanese Patent Application Kokai Publication No. (JP-A) H8-23979 (unexamined, published Japanese patent application)), *Bacillus brevis* (JP-A H11-178574), and *Escherichia coli* (JP-A 2002-325584), but the post-expression modifications of collagen peptides may be different from those made in animal cells. As mentioned above, no method reported so far is satisfactory as a gene recombination method for producing human collagen in terms of quantity and quality. In addition, there has not been any investigation on methods for producing large quantities of proteins with a triple-helix structure such as collagen.

[0008] The present invention was achieved in view of the above circumstances. An objective of the present invention is to provide methods for producing proteins with a triple-helix structure. More specifically, the objective is to provide methods for producing human collagen molecules that are easy to isolate and purify, and have substantially the same structure as natural collagen molecules, by synthesizing large amounts of human collagen protein in host cells introduced with a collagen gene, incorporated in a high expression vector, where the large amounts of human collagen protein are derived from the introduced gene.

[Means for Solving the Problems]

[0009] The present inventors performed various studies to solve the above-mentioned problems. As a result, the inventors discovered that large amounts of human collagen hardly contaminated with host cell-derived collagen can be produced, by selecting from various mammalian cells a host cell that has low collagen expression and introducing a collagen gene construct into a vector capable of high exogenous gene expression, and thereby completed the present invention.

There has been no report of collagen production methods that preferentially produce human collagen in host cells by massively expressing an introduced collagen gene.

[0010] Specifically, the present inventors successfully developed methods for producing a large amount of human collagen that do not require a complex purification process, by inserting a human collagen gene into a vector capable of highly expressing a foreign gene and then introducing the resultant construct into a host mammalian cell with low expression of collagen (a triple-helix structural protein), and thereby completed the present invention.

[0011] Specifically, the present invention provides:

[1] a method of producing a protein having a triple-helix structure, wherein the method comprises:

- (a) introducing DNA encoding a protein having a triple-helix structure into a vector;
- (b) transforming a mammalian cell by transfer of the gene vector; and
- (c) culturing or breeding the transformant, and collecting the protein having a triple helix structure from the cell or culture supernatant thereof;

[2] the method of [1], wherein the protein having a triple-helix structure is human collagen or a partial peptide thereof;

[3] the method of [2], wherein the human collagen consists of at least one or more types of α chains;

[4] the method of [2], wherein the human collagen is human type I collagen;

[5] the method of [4], wherein the human type I collagen is a complex of $\alpha 1$ and $\alpha 2$ chains;

[6] the method of [2], wherein the human collagen is human type II collagen;

[7] the method of [2], wherein the human collagen is human type III collagen;

[8] the method of [1], wherein the DNA encoding a protein having a triple helix structure is at least a DNA selected from:

- (a) a DNA comprising any one of the nucleotide sequences of SEQ ID NOs:1, 4, 7, and 10; and
- (b) a DNA hybridizing under stringent conditions with a DNA comprising any one of the nucleotide sequences of SEQ ID NOs:1, 4, 7, and 10;

[9] the method of any one of [1] to [8], wherein the mammalian cell is a Chinese hamster ovary (CHO) cell;

[10] the method of any one of [1] to [8], wherein the mammalian cell is a human embryonic kidney (HEK293) cell;

[11] the method of any one of [1] to [10], wherein the vector to be introduced with the DNA encoding a protein having a triple helix structure is pNOW/CMV-AA;

[12] a human collagen produced according to the method of any one of [1] to [11];
 [13] a vector introduced with at least one DNA selected from:

5 (a) a DNA comprising any one of the nucleotide sequences of SEQ ID NOs: 1, 4, 7, and 10; and
 (b) a DNA hybridizing under stringent conditions with DNA comprising any one of the nucleotide sequences of SEQ ID NOs: 1, 4, 7, and 10;

[14] a mammalian cell carrying the vector of [13]; and

10 [15] a kit for producing a protein having a triple helix structure, wherein the kit comprises the vector of [13] or the mammalian cell of [14].

Brief Description of the Drawings

[0012]

15 Fig. 1 shows an expression construct of an α 1-chain of human type-I collagen. hColla1: human type I collagen α 1-chain cDNA, PCMV: cytomegalovirus promoter, BGHPA: poly (A) addition signal of bovine growth hormone gene, PSVd: simian virus 40 promoter devoid of enhancer, DHFR: mouse dihydrofolate reductase cDNA, SVpA: poly (A)-addition signal of simian virus 40, ColE1ori: replication origin of *Escherichia coli*, Neor: selection marker for mammalian cells (G418 resistance) and *Escherichia coli* (kanamycin resistance)

20 Fig. 2 shows an expression construct of an α 2-chain of human type-I collagen. hColla2: human type-I collagen α 2-chain gene cDNA, PCMV: cytomegalovirus promoter, BGHPA: poly (A) addition signal of bovine growth hormone gene, PSVd: simian virus 40 promoter devoid of enhancer, DHFR: mouse dihydrofolate reductase cDNA, SVpA: poly (A) addition signal of simian virus 40, ColE1ori: replication origin of *Escherichia coli*, Neor: selection marker for mammalian cells (G418 resistance) and *Escherichia coli* (kanamycin resistance)

25 Fig. 3 shows an expression construct of an α 1-chain of human type-II collagen. hColla1: human type-II collagen α 1-chain cDNA, PCMV: cytomegalovirus promoter, BGHPA: poly(A) addition signal of bovine growth hormone gene, PSVd: simian virus 40 promoter devoid of enhancer, DHFR: mouse dihydrofolate reductase cDNA, SVpA: poly (A)-addition signal of simian virus 40, ColE1ori: replication origin of *Escherichia coli*, Neor: selection marker for mammalian cells (G418 resistance) and *Escherichia coli* (kanamycin resistance)

30 Fig. 4 shows an expression construct of an α 1-chain of human type-III collagen. hColla1: human type-III collagen α 1-chain cDNA, PCMV: cytomegalovirus promoter, BGHPA: poly(A) addition signal of bovine growth hormone gene, PSVd: simian virus 40 promoter devoid of enhancer, DHFR: mouse dihydrofolate reductase cDNA, SVpA: poly(A) addition signal of simian virus 40, ColE 1 ori: replication origin of *Escherichia coli*, Neor: selection marker for mammalian cells (G418 resistance) and *Escherichia coli* (kanamycin resistance)

35 Fig. 5 is a photograph showing SDS-PAGE analysis of recombinant human type I collagen in culture supernatants. Lane 1: human type I collagen (100 μ g/mL), lane 2: recombinant type I collagen.

40 Fig. 6 is a photograph showing SDS-PAGE analysis of pepsin-digested products of recombinant human type I collagen in culture supernatants. Lane 1: recombinant human type I collagen (185 μ g/mL), lane 2: recombinant human type I collagen (20 times concentrated).

45 Fig. 7 is a set of photographs showing Western blot detection of purified recombinant human type I collagen and pepsin-digested products thereof.

A. Detection by an antibody against the α 1-chain of human type-I collagen, lane 1: human type I collagen (50 μ g/mL), lane 2: recombinant type I collagen, lane 3: pepsin digested products of recombinant type I collagen.

B. Detection by an antibody against the α 2-chain of human type-I collagen, lane 1: human type I collagen (10 μ g/mL), lane 2: recombinant type I collagen, lane 3: pepsin-digested products of recombinant type I collagen.

50 Fig. 8 is a photograph showing SDS-PAGE analysis of recombinant human type II collagen in culture supernatants. Lane 1: human type II collagen (100 μ g/mL), lane 2: recombinant type II collagen.

55 Fig. 9 is a photograph showing Western blot analysis of recombinant human type II collagen in culture supernatants. Lane 1: human type II collagen (10 μ g/mL), lane 2: recombinant type II collagen (10 times diluted)

Fig. 10 is a photograph showing SDS-PAGE analysis of the pepsin-digested products of recombinant human type II collagen in culture supernatants. Lane 1: human type II collagen (100 μ g/mL), lane 2: recombinant type II collagen (5 times concentrated).

Fig. 11 is a photograph showing Western blot analysis of the pepsin-digested products of recombinant human type II collagen in culture supernatants. Lane 1: human type II collagen (10 μ g/mL), lane 2: recombinant type II collagen.

Fig. 12 is a photograph showing SDS-PAGE analysis of recombinant human type III collagen in culture supernatants.

Lane 1: human type III collagen (100 µg/mL), lane 2: recombinant type III collagen.

Fig. 13 is a photograph showing Western blot analysis of recombinant human type III collagen in culture supernatants and pepsin-digested products thereof. Lane 1: human type III collagen (10 µg/mL), lane 2: recombinant type III collagen (10 times diluted), lane 3: pepsin-digested products of recombinant type III collagen.

5 Fig. 14 is a photograph showing SDS-PAGE analysis of purified recombinant human type III collagen in culture supernatants.

A. Type I collagen, lane 1: human type I collagen, lane 2: recombinant type I collagen.

B. Type III collagen, lane 1: human type III collagen, lane 2: recombinant type III collagen.

10 Best Mode for Carrying Out the Invention

[0013] Herein below, the best mode to conduct the present invention is shown and the present invention is explained in more detail.

15 [0014] The present invention relates to methods of producing proteins having a triple-helix structure, comprises the steps of:

(a) introducing into a vector a DNA encoding a protein having a triple-helix structure;

(b) transforming a mammalian cell by transfer of the gene vector;

20 (c) culturing or breeding the transformant, and collecting proteins with a triple-helix structure from the cells or culture supernatants thereof.

[0015] "Proteins having a triple-helix structure" in the present invention are not specifically limited as long as they has a triple-helix structure, but are preferably collagen or collectin, and more preferably collagen. Proteins having a triple-helix structure may be proteins whose triple-helix structure is constructed during the steps of culture and production, or after the steps of culture and production by manipulations such as purification. It is also possible to produce large quantities of proteins that can form a triple-helix structure in a single-chain structural state.

[0016] More than 20 different types of collagen and about 25 types of constituting α chains are known. Genes encoding them have been cloned and nucleotide sequences thereof have been elucidated ("Connective Tissue and Its Heritable Disorders", pp145-165, published by Wiley-Liss Inc. (1992)). These genes can be introduced into a vector used in the present invention that can highly express foreign genes by gene recombination techniques known to those skilled in the art (for example, "Molecular Cloning" second edition, published by Cold Spring Harbor Laboratory Press (1989)). The human collagen cDNA used in the present invention may be any one of these cloned cDNAs of collagen, and includes cDNAs of partial collagen peptides.

35 [0017] The collagen of the present invention does not have a specifically limited origin, but mammal-derived collagen is preferable, and human-derived collagen is more preferable.

[0018] Furthermore, the collagen of the present invention also includes collagen whose amino acid sequence is partially modified by substitution, deletion, or such, or has an addition of a non-collagen-derived amino acid sequence. In addition, there are known methods for obtaining transduced cells expressing protein molecules by introducing a vector into host mammalian cells. Similar methods can be applied to the present invention.

40 [0019] The following method can be used to examine whether collagen is synthesized as a recombinant protein by cells introduced with the above-mentioned high exogenous gene expression vector. Specifically, collagen peptides can be identified by immunochemical methods such as Western blotting by using commercially available antibodies that specifically bind to human collagen. Collagen usually does not migrate according to molecular weight in SDS-polyacrylamide gel electrophoresis (Nature, 227, 680-685 (1970)). Thus, the reactivity of a sample with an anti-collagen antibody can be examined after the sample is electrophoresed simultaneously with collagen as a marker and transferred to a nylon membrane or a nitrocellulose membrane according to the method by Matsudaira et al. (J. Biol. Chem., 261, 10035-10038 (1987)). Further, whether a molecule having a triple-helix structure is present in the recombinant collagen products generated by the expression vector can be examined as follows.

45 [0020] Typical fibrous collagen is a three-chain molecule formed from three subunits (α chains), and has an intramolecular triple-helix structure. Further, collagen having a triple-helix structure is known to be resistant to pepsin digestion. Thus, the presence of three-chain molecules in a protein sample can be confirmed by digesting culture supernatants of cells introduced with the above-mentioned high exogenous gene expression vector with pepsin in an acidic condition, and examining whether the sample has a pepsin-resistant structure.

50 [0021] Specifically, in the present invention, pepsin-treated protein samples were subjected to SDS-polyacrylamide gel electrophoresis under reducing conditions. As a result, the obtained recombinant collagen was shown to have pepsin resistance similar to that of natural collagen, and thus collagen peptides having a pepsin-resistant property were expected to be contained in culture supernatants of cells introduced with a high exogenous gene expression vector. The above-

mentioned results show that the expression vector of the present invention has ability to synthesize in host cells, collagen that has resistance to pepsin, which is a characteristic equivalent to collagen found in the living body.

[0022] Methods of producing and purifying the triple-helix structural proteins of the present invention are shown below, without being limited thereto.

5 [0023] Mammalian cells used as a host cell in the present invention are not particularly limited, but are preferably CHO cells or HEK293 cells.

[0024] Large-scale culture of CHO cells or HEK293 cells used in the present invention can be done by suspension culture. For example, 1×10^8 to 1×10^9 recombinant CHO cells introduced with a human collagen-expression vector containing a weakened neomycin phosphotransferase gene, mouse dihydrofolate reductase gene, and cDNA encoding 10 human collagen or a partial peptide thereof can be cultured in a shaker flask or a spinner flask using 100 ml to 1 L of culture medium. After culturing these cells for an appropriate period of time, proteins can be extracted from the collected culture supernatants in large quantities.

[0025] In the culture supernatants of recombinant CHO cells introduced with the human collagen-expression vector containing a weakened neomycin phosphotransferase gene, mouse dihydrofolate reductase gene, and cDNA encoding 15 human collagen or a partial peptide thereof, there exist not only three-chain collagen molecules with a triple-helix structure, but also collagen that has not formed into normal three-chain molecules. As mentioned above, collagen molecules that do not have a triple-helix structure are digested by pepsin. Thus, collagen molecules lacking a triple-helix structure can be removed by pepsin digestion. This treatment can also at the same time degrade and remove the non-collagen proteins 20 in culture supernatants. By using the above-mentioned characteristics, non-collagen proteins as well as collagen lacking a triple-helix structure can be digested and removed by direct pepsin treatment of total proteins present in the culture supernatants of recombinant CHO cells introduced with a human collagen expression vector containing a weakened neomycin phosphotransferase gene, mouse dihydrofolate reductase gene, and cDNA encoding human collagen or a partial peptide thereof.

[0026] In the present invention, the human collagen of interest is all human collagens that are currently known, including 25 type I to XXI collagens, and also includes partial peptides thereof. The type of collagen of the present invention is not particularly limited but includes, as representative examples, type I, type II, type III, type IV, type V, type VII, type IX, type XI, type XII, type XVII, and type XVIII, and preferably type I, type II, type III. Types I, IV, V, IX, and XI consist of two or three types of α chains, and types II, III, VII, XII, XVII, and XVIII consist of one type of α chain. They each have the 30 following molecular composition: type I: $[\alpha 1(I)]_2\alpha 2(I)$, type II: $[\alpha 1(II)]_3$, type III: $[\alpha 1(III)]_3$, type IV: $[\alpha 1(IV)]_2\alpha 2(IV)$, type V: $[\alpha 1(V)]_2\alpha 2(V)$ and $\alpha 1(V)\alpha 2(V)\alpha 3(V)$, type VII: $[\alpha 1(VII)]_3$, type IX: $\alpha 1(IX)\alpha 2(IX)\alpha 3(IX)$, type XI: $\alpha 1(XI)\alpha 2(XI)\alpha 3(XI)$, type XII: $[\alpha 1(XII)]_3$, type XVII: $[\alpha 1(XVII)]_3$, or type XVIII: $[\alpha 1(XVIII)]_3$; however, the molecular composition of the collagen of the present invention is not particularly limited. Further, the molecular composition of collagen of the present invention is not restricted to that of natural collagen, and may be artificially composed of three different types of α chains.

[0027] The nucleotide sequence of a DNA encoding the $\alpha 1$ chain of type I collagen of the present invention is indicated 35 in SEQ ID NO: 1, the nucleotide sequence of a DNA encoding the $\alpha 2$ chain of type I collagen is indicated in SEQ ID NO: 4, the nucleotide sequence of a DNA encoding the $\alpha 1$ chain of type II collagen is indicated in SEQ ID NO: 7, and the nucleotide sequence of a DNA encoding the $\alpha 1$ chain of type III collagen is indicated in SEQ ID NO: 10.

[0028] DNAs encoding the collagen of the present invention include oligonucleotides that have any one of the nucleotide 40 sequences of SEQ ID NOs: 1, 4, 7, and 10, and preferably include oligonucleotides that selectively hybridize to oligonucleotides having any one of the nucleotide sequences of SEQ ID NOs: 1, 4, 7, and 10. "Selectively hybridizing" refers to nucleic acid molecules that hybridize with, form double strands with, or bind substantially to a molecule having a predetermined sequence (i.e. a second oligonucleotide) present in a DNA or RNA sample under hybridization conditions of appropriate stringency. The stringent conditions are, for example, usually conditions of 42°C, 2x SSC, and 0.1% SDS, preferably conditions of 50°C, 2x SSC, and 0.1% SDS, and more preferably conditions of 65°C, 0.1x SSC, and 0.1% SDS, but are not particularly limited to these conditions. Conditions affecting hybridization stringency may include plural factors such as temperature and salt concentration, and those skilled in the art can appropriately select these factors to achieve the most appropriate stringency.

[0029] Collagen produced by the present invention may be procollagen molecules in which a propeptide links to the N- and C-termini, or may be in a form in which the propeptide is removed.

50 [0030] In the present invention, "partial peptides of collagen" refers to polypeptides that are encoded by 20% or more (for example, 20, 30, 40, 50, 60, 70, 80, or 90%) of the polynucleotides of a collagen-encoding cDNA. The peptides also include those in which the collagen amino acid sequences are partially modified or those that have an added non-collagen amino acid sequence.

[0031] In the present invention, "mammalian cells with low collagen expression" refers to cells producing 50 ng/mL of collagen or less when cultured at a density of 1×10^6 cells/mL; and preferred examples are CHO cells and HEK293 cells. In the present invention, "high expression" refers to expression of 10 μ g/mL of collagen or more, preferably expression of 50 μ g/mL or more of collagen.

[0032] In the present invention, "high exogenous gene expression vector" refers to, for example, vectors comprising

a weak drug-selectable marker gene in mammalian cells, such that the exogenous gene carried by the vector is selectively inserted into an actively transcribed region of chromosome in mammalian cells. Such vectors preferably include the pNOW/CMV-AA vector. The pNOW/CMV-AA vector is known in JP-A H10-179169. In the present invention, the culture method may be either suspension or adhesion culture.

- 5 [0033] All prior art literatures cited in the present specification are incorporated herein by reference.
 [0034] Hereinbelow, the present invention will be described more specifically using Examples; however, it is not to be construed as being limited thereto.

10 [Example 1] Preparation of the pNOW/CMV-AA vector

[0035] The pNOW/CMV-AA vector used was prepared by a known method (JP-A H10-179169)

[Example 2] Preparation of collagen expression vectors (1): isolation of human type-I α 1-chain cDNA

15 [0036] The human type-I α 1-chain collagen gene has already been cloned, and the nucleotide sequence thereof has been reported (EMBL Gene Database Accession No: NM 000088). The sequence is shown in SEQ ID NO: 1. Human type-I α 1 cDNA was amplified from human testis-derived cDNA by the polymerase chain reaction (PCR) method ("PCR Technology", published by Stockton Press (1989)). Specifically, the full-length sequence of SEQ ID NO: 1 was amplified by PCR using human testis-derived cDNA (Becton, Dickinson and Company) as a template and the oligonucleotides of SEQ ID NO: 2 (GC_{GG}CCGCCACC_{AT}GTCAGCTTGTGGACCTCCG) and SEQ ID NO: 3 (TTCTAGATTACAGGAAG-CAGACAGGCCAA) as primers. More specifically, the reaction was carried out using a commercially available PCR amplification kit (TaKaRa LA Taq with GC Buffer: Takara Bio Inc.). The reaction mixture was heated at 94°C for 5 minutes, and then subjected to 35 cycles of the following three steps: denaturation (94°C, 20 seconds), annealing of primers (60°C, 30 seconds), and amplification (72°C, 3 minutes 30 seconds), followed by an additional treatment at 72°C for 7 minutes to end the reaction. Hereinafter, all the PCR reactions in the Examples were carried out in the same reaction cycle. The PCR product obtained was separated by agarose gel electrophoresis, and ligated into a cloning vector for PCR products (pT7Blue kits: Novagen Inc.) using a ligation kit (DNA ligation kit ver.2: Takara Bio Inc.). After the ligated DNA was introduced into *Escherichia coli* strain XL-I Blue, plasmid DNA was obtained by culturing ampicillin-resistant colonies appeared on LB agar medium (Difco Inc.). A DNA fragment encoding human type I α 1-chain collagen was excised from the plasmid DNA, and ligated with a *Not* I and *Xba* I-digested product of the pNOW/CMV-AA vector prepared in Example 1, using DNA Ligation Kit ver.2. After the ligated DNA was introduced into *Escherichia coli* strain XL-I Blue, plasmid DNA (pNOW-hColla1, Fig. 1) was obtained by culturing one ampicillin-resistant colony that appeared on LB agar medium.

35 [Example 3] Preparation of collagen expression vectors (2): isolation of human type-I α 2-chain cDNA

[0037] The human type-I α 2-chain collagen gene has already been cloned, and its nucleotide sequence has been reported (EMBL Gene Database Accession No: NM 000089). The sequence is shown in SEQ ID NO: 4. The human type-I α 2 cDNA was amplified from human liver-derived cDNA by PCR. Specifically, the full-length sequence of SEQ ID NO: 4 was amplified by PCR using human liver-derived cDNA (Wako Pure Chemical Industries, Ltd) as a template and the oligonucleotides of SEQ ID NO: 5 (GC_{GG}CCGCCACC_{AT}GCTCAGCTTGTGGATACGCCGA) and SEQ ID NO: 6 (ACTAGTTATTGAAACAGACTGGGCCAA) as primers. The resultant PCR product was separated by agarose gel electrophoresis, and was ligated into a cloning vector for PCR products (pT7Blue kits: Novagen Inc.) by using a ligation kit (DNA ligation kit ver.2: Takara Bio Inc.). After the ligated DNA was introduced into the *Escherichia coli* strain XL-I Blue, plasmid DNA was obtained by culturing four ampicillin-resistant colonies that appeared on LB agar medium (Difco Inc.). A DNA fragment encoding human type-I α 2-chain collagen was excised from the plasmid DNA, and ligated into pNOW/CMV-AA vector cleaved with *Not* I and *Xba* I using DNA Ligation Kit ver.2. After the ligated DNA was introduced into *Escherichia coli* strain XL-I Blue, plasmid DNA (pNOW-hColla2, Fig. 2) was obtained by culturing one ampicillin-resistant colony that appeared on LB agar medium.

50 [Example 4] Preparation of collagen-expression vector (3): isolation of human type-II α 1-chain cDNA

[0038] The human type-II α 1-chain collagen gene has already been cloned, and its nucleotide sequence has been reported (EMBL Gene Database Accession No: NM 001844.1). The sequence is shown in SEQ ID NO: 7. Human type-II α 1 cDNA was amplified from human testis-derived cDNA by PCR. Specifically, the full-length sequence of SEQ ID NO: 7 was amplified by PCR using human testis-derived cDNA (Becton, Dickinson and Company) as a template and the oligonucleotides of SEQ ID NO: 8 (GGCCCCGCGGTGAGCCATGATTGCCCTCG) and SEQ ID NO: 9 (TCTAGAT-TACAAGAACGACCGGCCCTAT) as primers. The PCR product obtained was separated by agarose gel electro-

5 phoresis, and ligated to a cloning vector for PCR products (pT7Blue kits: Novagen Inc.) using a ligation kit (DNA ligation kit ver.2: Takara Bio Inc.). After the ligated DNA was introduced into *Escherichia coli* strain XL-I Blue, plasmid DNA was obtained by culturing four ampicillin-resistant colonies that appeared on LB agar medium (Difco Inc.). A DNA fragment encoding human type-II α 1-chain collagen was excised from the plasmid DNA, and ligated with pNOW/CMV-AA vector cleaved with *Not* I and *Xba* I using DNA Ligation Kit ver.2. After the ligated DNA was introduced into *Escherichia coli* strain XL-I Blue, plasmid DNA (pNOW-hColla1, Fig. 3) was obtained by culturing one ampicillin-resistant colony that appeared on LB agar medium.

10 [Example 5] Preparation of collagen expression vectors (4): isolation of human type-III α 1-chain cDNA

15 [0039] The human type-III α 1-chain collagen gene has already been cloned, and its nucleotide sequence has been reported (EMBL Gene Database Accession No: X14420). The sequence is shown in SEQ ID NO: 10. Human type-III α 1 cDNA was amplified from human liver-derived cDNA by PCR. Specifically, the full-length sequence of SEQ ID NO: 10 was amplified by PCR using human liver-derived cDNA (Wako Pure Chemical Industries, Ltd) as a template and the oligonucleotides of SEQ ID NO: 11 (GCGGCCGCCACCATGATGAGCTTGCAAAAGGGGA) and SEQ ID NO: 12 (TCTAGATTATAAAAGCAAACAGGGCAAC) as primers. The PCR product obtained was separated by agarose gel electrophoresis, and ligated into a cloning vector for PCR products (pT7Blue kits : Novagen Inc.) using a ligation kit (DNA ligation kit ver.2: Takara Bio Inc.). After the ligated DNA was introduced into *Escherichia coli* strain XL-I Blue, plasmid DNA was obtained by culturing four ampicillin-resistant colonies that appeared on LB agar medium. A DNA fragment encoding human type-III α 1-chain collagen was excised from the plasmid DNA, and ligated into pNOW/CMV-AA vector cleaved with *Not* I and *Xba* I using DNA Ligation Kit ver.2. After the ligated DNA was introduced into *Escherichia coli* strain XL-I Blue, plasmid DNA (pNOW-hColla1, Fig. 4) was obtained by culturing one ampicillin-resistant colony that appeared on LB agar medium.

20 25 [Example 6] Production of human type I collagen: transfer of the human type-I collagen gene using expression vectors pNOW-hColla1 and pNOW-hColla2, and establishment of primary G418-resistant clones.

30 [0040] One microgram each of pNOW-hColla1 and pNOW-hColla2 obtained in Examples 2 and 3 was transferred into 1.5 million DHFR-deficient CHO cells (CHO DG44 cells; provided by Dr. Gail Urlaub) in a 25 cm² culture flask by the 35 lipofectin method (Effectene Transfection Reagent, QIAGEN Inc.). The transfer method was carried out according to the manufacturer's instructions. After 48 hours, the cells were removed by trypsin treatment and the number of cells was counted. Then, 5x10⁵ cells were diluted with 100 mL of Iscove's Modified Dulbecco's Medium containing 0.8 mg/mL G418 and 10% dialyzed fetal bovine serum, and then were seeded into ten 96-well microtiter plates (960 wells), followed by culturing at 37°C for three weeks under the presence of 5% carbon dioxide gas. Live cells in 197 wells were transferred to 40 24-well plates with 1 mL of Iscove's Modified Dulbecco's Medium containing 0.8 mg/mL G418 and 10% dialyzed fetal bovine serum, and were cultured until confluent. After discarding culture supernatants, 1 mL of PBS (Invitrogen Inc.) was added to each well, and culture supernatants were discarded again. 0.5 mL of ProCH04 (Takara Bio Inc.), a CD medium for CHO cells, was added to each well and cultured at 37°C for 96 hours under the presence of 5% carbon dioxide gas. Subsequently, the amount of human type I collagen produced in the culture supernatants was examined.

45 [Example 7] Quantitative assay of the human type I collagen produced in pNOW-hColla1- and pNOW-hColla2-transduced cell clones

50 [0041] The amount produced was assayed by SDS-polyacrylamide gel electrophoresis. 12.5 μ L of the culture supernatant was mixed with an equal volume of Tris-SDS β -ME sample treatment solution (Daiichi Pure Chemicals Co., Ltd.), and heat-treated at 95°C for 5 minutes. This mixture was loaded onto an SDS-polyacrylamide gel (PAGEL, ATTO Inc.) and fractionated by electrophoresis. After the electrophoresis, human type I collagen in the polyacrylamide gel was detected and quantified by treating the gel with Coomassie Brilliant Blue Staining Solution (Amersham Biosciences). As a comparative control, 12.5 μ g/mL to 100 μ g/mL of human type I collagen (Cosmo Bio Co., Ltd.) treated in the same way was used.

55 [Example 8] Production of human type I collagen

[0042] Among the G418-resistant cell lines, a cell clone that produced the largest amount of human type I collagen was stabilized by passaging and culturing. The level of human type I collagen produced was 85 μ g/mL culture medium (four days).

[Example 9] SDS-PAGE analysis of recombinant human type I collagen in culture supernatants

[0043] The cell clone massively producing human type I collagen obtained by gene amplification was adjusted to 1 x 10⁶ cells/mL in a 25 cm² culture flask using the cell culture solution IS CHO-CD (IS Japan Co., Ltd.). After culturing at 37°C for 96 hours under the presence of 5% carbon dioxide gas, the culture fluid was collected. The cells were removed by centrifugation to obtain a culture supernatant. 12.5 µL of the culture supernatant was mixed with an equal volume Tris-SDSβ-ME sample treatment solution (Daiichi Pure Chemicals Co., Ltd.), and heat-treated at 95°C for 5 minutes. This mixture was loaded onto an SDS-polyacrylamide gel (PAGEL, ATTO Inc.) and fractionated by electrophoresis. The SDS-polyacrylamide gel electrophoresis described below was carried out in the same way. After the electrophoresis was finished, human type I collagen in the polyacrylamide gel was detected by treating the gel with Coomassie Brilliant Blue Staining Solution (Amersham Biosciences). 100 µg/mL of human type I collagen treated in the same way was used as a comparative control. Fig. 5 shows the result of SDS-PAGE analysis of the culture supernatant obtained from the human type I collagen-producing cell clone. 150- and 170-kDa polypeptides which may be recombinant human type I collagen α1 chains, and 130- and 150-kDa polypeptides which may be recombinant human type I collagen α2 chains were detected in the culture supernatant.

[Example 10] Pepsin digestion and SDS-PAGE analysis of recombinant human type I collagen in the culture supernatant

[0044] Pepsin digestion of the culture supernatant obtained from the human type I collagen-producing cell clone was carried out by adding 99.7% acetic acid to the supernatant at a final concentration of 0.5 M and then pepsin (Sigma Inc.) at a final concentration of 24 units/ml, followed by incubation at 20°C for two hours. The pepsin digestion described below was carried out in the same way. The sample obtained from pepsin digestion was analyzed by SDS-polyacrylamide gel electrophoresis. 185 µg/mL of commercially available recombinant human type I collagen (Beckton, Dickinson and Company) was used as a comparative control. Fig. 6 shows the analytical result of the pepsin-digested products by SDS-polyacrylamide gel electrophoresis. As observed with the commercially available human type I atelocollagen, when treated with pepsin, the recombinant human type I collagen in the culture supernatant was detected as 130- and 120-kDa polypeptides, which may be α1 chain and α2 chain, respectively. These facts showed that recombinant human type I collagen that has a pepsin resistance substantially equivalent to that of the natural type was contained in the culture supernatant obtained from the human type I collagen-producing cell clone.

[Example 11] Western blot analysis of the recombinant human type I collagen in the culture supernatant

[0045] The polyacrylamide gel after SDS-polyacrylamide gel electrophoresis was immersed in a transfer buffer, and then human type I collagen in the polyacrylamide gel was transferred to a PVDF membrane by a conventional method. After blocking with Block Ace, the membrane was reacted with 2 µg/mL of an antibody against human type I collagen α1 chain and then with an anti-goat IgG antibody labeled with horseradish peroxidase (HRP). Reacted antibodies were detected by a method that uses the TMB peroxidase reagent for detecting HRP activity (Funakoshi Co.). 50 µg/mL of recombinant human type I collagen (Beckton, Dickinson and Company) was used as a comparative control. Human type I collagen α2 chain was detected using an antibody against human type I collagen α2 chain instead of an anti-human type I collagen α1 chain antibody. 10 µg/mL of human type I collagen was used as a comparative control. Fig. 7 shows the result of the Western blotting analysis. A 170 kDa polypeptide that may be a recombinant human type I collagen α1 chain which can be bound by an anti-human type I collagen α1 chain antibody, and 130- and 150-kDa polypeptides that may be recombinant human type I collagen α2 chains which can be bound by an anti-human type I collagen α2 chain antibody, were detected in the culture supernatant.

[Example 12] Purification of human type I collagen in the culture supernatant

[0046] 100 mL of the culture supernatant containing human type I collagen was purified as follows.

[0047] The 100 ml culture supernatant filtrated through a 0.45 µm membrane filter (Millipore Co.) was concentrated to 30 mL by centrifugation at 3,000 rpm at 4°C using a centrifugal concentration filter (VIVASPIN20 (MWCO 10,000): Sartorius).

[0048] Salting out was carried out by gradually adding 30 mL of 90% ammonium sulfate solution to the above concentrated culture supernatant while stirring at 4°C. After all the ammonium sulfate solution was added, the mixture was further stirred for an hour. Then, the mixture was allowed to stand on ice for one hour, and then centrifuged at 18,000 rpm, 4°C for 30 minutes in a high-speed refrigerated centrifuge. Collagen in the solution was insolubilized by salting out and floated on the surface of the solution, and then collected and solubilized completely in 5 mL of D-PBS (Sigma Co.). This solution was filtrated through a 0.45 µm membrane filter (Millipore Co.), and then purified by gel filtration using Superose 6 (Amersham Biosciences) equilibrated with D-PBS, and the first peak was isolated. The collected peak

fraction was concentrated about 20 times using VIVASPIN6 (MWCO 100,000). An appropriate amount of D-PBS was added to the concentrated collagen solution for further concentration, and low molecular fragments were removed. This D-PBS addition was repeated at least three times or more.

5 [0049] A purified collagen solution obtained from the original 100 mL culture supernatant was concentrated to approximately 300 μ L and electrophoresed by SDS-PAGE to confirm its purity.

[Example 13] Test of human type II collagen production: transfer of the human type II collagen gene using expression vector pNOW-hColla1 and establishment of primary G418-resistant clones.

10 [0050] One microgram of pNOW-hColla1 was transferred into 1.5 million CHO-DG44 cells in a 25 cm^2 culture flask using the lipofectin method. The transfer method was carried out according to the manufacturer's instructions. After 48 hours, the cells were removed by trypsin treatment and the number of cells was counted. 5×10^5 cells were diluted with 100 mL of Iscove's Modified Dulbecco's Medium containing 0.8 mg/mL G418 and 10% dialyzed fetal bovine serum, and then seeded into ten 96-well microtiter plates (960 wells), followed by culturing at 37°C for three weeks under the presence of 5% carbon dioxide gas. Live cells in 126 wells were transferred to 24 well plates with 1 mL of Iscove's Modified Dulbecco's Medium containing 0.8 mg/mL G418 and 10% dialyzed fetal bovine serum, and were cultured until confluent. After culture supernatants were discarded, 1 mL PBS (Invitrogen Inc.) was added to each well, and culture supernatants were discarded again. 0.5 mL of ProCH04 (Takara Bio Inc.), a serum-free CD medium for CHO cells, was added to each well and cultured at 37°C for 96 hours under the presence of 5% carbon dioxide gas. Next, the amount of human type II collagen produced in the culture supernatants was examined.

[Example 14] Quantitative assay of the human type II collagen produced by pNOW-hColla1-transduced cell clones

25 [0051] The amount produced was assayed by SDS-polyacrylamide gel electrophoresis. 7.5 μ L of the culture supernatant was mixed with an equal volume of Tris-SDS β -ME sample treatment solution (Daiichi Pure Chemicals Co., Ltd.), and heat-treated at 95°C for 5 minutes. This mixture was loaded onto an SDS-polyacrylamide gel (PAGEL, ATTO Inc.) and fractionated by electrophoresis. After the electrophoresis was finished, human type II collagen in the polyacrylamide gel was detected and quantified by treating the gel with Coomassie Brilliant Blue Staining Solution (Amersham Biosciences). 12.5 μ g/mL to 100 μ g/mL of human type II collagen (Cosmo Bio Co., Ltd.) treated in the same way was used as a comparative control.

30 [Example 15] Gene amplification in G418-resistant cell lines

35 [0052] Among G418-resistant cell lines, a cell clone that produced the largest amount of human type II collagen was stabilized by passaging and culturing, and then gene amplification was carried out using MTX. Amplification was first carried out in a medium containing 5 nM MTX for one week, a medium containing 25 nM MTX for one week, a medium containing 50 nM MTX for one week, a medium containing 250 nM MTX for three weeks, and a medium containing 1 μ M MTX for three weeks. As a result, the production level of human type II collagen increased to 70 μ g/mL culture medium (four days) when MTX reached 25 nM. Generally, multiple MTX concentrations between 10 nM and 10 μ M are used for gene amplification, and 10 μ M is often used as a final concentration. However, exposure to high concentration is problematic when establishing stable recombinant cell lines because of cellular toxicity. Thus, it is also an important criterion that high productivity is achieved at low MTX concentrations, and thus concentrations up to 1 μ M were used in the present experiment.

40 Further, although the period of MTX exposure, including selection, is usually six to twelve months, the present experiment was done in about nine weeks. Despite these experimental conditions, the amount of human type II collagen produced was found to be effectively increased. Gene amplification in the G418-resistant cell lines described below was carried out in the same way.

45 [Example 16] Analysis of recombinant human type II collagen in the culture supernatant by SDS-polyacrylamide gel electrophoresis

50 [0053] The cell clone massively producing human type II collagen obtained by gene amplification was adjusted to 1×10^6 cells/mL in a 25 cm^2 culture flask using the IS CHO-CD culture medium (IS Japan Co., Ltd.). After culturing at 37°C for 96 hours under the presence of 5% carbon dioxide gas, the culture fluid was collected and the cells were removed by centrifugation to obtain a culture supernatant. 7.5 μ L of the culture supernatant was mixed with an equal volume Tris-SDS β -ME sample treatment solution (Daiichi Pure Chemicals Co., Ltd.), and heat-treated at 95°C for 5 minutes. This mixture was loaded onto an SDS-polyacrylamide gel (PAGEL, ATTO Inc.) and fractionated by electrophoresis. The SDS-polyacrylamide gel electrophoresis described below was carried out in the same way. After the

electrophoresis was finished, human type II collagen in the polyacrylamide gel was detected by treating the gel with Coomassie Brilliant Blue Staining Solution (Amersham Biosciences). 100 $\mu\text{g}/\text{mL}$ of human type II collagen (Cosmo Bio Co., Ltd.) treated in the same way was used as a comparative control. Fig. 8 shows the SDS-PAGE analysis result of the culture supernatant obtained from the human type II collagen-producing cell clone. 170- and 200-kDa polypeptides that may be recombinant human type II collagen were detected in the culture supernatant.

5 [Example 17] Western blot analysis of recombinant human type II collagen in the culture supernatant

10 [0054] The polyacrylamide gel after SDS-polyacrylamide gel electrophoresis was immersed in a transfer buffer, and then human type II collagen in the polyacrylamide gel was transferred to a PVDF membrane by a conventional method. After blocking with Block Ace, the membrane was reacted with 1 $\mu\text{g}/\text{mL}$ of an antibody against the human type II collagen chain (Cosmo Bio Co., Ltd.), and then with an anti-rabbit IgG antibody labeled with horseradish peroxidase (HRP). Reacted antibodies were detected by a method of detecting HRP activity using the TMB peroxidase reagent (Funakoshi Co.). 10 $\mu\text{g}/\text{mL}$ of human type II collagen (Cosmo Bio Co., Ltd.) was used as a comparative control. 170-kDa polypeptide 15 which may be recombinant human type II collagen that can be bound by an antibody against the human type II collagen chain was detected in the culture supernatant (Fig. 9).

20 [Example 18] Pepsin digestion, SDS-PAGE analysis, and Western blot analysis of recombinant human type II collagen in the culture supernatant

25 [0055] A sample obtained from pepsin digestion was analyzed by SDS-polyacrylamide gel electrophoresis. 100 $\mu\text{g}/\text{mL}$ of human type II collagen (Cosmo Bio Co., Ltd.) was used as a comparative control. Fig. 10 shows the result of analyzing the pepsin-digested products by SDS-polyacrylamide gel electrophoresis. As observed with commercially available human type II atelocollagen, when treated with pepsin, the recombinant human type II collagen in the culture supernatant was detected as a polypeptide of 130kDa. These facts showed that recombinant human type II collagen that has a pepsin resistance substantially equivalent to that of the natural type collagen was contained in the culture supernatant obtained from the human type II collagen-producing cell clone. The same results were obtained by Western blot analysis (Fig. 11).

30 [Example 19] Test of human type III collagen production: transfer of human type III collagen gene using expression vector pNOW-hCollIia1 and establishment of primary G418-resistant clones.

35 [0056] One microgram of pNOW-hCollIia1 was transferred into 1.5 million CHO DG44 cells in a 25 cm^2 culture flask by the lipofectin method. The transfer method was carried out according to the manufacturer's instructions. After 48 hours, the cells were removed by trypsin treatment, and the number of cells was counted. Then, 3×10^3 cells were diluted with 100 mL of Iscove's Modified Dulbecco's Medium containing 0.8 mg/mL G418 and 10% dialyzed fetal bovine serum, and seeded in ten 96-well microtiter plates (960 wells), followed by culturing at 37°C under the presence of 5% carbon dioxide gas for three weeks. As a result, live cells were found only in 117 wells (G418 resistant). The live cells were transferred to 24 well plates with 1 mL of Iscove's Modified Dulbecco's Medium containing 0.8 mg/mL G418 and 10% dialyzed fetal bovine serum, and cultured until confluent. After culture supernatants were discarded, 1 mL of PBS (Invitrogen Inc.) was added to each well, and culture supernatants were discarded again. 0.5 mL of CHO-S-SFM II (Invitrogen Inc.), a serum-free medium for CHO cells, was added to each well and cultured at 37°C for 72 hours under the presence of 5% carbon dioxide gas. Subsequently, the amount of human type III collagen produced in the culture supernatants was examined.

45 [Example 20] Quantitative assay of the human type III collagen produced in pNOW-hCollIia1-transduced cell clones

50 [0057] The amount produced was assayed by a dot blotting method. A nylon membrane was dotted with 1 μL of 72-hour culture supernatant, 1 μL each of commercially available human type III collagen (Beckton, Dickinson and Company) 2x diluted (0.125 to 8 $\mu\text{g}/\text{mL}$) in a serum-free medium for CHO cells, CHO-S-SFM II, and 1 μL of CHO-S-SFM II alone; and was then air dried for one hour. After blocking with Block Ace, the membrane was reacted with 1 $\mu\text{g}/\text{mL}$ of an anti-human type III collagen antibody (Cosmo Bio Co., Ltd.) and then with an HRP-labeled anti-rabbit IgG antibody. Reacted antibodies were detected by a method of detecting HRP activity with the SuperSignal West Pico reagent using Lumino Capture.

55 [Example 21] Gene amplification in G418-resistant cell lines

[0058] Among G418-resistant cell lines, a cell clone that produced the largest amount of human type III collagen was

stabilized by passaging and culturing, and then gene amplification was carried out with MTX. Gene amplification was carried out first in a medium containing 15 nM MTX for two weeks, a medium containing 60 nM MTX for two weeks, a medium containing 250 nM MTX for two weeks, and a medium containing 1 μ M MTX for four weeks. As a result, the production level of human type III collagen was increased to 225 μ g/mL culture medium (three days).

5

[Example 22] SDS-PAGE analysis of recombinant human type III collagen in the culture supernatant

[0059] The cell clone massively producing human type III collagen obtained by gene amplification was adjusted to 1 $\times 10^6$ cells/mL in a 25 cm² culture flask by using the IS CHO-CD culture medium (IS Japan Co., Ltd.). After culturing at 37°C for 96 hours under the presence of 5% carbon dioxide gas, the culture fluid was collected and the cells were removed by centrifugation to obtain a culture supernatant. 6.0 μ L of the culture supernatant was mixed with an equal volume Tris-SDS β -ME sample treatment solution (Daiichi Pure Chemicals Co., Ltd.), and heat-treated at 95°C for 5 minutes. This mixture was loaded onto an SDS-polyacrylamide gel (PAGEL, ATTO Inc.) and fractionated by electrophoresis. The SDS-polyacrylamide gel electrophoresis described below was carried out in the same way. After the electrophoresis was finished, human type III collagen in the polyacrylamide gel was detected by treating the gel with Coomassie Brilliant Blue Staining Solution (Amersham Biosciences). 100 μ g/mL of human type III collagen (Beckton, Dickinson and Company) treated in the same way was used as a comparative control. Fig. 12 shows the result of SDS-PAGE analysis of the culture supernatant obtained from the human type III collagen-producing cell clone. 140- and 170-kDa polypeptides that may be recombinant human type III collagen were detected in the culture supernatant.

20

[Example 23] Western blot analysis of recombinant human type III collagen in the culture supernatant

[0060] The polyacrylamide gel after SDS-polyacrylamide gel electrophoresis was immersed in a transfer buffer, and then human type III collagen in the polyacrylamide gel was transferred to a PVDF membrane by a conventional method. After blocking with Block Ace, the membrane was reacted with 1 μ g/mL of an antibody against the human type III collagen chain (Cosmo Bio Co., Ltd.), and then with an anti-rabbit IgG antibody labeled with horseradish peroxidase (HRP). Reacted antibodies were detected by a method of detecting HRP activity using the TMB peroxidase reagent (Funakoshi Co.). 100 μ g/mL of human type III collagen (Beckton, Dickinson and Company) was used as a comparative control. 140- and 170-kDa polypeptides that may be recombinant human type III collagen which can be bound by an antibody against the human type III collagen chain were detected in the culture supernatant (Fig. 13).

[0061] As observed with commercially available human type III atelocollagen (Beckton, Dickinson and Company), when treated with pepsin, the recombinant human type III collagen in the supernatant was detected as a polypeptide at 130kDa. These facts showed that recombinant human type III collagen that has a pepsin resistance substantially equivalent to that of the natural type was contained in the culture supernatant obtained from the human type III collagen-producing cell clone.

[Example 24] Purification of human type I and type III collagens in the culture supernatants

[0062] Purification was carried out using 100 mL of the culture supernatant containing human type I or type III collagen in Example 12. A purified collagen solution obtained from the original 100 mL culture supernatant was concentrated to approximately 300 μ L and electrophoresed by SDS-PAGE to confirm its purity. (Fig. 14).

Industrial Applicability

[0063] The present invention can provide expression vectors and human collagen-producing cells that enable production of recombinant human collagen that has high quality and is closer to the natural type. The invention can also provide cells that produce triple-helix structure human collagen.

[0064] The production methods of the present invention can be applied not only to collagen but also to proteins that have a triple-helix structure, such as collectin.

[0065] Furthermore, the collagen production method of the present invention may be used to produce large quantities of triple-helix structural collagen with a novel molecular composition, which cannot be produced (or has not been discovered) in nature, by simultaneously expressing different types of α chains. Triple-helix structure collagen with a novel molecular composition may have properties that are different from those of known collagen, and is therefore expected to be applied as a new material.

55

SEQUENCE LISTING

[0066]

<110> FUSO PHARMACEUTICAL INDUSTRIES, LTD.
OSAKA PREFECTURAL GOVERNMENT

<120> PROCESS FOR PRODUCTION OF PROTEIN HAVING TRIPLE-HELICAL STRUCTURE

5

<130> EP54146HV121pau

<140> not yet assigned

<141> herewith

10

<150> PCT/JP2006/306941

<151> 2006-03-31 ,

<150> JP 2005-102999

15

<151> 2005-03-31

<160> 12

20

<170> PatentIn version 3.3

25

<210> 1

<211> 4395

<212> DNA

<213> Homo sapiens

30

<400> 1

35

40

45

50

55

5	atgttcagct ttgtggacct ccggctcctg ctcctttag cggccaccgc ctcctgacg	60
	cacggccaag aggaaggcca agtcgaggc caagacgaag acatcccacc aatcacctgc	120
	gtacagaacg gcctcaggtt ccatgaccga gacgtgttga aacccgagcc ctgccggatc	180
10	tgcgtctgcg acaacggcaa ggtgttgc gatgacgtga tctgtacga gaccaagaac	240
	tgccccggcg ccgaagtccc cgagggcgag tgctgtcccg tctgccccga cggctcagag	300
	tcacccaccg accaagaaac caccggcgtc gagggaccca agggagacac tggcccccga	360
	ggcccaaggg gacccgcagg ccccccgtgc cgagatggca tccctggaca gcctggactt	420
15	ccccagctgt cttatggcta tcatgagaaa tcaaccggag gaattccgt gcctggcccc	540
	atgggtccct ccggtcctcg tggtctccct ggccccctg gtgcacctgg tccccaaaggc	600
	ttccaaggc cccctggtga gcctggcgag cctggagctt caggtcccat gggtccccga	660
20	ggtcccccaag gtccccctgg aaagaatgga gatgatgggg aagctggaaa acctggtcgt	720
	cctggtgagc gtgggcctcc tgggcctcag ggtgcccggag gattgcccgg aacagctggc	780
	ctccctggaa tgaaggaca cagaggttc agtggtttgg atggtgccaa gggagatgct	840
25	ggtcctgctg gtcctaaggg tgagcctggc agccctggtg aaaatggagc tcctggtcag	900
	atgggcccccc gtggcctgccc tggtgagaga ggtcgccctg gagccctgg ccctgctgg	960
	gctcgtggaa atgatggtgc tactggtgct gcccggcccc ctggtccac cggcccccgt	1020
30	ggtcctcctg gcttccctgg tgctgttggt gctaagggtg aagctggtcc ccaaggcccc	1080
	cgaggctctg aagggtccca ggggtgtcgt ggtgagcctg gccccctgg ccctgctgg	1140
	gctgctggcc ctgctggaaa ccctggtgct gatggacagc ctggtgctaa aggtgccaat	1200
35	ggtgctcctg gtattgctgg tgctcctggc ttccctggtg cccgaggcccc ctctggaccc	1260

40

45

50

55

	cagggccccg	gcggccctcc	tggtcccaag	ggtaacagcg	gagaacctgg	tgctcctggc	1320
5	agcaaaggag	acactggtgc	taagggagag	cctggccctg	ttggtgttca	aggaccccct	1380
	ggccctgctg	gagaggaagg	aaagcgagga	gctcgaggtg	aacccggacc	cactggcctg	1440
	cccgacccc	ctggcgagcg	tggtggacct	ggtagccgtg	gttccctgg	cgcagatgg	1500
10	gttgctggtc	ccaagggtcc	cgctggtgaa	cgtggttctc	ctggccctgc	tggccccc	1560
	ggatctcctg	gtgaagctgg	tcgtcccggt	gaagctggtc	tgcctggtgc	caagggtctg	1620
	actggaagcc	ctggcagccc	tggtcctgat	ggcaaaaactg	gccccctgg	tcccgccggt	1680
15	caagatggtc	gccccggacc	cccaggccca	cctggtgccc	gtggtcaggc	tggtgtgatg	1740
	ggattccctg	gacctaaagg	tgctgctgga	gagcccgca	aggctggaga	gcgagggtgtt	1800
	cccgacccc	ctggcgctgt	cggtccctgct	ggcaaagatg	gagaggctgg	agctcaggga	1860
20	ccccctggcc	ctgctggtcc	cgctggcgag	agaggtgaac	aaggccctgc	tggctcccc	1920
	ggattccagg	gtctccctgg	tcctgctggt	cctccaggtg	aagcaggcaa	acctggtgaa	1980
	cagggtgttc	ctggagacct	tggcgccct	ggccctctg	gagcaagagg	cgagagaggt	2040
	ttccctggcg	agcgtggtgt	gcaagggtccc	cctggtcctg	ctggtcccc	aggggccaac	2100
25	ggtgctccc	gcaacgatgg	tgctaagggt	gatgctggtg	ccccctggagc	tcccggtagc	2160
	cagggcgccc	ctggccttca	ggaaatgcct	ggtgaacgtg	gtgcagctgg	tcttccaggg	2220
	cctaagggtg	acagaggtga	tgctggtccc	aaagggtctg	atggctctcc	tggcaaagat	2280
	ggcgtccgtg	gtctgaccgg	ccccatttgt	cctccctggcc	ctgctggtgc	ccctggtgac	2340
30	aagggtgaaa	gtggtcccag	cggccctgct	ggtcccactg	gagctcgtgg	tgccccgg	2400
	gaccgtggtg	agcctggtcc	ccccggccct	gctggctttg	ctggccccc	tggtgctgac	2460
	ggccaacctg	gtgctaaagg	cgaaccttgt	gatgctggtg	ctaaaggcga	tgctggtccc	2520
35	cctggccctg	ccggacccgc	tggacccct	ggcccccattg	gtaatgttgg	tgctcctgg	2580
	gccaagggtg	ctcgccggcag	cgctggtccc	cctggtgcta	ctggttccc	tggtgctgct	2640
	ggccgagtgc	gtcctcctgg	ccccctctgg	aatgctggac	ccccctggccc	tcctggtcct	2700
40	gctggcaaag	aaggcggcaa	aggtccccgt	ggtgagactg	gcccctgctgg	acgtcctgg	2760
	gaagttggtc	ccccctggtcc	ccctggccct	gctggcgaga	aaggatcccc	tggtgctgat	2820
	ggtcctgctg	gtgctcctgg	tactcccgg	cctcaaggta	ttgctggaca	gcgtggtgtg	2880
45	gtcggccctgc	ctggtcagag	aggagagaga	ggcttccctg	gtcttcctgg	ccccctctgg	2940
	gaacctggca	aacaagggtcc	ctctggagca	agtggtgaac	gtggtcccc	tggtccccatg	3000
	ggcccccctg	gattggctgg	accccctgg	gaatctggac	gtgagggggc	tcctggtgcc	3060
50	gaaggttccc	ctggacgaga	cggttctcc	ggccccaagg	gtgaccgtgg	ttagacccggc	3120
	cccgctggac	ccccctggtgc	tcctggtgct	cctggtgccc	ctggcccccgt	tggccctgct	3180
	ggcaagagtg	gtgatcgtgg	tgagactggt	cctgctggtc	ccgccgggtcc	tgtcggccct	3240
	gttggcgccc	gtggcccccgc	cggaccccaa	ggccccccgtg	gtgacaaggg	tgagacaggg	3300

gaacaggcg	acagaggcat	aaagggtcac	cgtggcttct	ctggcctcca	gggtccccct	3360	
ggccctcctg	gctctcctgg	tgaacaaggt	ccctctggag	cctctggtcc	tgctggtccc	3420	
5	cgaggtcccc	ctggctctgc	tggtgctcct	ggcaaagatg	gactcaacgg	tctccctggc	3480
cccattgggc	cccctggtcc	tcgcggtcgc	actggtgatg	ctggtccctgt	tggtcccccc	3540	
gcccctcctg	gacccctcctgg	tcccccctggt	cctcccagcg	ctggtttcga	cttcagctc	3600	
10	ctgccccagc	caccccaaga	gaaggctcac	gatggtggcc	gctactaccg	ggctgatgat	3660
gccaatgtgg	ttcgtgaccg	tgacccctcgag	gtggacacca	ccctcaagag	cctgagccag	3720	
15	cagatcgaga	acatccggag	cccagagggc	agccgcaaga	accccgcccc	cacccgtccgt	3780
gaccccaaga	tgtgccactc	tgactggaag	agtggagagt	actggattga	cccccaaccaa	3840	
20	ggctgcaacc	tggatgccat	caaagtcttc	tgcaacatgg	agactggtga	gacccgtccgt	3900
taccccaactc	agcccaagtgt	ggcccagaag	aactggtaca	tcagcaagaa	cccccaaggac	3960	
25	aagaggcatg	tctggttcgg	cgagagcatg	accgatggat	tccagttcga	gtatggccgc	4020
cagggctccg	accctgccga	tgtggccatc	cagctgacct	tcctgcgcct	gatgtccacc	4080	
gaggcctccc	agaacatcac	ctaccactgc	aagaacagcg	tggcttacat	ggaccagcag	4140	
30	actggcaacc	tcaagaaggc	cctgctcctc	cagggctcca	acgagatcga	gatccgcgcc	4200
gagggcaaca	gccgcttcac	ctacagcgtc	actgtcgatg	gctgcacgag	tcacaccgga	4260	
gcctggggca	agacagtgtat	tgaataaaaa	accaccaaga	cctccgcct	gcccatcatc	4320	
35	gtatgtggccc	ccttggacgt	tggtgccccca	gaccaggaat	tcggcttcga	cgttggccct	4380
gtctgcttcc	tgtaa						4395

35	<210> 2						
	<211> 35						
	<212> DNA						
	<213> Artificial						
40	<220>						
	<223> An artificially synthesized primer sequence						
	<400> 2						
	gcggccgcca ccatgttcag ctttgtggac ctccg	35					
45	<210> 3						
	<211> 30						
	<212> DNA						
	<213> Artificial						
50	<220>						
	<223> An artificially synthesized primer sequence						
	<400> 3						
55	ttctagattt caggaaggcag acaggccaa	30					
	<210> 4						
	<211> 4101						
	<212> DNA						

EP 1 870 460 B9

<213> Homo sapiens

<400> 4

5

10

15

20

25

30

35

40

45

50

55

	atgctcagct ttgtggatac gcggactttg ttgctgcttg cagtaacctt atgcctagca	60
5	acatgccaat ctttacaaga ggaaactgta agaaagggcc cagccggaga tagaggacca	120
	cgtggagaaa ggggtccacc aggccccca ggcagagatg gtgaagatgg tcccacaggc	180
	cctcctggtc cacctggtcc tcctggcccc cctggtctcg gtggaaactt tgctgctcag	240
10	tatgatggaa aaggagttgg acttggccct ggaccaatgg gcttaatggg acctagaggc	300
	ccacacctggc cagctggagc cccaggccct caaggttcc aaggacctgc tggtgagcct	360
	ggtgaacctg gtcaaactgg tcctgcaggt gctcgtggc cagctggccc tcctggcaag	420
15	gctggtaag atggtcaccc tggaaaaccc ggacgacctg gtgagagagg agttgttgg	480
	ccacagggtg ctcgtggtt ccctggaaact cctggacttc ctggcttcaa aggcattagg	540
	ggacacacaatg gtctggatgg actgaaggga cagcccgtg ctccctgtgt gaagggtgaa	600
20	cctggtgccc ctggtgaaaa tggaaactcca ggtcaaacag gagccctgtt gcttcctggc	660
	gagagaggac gtgttggtgc ccctggccca gctggtgccc gtggcagtga tggaaagtgtg	720
	ggtcccgtgg gtcctgctgg tcccattggg tctgctggcc ctccaggcctt cccaggtgcc	780
25	cctggccccc agggtgaaat tggagctgtt ggtaacgctg gtccctgctgg tcccggcgt	840
	ccccgtggc aagtgggtct tccaggccctc tccggccccc ttggacactcc tggtaatcct	900
	ggagcaaacg gccttactgg tgccaaagggt gctgctggcc ttcccggcgt tgctgggct	960
30	cccgccctcc ctggaccccg cggtattcct ggccctgttg gtctggccgg tgctactgg	1020
	gccagaggac ttgttggtga gcctggtcca gctggctcca aaggagagag cggtaaacaag	1080
	ggtgagcccg gctctgctgg gccccaaagggt cctccctgtc ccagtggta agaaggaaag	1140
35	agaggcccta atgggaaagc tggatctgcc ggccctccag gaccccttgg gctgagaggt	1200
	agtcctggtt ctcgtggcct tcctggagct gatggcagag ctggcgtcat gggccctcct	1260
	ggtagtcgtg gtgcaagtgg ccctgctgg a tccggaggac ctaatggaga tgctggcgc	1320
40	cctggggagc ctggtctcat gggacccaga ggtcttccctg gttcccttgg aaatatcgcc	1380
	cccgctggaa aagaaggc tgcggccctc cctggcatcg acggcaggcc tggcccaatt	1440
	ggcccccgtg gagcaagagg agagccctggc aacattggat tccctggacc caaaggcccc	1500
45	actgggtgatc ctggaaaaa cggtataaa ggtcatgtg gtcttgcgg tgctcggggt	1560
	gctccaggc tcgtatggaaa caatgggtct cagggaccc tcggaccaca gggtgttcaa	1620
	ggtgaaaaag gtgaacaggg tcccctgtgt cctccaggct tccagggtct gcctggccccc	1680
50	tcaggccc ctggtgaagt tggcaaaccg ggagaaaggg gcctccatgg tgatgggggt	1740
	ctccctggtc ctgctggtcc aagaggggaa cgcggccccc caggtggagag tgggtctgccc	1800
	ggtcctactg gtcctattgg aagccgagggt cttctggac ccccaaggccc tgatggaaac	1860
55	aagggtgaac ctgggtgtgt tgggtctgtg ggcactgctg gtccatctgg tcctagtgga	1920
	ctcccaaggag agaggggtgc tgctggcata cctggaggca agggagaaaa gggtaacact	1980
	ggtctcagag gtgaaaattgg taaccctggc agagatggt gtcgtggtgc ccctggtct	2040
	gttaggtgccc ctggtcttc tggagccaca ggtgaccggg gcgaagctgg ggctgctgg	2100

	cctgctggtc ctgctggtcc tcgggaaagc cctggtaac gtggtaggt cggtcctgct	2160
5	ggccccaaatg gatttgctgg tcctgctggt gctgctggtc aacctggtgc taaaggagaa	2220
	agaggagcca aagggcctaa gggtgaaaac ggtgttgtg gtcccacagg ccccggttggaa	2280
	gctgctggcc cagctggtcc aaatggtccc cccggtcctg ctggaaagtgc tggtgatgga	2340
10	ggccccctg gtatgactgg ttccctggt gctgctggac ggaccggtcc cccaggaccc	2400
	tctggtattt ctggccctcc tggccccctt ggtccctgctg ggaaagaagg gcttcgtgg	2460
	cctcgtggtg accaagggtcc agttggccga actggagaag taggtgcagt tggtccccct	2520
15	ggcttcgctg gtgagaaggg tccctctgga gaggctggta ctgctggacc tcctggcact	2580
	ccaggtcctc agggtcttct tggtgctcct ggtattctgg gtctccctgg ctcgagaggt	2640
	gaacgtggtc taccagggtgt tgctgggtct gtgggtgaac ctggcctct tggcattgcc	2700
	ggccctcctg gggcccggtgg tcctcctggt gctgtgggta gtcctggagt caacggtgct	2760
20	cctggtaag ctggtcgtga tggcaaccct gggAACGATG gtccccagg tcgcgatgg	2820
	caacccggac acaagggaga gcgcggttac cctggcaata ttggtcccgt tggtgctgca	2880
	ggtgcacctg gtcctcatgg ccccggtggt cctgctggca aacatggaaa ccgtggtaa	2940
25	actggccct ctggccctgt tggtccctgt ggtgtgttgc gcccaagagg tcctagtgcc	3000
	ccacaaggca ttctggcga taaggagag cccggtaaaa agggggccag aggtcttcct	3060
	ggcttaaagg gacacaatgg attgcaaggt ctgcctggta tcgctggta ccatggtgat	3120
30	caaggtgctc ctggctccgt gggtccctgt ggtccctagg gcccctgctgg tccttctggc	3180
	cctgctggaa aagatggtcg cactggacat cctggacag ttggacctgc tggcattcga	3240
	ggccctcagg gccaccaagg ccctgctggc cccctggtc cccctggccc tcctggacct	3300
35	ccaggtgtaa gcgggtggg ttatgacttt gtttacgtg gagacttcta cagggtgtac	3360
	cagcctcgct cagcaccccttc tctcagaccc aaggactatg aagttgtatgc tactctgaag	3420
	tctctcaaca accagattga gacccttctt actcctgaag gctctagaaa gaacccagct	3480
40	cgcacatgcc gtgacttgag actcagccac ccagagtggc gcagtggta ctactggatt	3540
	gaccctaacc aaggatgcac tatggatgct atcaaagtat actgtgattt ctctactggc	3600
	gaaacctgta tccgggcccacacctgaaaac atcccagccaa agaactggta taggagctcc	3660
45	aaggacaaga aacacgtctg gctaggagaa actatcaatg ctggcagccaa gtttgaat	3720
	aatgtagaag gagtgacttc caaggaaatg gctacccaaat ttgccttcat ggcctgtcg	3780
	gccaactatg cctctcagaa catcacctac cactgcaaga acagcattgc atacatggat	3840
50	gaggagactg gcaacctgaa aaaggctgtc attctacagg gctctaattgt tggtgaactt	3900
	gttgctgagg gcaacagcag gttcacttac actgttcttg tagatggctg ctctaaaaag	3960
	acaaaatgaat gggaaaagac aatcattgaa tacaaaacaa ataagccatc acgcctgccc	4020
55	ttcccttgata ttgcacccctt ggacatcggt ggtgtgacc aggaattctt tgtggacatt	4080
	ggcccgagtct gttcaaaata a	4101

5
<210> 5
<211> 37
<212> DNA
<213> Artificial

10
<220>
<223> An artificially synthesized primer sequence

15
<400> 5
gcggccgcca ccatgctcag ctttgtggat acgcgga 37

20
<210> 6
<211> 30
<212> DNA
<213> Artificial
<220>
<223> An artificially synthesized primer sequence

25
<400> 6
actagtttat ttgaaacaga ctgggcaat 30

30
<210> 7
<211> 4257
<212> DNA
<213> Homo sapiens

<400> 7

35

40

45

50

55

atgattcgcc	tcggtgctcc	ccagtcgctg	gtgctgctga	cgctgctcgt	cgccgctgtc	60
cttcgggtgc	agggccagga	tgtccggcaa	ccaggaccaa	agggacagaa	aggagaacct	120
5	ggagacatca	aggatattgt	aggacccaaa	ggacccctcg	ggcctcaggg	180
gaacaaggac	ccagagggga	tcgtggtgac	aaaggtgaaa	aaggtgccc	tggacctcgt	240
ggcagagatg	gagaacctgg	gacccctgga	aatcctggcc	cccccgttcc	tcccgcccc	300
10	cctggtcccc	ctgggtttgg	tggaaacttt	gctgcccaga	tggctggagg	360
aaggctggtg	gcgcaggat	gggagtaatg	caaggaccaa	tgggccccat	gggacctcga	420
15	ggacccctcag	gccctgcagg	tgctccctgg	cctcaaggat	ttcaaggcaa	480
cctggtaac	ctgggtgtctc	tggtcccatg	ggtccccgtg	gtcctcctgg	tccccctgga	540
aagcctggtg	atgatggtga	agctgaaaaa	cctggaaaaag	ctggtggaaag	gggtccgcct	600
20	ggtcctcagg	gtgctcgtgg	tttcccagga	accccaggcc	ttcctggtgt	660
agaggttatac	caggcctgga	cggtgctaag	ggagaggcgg	gtgctcctgg	tgtgaagggt	720
gagagtggtt	ccccgggtga	gaacggatct	ccggggccaa	tgggtcctcg	tggcctgcct	780
25	ggtgaaagag	gacggactgg	ccctgctggc	gctgcgggtg	cccgaggcaa	840
ccaggccccg	cagggcctcc	gggtcctgtc	ggtcctgctg	gtggcctgg	cttccctgg	900
gctcctggag	ccaagggtga	agccggcccc	actggtgccc	gtggcctga	aggtgctcaa	960
ggtcctcgcg	gtgaacctgg	tactcctgg	tcccctgggc	ctgctggtg	ctccggtaac	1020
30	cctggaaacag	atgaaattcc	tggagccaaa	ggatctgctg	gtgctcctgg	1080
gctcctggct	tccctgggccc	acggggccct	cctggccctc	aaggtaac	tggtcctctg	1140

35

40

45

50

55

	ggccccaaaag gtcagacggg tgaacctgggt attgctggct tcaaagggtga acaaggcccc	1200
	aagggagaac ctggccctgc tggcccccaag ggagccctg gacccgctgg tgaagaaggc	1260
5	aagagaggtg cccgtggaga gcctggtgcc gttgggccc a tcggtcccc tggagaaaga	1320
	ggtgctcccg gcaaccgcgg tttccaggt caagatggtc tggcaggtcc caagggagcc	1380
	cctggagagc gagggcccaag tggtcttgct ggccccaaagg gagccaacgg tgaccctggc	1440
10	cgtccctggag aacctggcct tcctggagcc cggggctca ctggccgccc tggtgatgct	1500
	ggtccctcaag gcaaagttgg cccttctgga gcccctggta aagatggtcg tcctggacct	1560
	ccaggtcctc agggggctcg tggcagcct ggtgtcatgg gttccctgg ccccaaaggt	1620
15	gccaacggtg agcctggcaa agctggtgag aagggaactgc ctggtgctcc tggtctgagg	1680
	ggtcttcctg gcaaagatgg tgagacaggt gtcgcaggac cccctggccc tgctggacct	1740
	gctggtaac gaggcgagca gggtgctcct gggccatctg gttccaggg acttcctggc	1800
20	cctcctggtc ccccaaggta aggtggaaaa ccaggtgacc aggtgttcc cggtaagct	1860
	ggagccctg gcctcgtggg tcccagggtt gaacgaggtt tcccaaggta acgtggctct	1920
	cccggtgccc agggcctcca gggtcccggt ggcctcccg gcactcctgg cactgatggt	1980
25	cccaaaggta catctggccc agcaggcccc cctggggctc agggccctcc aggtcttcag	2040
	ggaatgcctg gcgagagggg agcagctggt atcgctggc ccaaaggta caggggtgac	2100
	gttggtgaga aaggccctga gggagccct ggaaaggatg gtggacgagg cctgacaggt	2160
	cccatggcc cccctggccc agctggtgct aacggcgaga agggagaagt tggacccct	2220
30	ggtcctgcag gaagtgctgg tgctcgtggc gctccgggtg aacgtggaga gactggccc	2280
	cccgaccag cgggatttgc tgggcctcct ggtgctgatg gccagcctgg gccaagggt	2340
	gagcaaggag aggccggcca gaaaggcgat gctggtggccc ctggcctca gggccctct	2400
35	ggagcacctg ggcctcaggg tcctactgga gtgactggtc ctaaaggagc cggaggtgcc	2460
	caaggcccc cgggagccac tggattccct ggagctgctg gccgcgttgg acccccaggc	2520
	tccaatggca accctggacc ccctggtccc cctggtcctt ctggaaaaga tggtccaaa	2580
40	ggtgctcgag gagacagcg ccccccggc cgagctggtg aaccggcct ccaaggctct	2640
	gctggacccc ctggcgagaa gggagagcct ggagatgacg gtccctctgg tgccgaaggt	2700
	ccaccaggta cccagggtct ggctggtcag agaggcatcg tcggtctgcc tggcaacgt	2760
45	ggtgagagag gattccctgg cttgcctggc ccgtcgggtg agcccgaa gcaagggtgt	2820
	cctggagcat ctggagacag aggtcctcct ggcccccgtgg gtccctctgg cctgacgggt	2880
	cctgcaggta aacctggacg agagggaagc cccggtgctg atggccccc tggcagagat	2940
50	ggcgctgctg gagtcaaggg tgatcgtggt gagactggtg ctgtggagc tcctggagcc	3000
	cctggccccc ctggctcccc tggcccgct ggtccaactg gcaagcaagg agacagagga	3060
	gaagctggtg cacaaggccc catgggaccc tcaggaccag ctggagcccg gggaaatccag	3120
55	ggtcctcaag gccccagagg tgacaaagga gaggctggag agcctggcga gagaggcctg	3180
	aagggacacc gtggcttcac tggtctgcag ggtctgcccc gccctccctgg tccttctgga	3240

5	gaccaagggtg cttctggtcc tgctggtcct tctggcccta gaggcctcc tggccccgtc	3300
	ggtccctctg gcaaagatgg tgctaattggaa atccctggcc ccattggcc tcctggtccc	3360
10	cgtggacgat caggcgaaac cggccctgct ggtcctcctg gaaatctgg accccctggt	3420
	cctccagggtc cccctggccc tggcatcgac atgtccgcct ttgctggctt aggcccgaga	3480
	gagaaggggcc ccgacccct gcagttacatg cgggcccggacc aggccgg tggcctgaga	3540
15	cagcatgacg ccgagggtgga tgccacactc aagtccctca acaaccagat tgagagcatc	3600
	cgcagccccg agggctcccg caagaaccct gctcgacact gcagagacct gaaactctgc	3660
	caccctgagt ggaagagtgg agactactgg attgacccca accaaggctg caccttggac	3720
20	gccatgaagg ttttctgcaa catggagact ggcgagactt gcgtctaccc caatccagca	3780
	aacgttccca agaagaactg gtggagcagc aagagcaagg agaagaaaca catctggttt	3840
	ggagaaacca tcaatggtgg cttccatttc agctatggag atgacaatct ggctcccaac	3900
25	actgccaacg tccagatgac cttcctacgc ctgctgtcca cggaggctc ccagaacatc	3960
	accttaccact gcaagaacag cattgcctat ctggacgaag cagctggcaa cctcaagaag	4020
	gccctgctca tccaggggctc caatgacgtg gagatccggg cagagggcaa tagcagggtc	4080
	acgtacactg ccctgaagga tggctgcacg aaacataccg gtaagtgggg caagactgtt	4140
	atcgagtacc ggtcacagaa gacctcacgc ctccccatca ttgacattgc acccatggac	4200
	ataggagggc ccgagcagga attcggtgtg gacatagggc cggctgctt cttgtaa	4257
30	<210> 8	
	<211> 29	
	<212> DNA	
	<213> Artificial	
35	<220>	
	<223> An artificially synthesized primer sequence	
40	<400> 8	
	ggcccccggc tgagccatga ttgcctcg	29
	<210> 9	
	<211> 30	
	<212> DNA	
45	<213> Artificial	
	<220>	
	<223> An artificially synthesized primer sequence	
50	<400> 9	
	tctagattac aagaagcaga ccggccat	30
	<210> 10	
	<211> 4401	
55	<212> DNA	
	<213> Homo sapiens	
	<400> 10	

atgatgagct ttgtgcaaaa ggggagctgg ctacttctcg ctctgcttca tcccactatt 60
attttggcac aacaggaagc tggtgaagga ggatgttccc atcttggtca gtcctatgcg 120

5

10

15

20

25

30

35

40

45

50

55

5	gatagagatg tctggaagcc agaaccatgc caaatatgtg tctgtactc aggatccgtt	180
	ctctgcgtg acataatatg tgacgatcaa gaattagact gccccaaaccc agaaattcca	240
10	tttggagaat gttgtcagt ttgcccacag cctccaactg ctcctactcg ccctcctaatt	300
	ggtcaaggac ctcaaggccc caagggagat ccaggccctc ctggtattcc tgggagaaat	360
	ggtgaccctg gtattccagg acaaccaggg tcccctggtt ctccctggccc ccctggaatc	420
15	tgtgaatcat gccctactgg tcctcagaac tattctcccc agtatgattc atatgatgtc	480
	aagtctggag tagcagtagg aggactcgca ggctatcctg gaccagctgg ccccccaggc	540
	cctcccggtc cccctggtaat ctctggcat cctgggtccc ctggatctcc aggataccaa	600
20	ggacccccctg gtgaacctgg gcaagctggt ccttcaggcc ctccaggacc tcctggtgct	660
	ataggtccat ctggcctgc tggaaaagat ggagaatca gtagacccgg acgacctgg	720
	gagcgaggat tgccctggacc tccaggtatc aaaggtccag ctgggataacc tggattccct	780
25	ggatgaaag gacacagagg cttcgatgga cggaaatggag aaaagggtga aacaggtgct	840
	cctggattaa agggtgaaaa tggtcttcca ggcgaaaatg gagctcctgg acccatgggt	900
	ccaagagggg ctcctggtaa gcgaggacgg ccaggacttc ctggggctgc aggtgctcgg	960
30	ggtaatgacg gtgctcgagg cagtgtatggt caaccaggcc ctcctggtcc tcctggaaact	1020
	gccggattcc ctggatcccc tggtgccaaat ggtgaagttt gacctgcagg gtctcctgg	1080
	tcaaattggtg cccctggaca aagaggagaa cctggacctc agggacacgc tggtgctcaa	1140
35	ggtcctcctg gccctcctgg gattaatggt agtcctggtg gtaaaggcga aatgggtccc	1200
	gctggcattc ctggagctcc tggactgtatgggg gtcctccagg accagccgg	1260
	gctaatggtg ctccctggact gcgagggtggt gcaggtgagc ctggtaagaa tggtgccaaa	1320
40	ggagagcccg gaccacgtgg tgaacgcggg gaggctggca ttccaggtgt tccaggagct	1380
	aaaggcgaag atggcaagga tggatcacct ggagaacctg gtgcaaattgg gcttccagga	1440
	gctgcaggag aaaggggtgc ccctgggttc cgaggacctg ctggacccaaa tggcatccca	1500
45	ggagaaaagg gtcctgctgg agagcgtggt gctccaggcc ctgcaggggcc cagaggagct	1560
	gctggagaac ctggcagaga tggcgtccct ggaggtccag gaatgagggg catgcccggaa	1620
	agtccaggag gaccaggaag tggatggaaa ccagggccctc ccggaaagtca aggagaaagt	1680
50	ggtcgaccag gtcctcctgg gccatctggt ccccgaggcc agcctgggtgt catgggcttc	1740
	cccgcccta aaggaaatga tggtgctcctt ggtaaatggt gagaacgagg tggccctgg	1800
	ggacctggcc ctcagggtcc tcctggaaatg aatggtgaaa ctggacctca gggaccccca	1860
	gggcctactg ggcctgggtgg tgacaaagga gacacaggac cccctggtcc acaaggattaa	1920
55	caaggcttc ctggtacagg tggccttcca ggagaaaatg gaaaacctgg ggaaccaggat	1980
	ccaaagggtg atgcccgggtc acctggagct ccaggaggca agggtgatgc tggtgccct	2040
	ggtgaacgtg gaccccttgg attggcaggg gccccaggac ttagaggtgg agctggtccc	2100
	cctggtcccg aaggagggaaa ggggtgctgt ggtcctcctg ggccacctgg tgctgctgg	2160

	actcctggtc tgcaaggaat gcctggagaa agaggaggc ttggaagtcc tggtccaaag	2220
5	ggtgacaagg gtgaaccagg cggtccagg gctgatggtg tcccaggaa agacggccca	2280
	aggggtccta ctggtcctat tggtcctcct ggcccagctg gccagcctgg agataagggt	2340
	gaaggtggtg cccccggact tccaggtata gctggacctc gtggtagccc tggtgagaga	2400
10	ggtgaaaactg gccctccagg acctgctggt ttccctggtg ctccctggaca gaatggtgaa	2460
	cctggtggt aaggagaaag aggggctccg ggtgagaaag gtgaaggagg ccctcctgga	2520
	gttgcaggac cccctggagg ttctggacct gctggtcctc ctggtccccca aggtgtcaaa	2580
15	ggtgAACGTG gcagtcctgg tggacctgg gctgctggct tccctggtc tcgtggctt	2640
	cctggtcctc ctggtagtaa tggtaaccca ggaccccccag gtcccagcgg ttctccaggc	2700
	aaggatggc ccccaggtcc tgccggtaac actggtgctc ctggcagccc tggagtgtct	2760
20	ggacccaaag gtgatgctgg ccaaccagga gagaagggat cgccctggtc ccagggccca	2820
	ccagggagctc caggcccact tgggattgct gggatcaact gacacggggg tcttgcagga	2880
	ccaccaggca tgccaggtcc taggggaagc cctggccccc agggtgtcaa gggtgaaagt	2940
	gggaaaccag gagctaacgg tctcagtggaa gaacgtggc cccctggacc ccagggtctt	3000
25	cctggtctgg ctggtacagc tggtaacct ggaagagatg gaaaccctgg atcagatgg	3060
	cttccaggc gagatggatc tcctggtgcc aagggtgatc gtggtaaaaa tggctctcct	3120
	gggtggccctg gcgctcctgg tcatccggc ccacctggc ctgtcggtcc agctggaaag	3180
	agtggtgaca gaggagaaag tggccctgct ggcctgctg gtgctccgg tcctgctggt	3240
30	tcccgggtg ctccctggcc tcaaggccc cgtggtgaca aagggtgaaac aggtgaacgt	3300
	ggagctgctg gcatcaaagg acatcgagga ttccctggta atccaggtgc cccaggttct	3360
	ccaggcccctg ctggtcagca ggggtcaatc ggcagttccag gacctgcagg ccccagagga	3420
35	cctgttggac ccagtggacc tcctggcaaa gatggacca gtggacatcc aggtcccatt	3480
	ggaccaccag ggcctcgagg taacagaggt gaaagaggat ctgagggtcc cccaggccac	3540
	ccagggcaac caggccctcc tggacctcct ggtgcccctg gtccttgctg tgggggtt	3600
40	ggagccgctg ccattgctgg gattggaggt gaaaaagctg gcggtttgc cccgtattat	3660
	ggagatgaac caatggattt caaaatcaac accgtgaga ttatgacttc actcaagtct	3720
	gttaatggac aaatagaaaag cctcattagt cctgatggtt ctcgtaaaaa ccccgctaga	3780
45	aactgcagag acctgaaatt ctgccccatcct gaactcaaga gtggagaata ctgggttgac	3840
	cctaaccaag gatgcaaatt ggatgctatc aaggtattct gtaatatggaa aactggggaa	3900
	acatgcataa gtgccaatcc tttgaatgtt ccacggaaac actgggtggac agattctgt	3960
50	gctgagaaga aacacgtttt gtttggagag tccatggatg gtggtttca gtttagctac	4020
	ggcaatcctg aacttcctga agatgtcctt gatgtgcagc tggcattcct tcgacttctc	4080
	tccagccgag cttcccagaa catcacat cactgcaaaa atagcattgc atacatggat	4140
	caggccagtg gaaatgtaaa gaaggccctg aagctgatgg ggtcaaattga aggtgaattc	4200
55	aaggctgaag gaaatagcaa attcacctac acagttctgg aggtgggtt cacgaaacac	4260

actggggaat ggagcaaaac agtcttgaa tatcgaacac gcaaggctgt gagactacct	4320
attgtagata ttgcacccta tgacatttgtt ggtcctgatc aagaatttgg tgtggacgtt	4380
5 ggcctgttt gcttttata a	4401

10 <210> 11

<211> 37

<212> DNA

<213> Artificial

15 <220>

<223> An artificially synthesized primer sequence

20 <400> 11

gcggccgcca ccatgtgag ctttgtcaa aaggggaa 37

<210> 12

<211> 30

<212> DNA

<213> Artificial

25 <220>

<223> An artificially synthesized primer sequence

<400> 12

tctagattt aaaaagcaaa cagggccaaac 30

30 Claims

1. A method of producing a protein having a triple-helix structure, wherein the method comprises:

35 (a) introducing DNA encoding a protein having a triple-helix structure into a vector;
 (b) transforming a Chinese hamster ovary (CHO) cell by transfer of the gene vector; and
 (c) culturing or breeding the transformant, and collecting the protein having a triple helix structure from the cell or culture supernatant thereof,

40 wherein the protein having a triple-helix structure is human type I collagen or a partial peptide thereof.

2. The method of claim 1, wherein the human type I collagen is a complex of $\alpha 1$ and $\alpha 2$ chains.

3. The method of claim 1, wherein the DNA encoding a protein having a triple helix structure is at least a DNA selected 45 from:

(a) a DNA comprising the nucleotide sequence of SEQ ID NO: 1 or 4; and
 (b) a DNA hybridizing under stringent conditions with a DNA comprising the nucleotide sequence of SEQ ID NO: 1 or 4.

50 4. The method of any one of claims 1 to 3, wherein the vector to be introduced with the DNA encoding a protein having a triple helix structure is pNOW/CMV-AA.

55 Patentansprüche

1. Verfahren zur Herstellung eines Proteins mit einer Triple-Helix-Struktur, wobei das Verfahren umfasst:

- 5 (a) Einbringen einer DNA, welche ein Protein mit einer Triple-Helix-Struktur kodiert, in einen Vektor;
(b) Transformieren einer CHO (Chinese hamster ovary)-Zelle mittels Transfer des Genvektors; und
(c) Kultivieren oder Züchten der Transformante, und Sammeln des Proteins mit einer Triple-Helix-Struktur aus der Zelle oder dem Kulturüberstand davon,

wobei das Protein mit einer Triple-Helix-Struktur menschliches Typ I-Kollagen oder ein Teilpeptid davon ist.

2. Verfahren nach Anspruch 1, wobei das menschliche Typ I-Kollagen ein Komplex aus $\alpha 1$ - und $\alpha 2$ -Ketten ist.

10 3. Verfahren nach Anspruch 1, wobei die DNA, welche ein Protein mit einer Triple-Helix-Struktur kodiert, mindestens eine DNA ist, welche ausgewählt ist aus:

- 15 (a) einer DNA umfassend die Nukleotidsequenz von SEQ ID Nr: 1 oder 4; und
(b) einer DNA, welche unter stringenten Bedingungen mit einer DNA umfassend die Nukleotidsequenz von SEQ ID Nr: 1 oder 4 hybridisiert.

20 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Vektor, in welchen die DNA, welche für ein Protein mit einer Triple-Helix-Struktur kodiert, einzubringen ist, pNOW/CMV-AA ist.

Revendications

1. Procédé de production d'une protéine possédant une structure à triple hélice, le procédé comprenant :

- 25 (a) l'introduction d'ADN codant une protéine possédant une structure à triple hélice dans un vecteur ;
(b) la transformation d'une cellule ovarienne de hamster chinois (OHC) par transfert du vecteur génique ; et
(c) culture ou élevage du transformant et collecte de la protéine possédant une structure à triple hélice à partir de la cellule ou du surnageant de culture de celle-ci,

30 dans lequel la protéine possédant une structure à triple hélice est du collagène de type 1 humain ou un peptide partiel de celui-ci.

2. Procédé selon la revendication 1, dans lequel le collagène de type 1 humain est un complexe de chaînes $\alpha 1$ et $\alpha 2$.

35 3. Procédé selon la revendication 1, dans lequel l'ADN codant une protéine possédant une structure à triple hélice est au moins un ADN choisi à partir :

- 40 (a) d'un ADN comprenant la séquence de nucléotides de SEQ ID NO : 1 ou 4 ; et
(b) un ADN hybridant dans des conditions strictes avec un ADN comprenant la séquence de nucléotides de SEQ ID NO : 1 ou 4.

45 4. Procédé selon l'une des revendications 1 à 3, dans lequel le vecteur à introduire avec l'ADN codant une protéine possédant une structure à triple hélice est pNOW/CMV-AA.

50

55

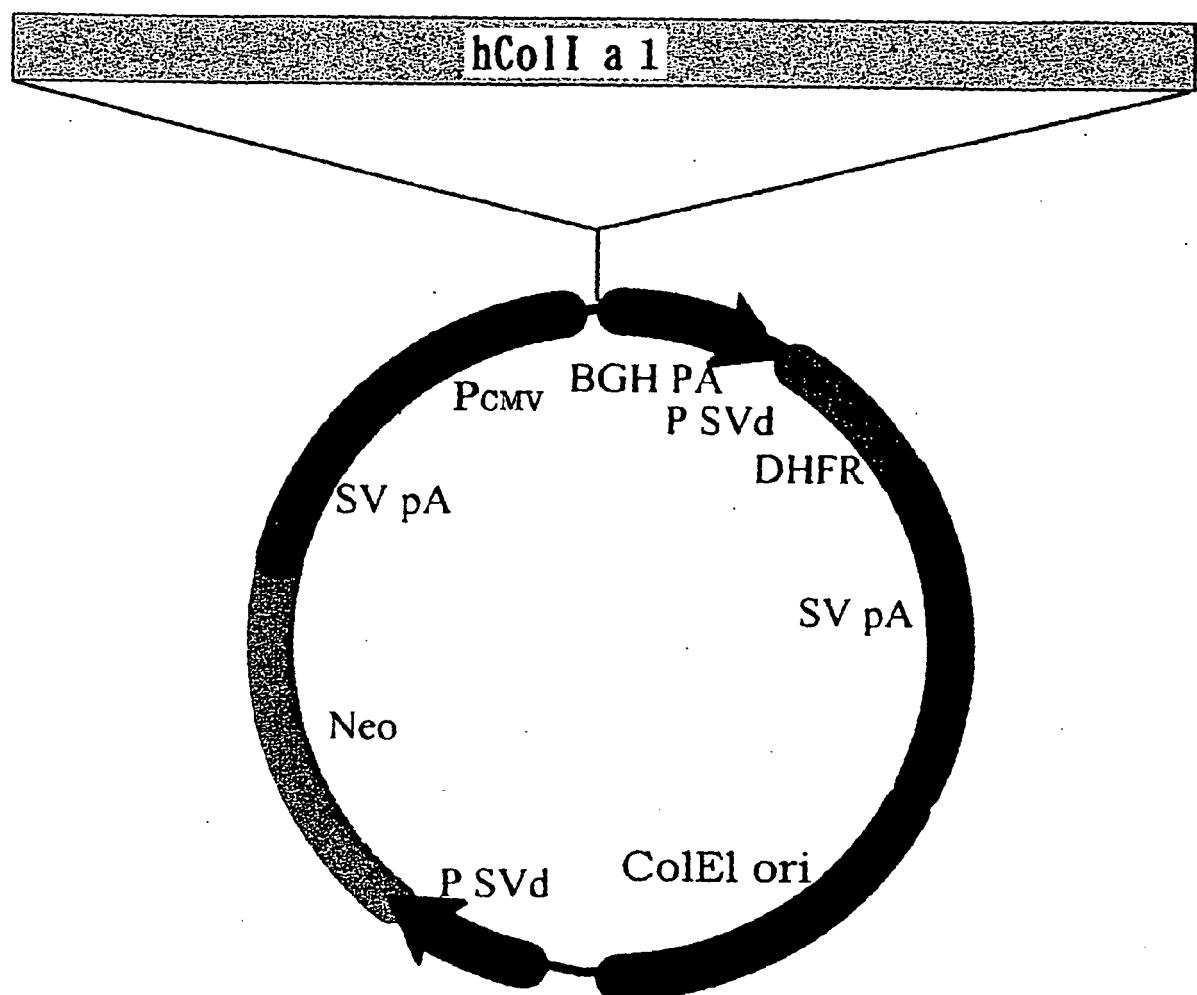


FIG. 1

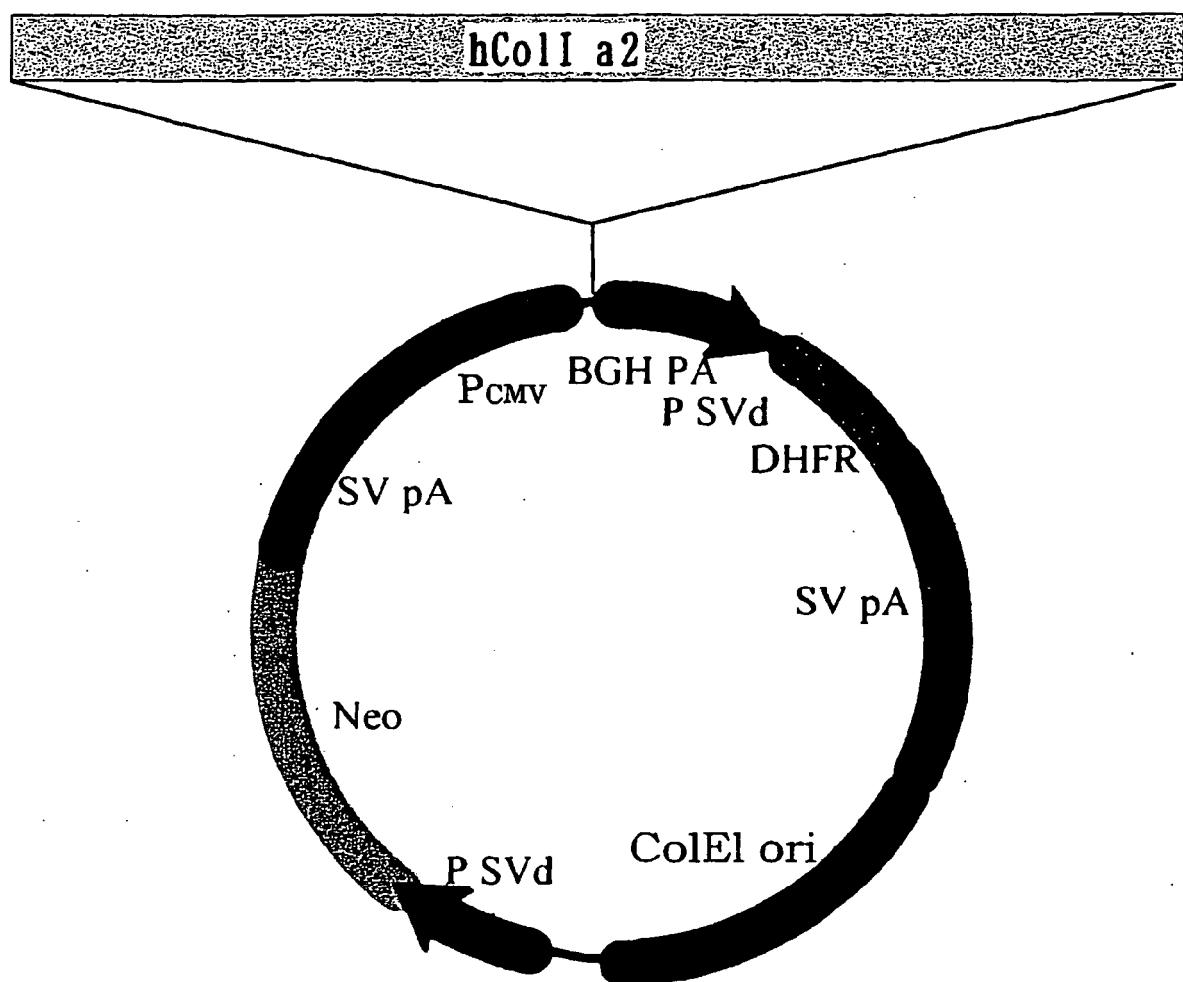
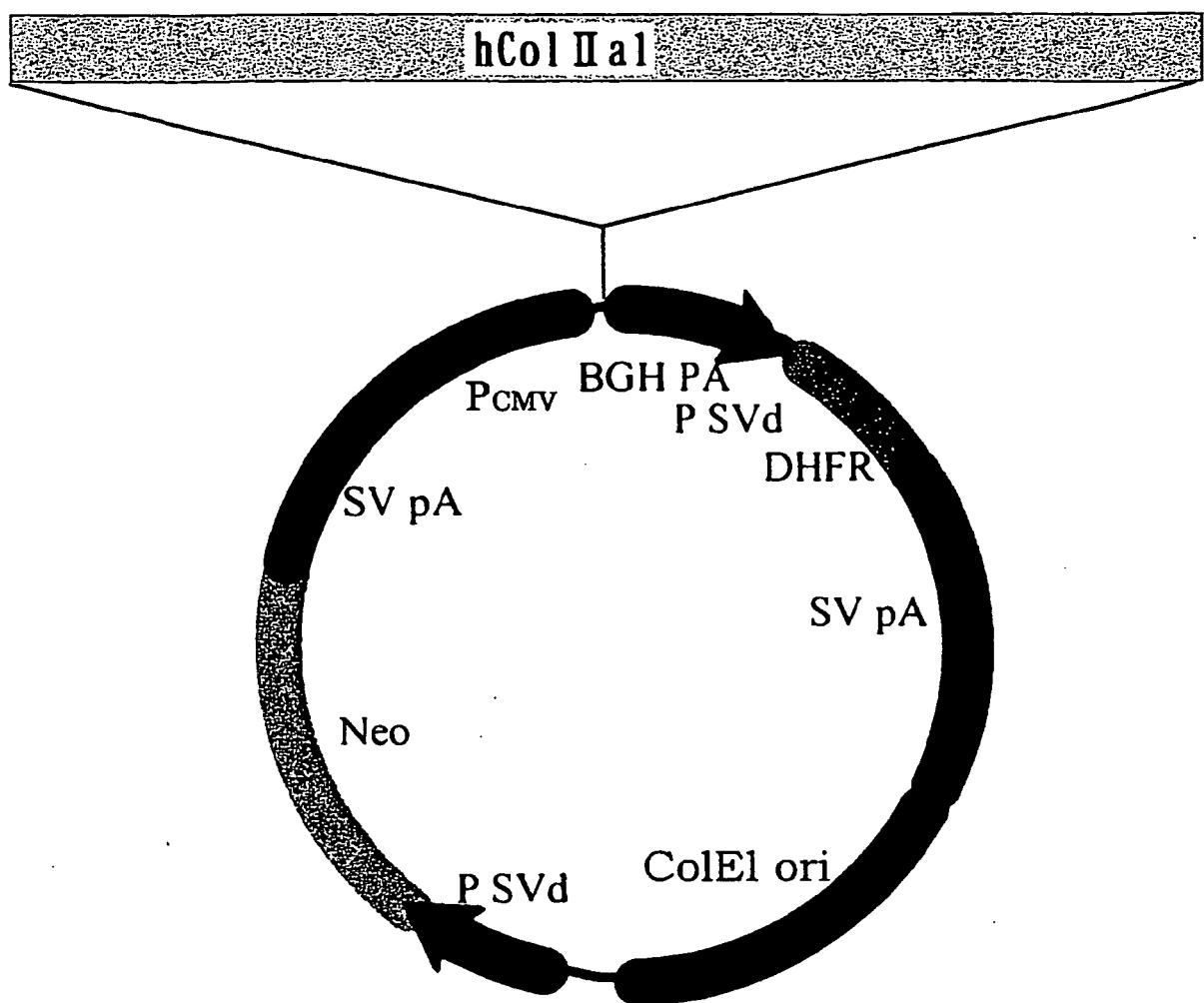



FIG. 2

FIG. 3

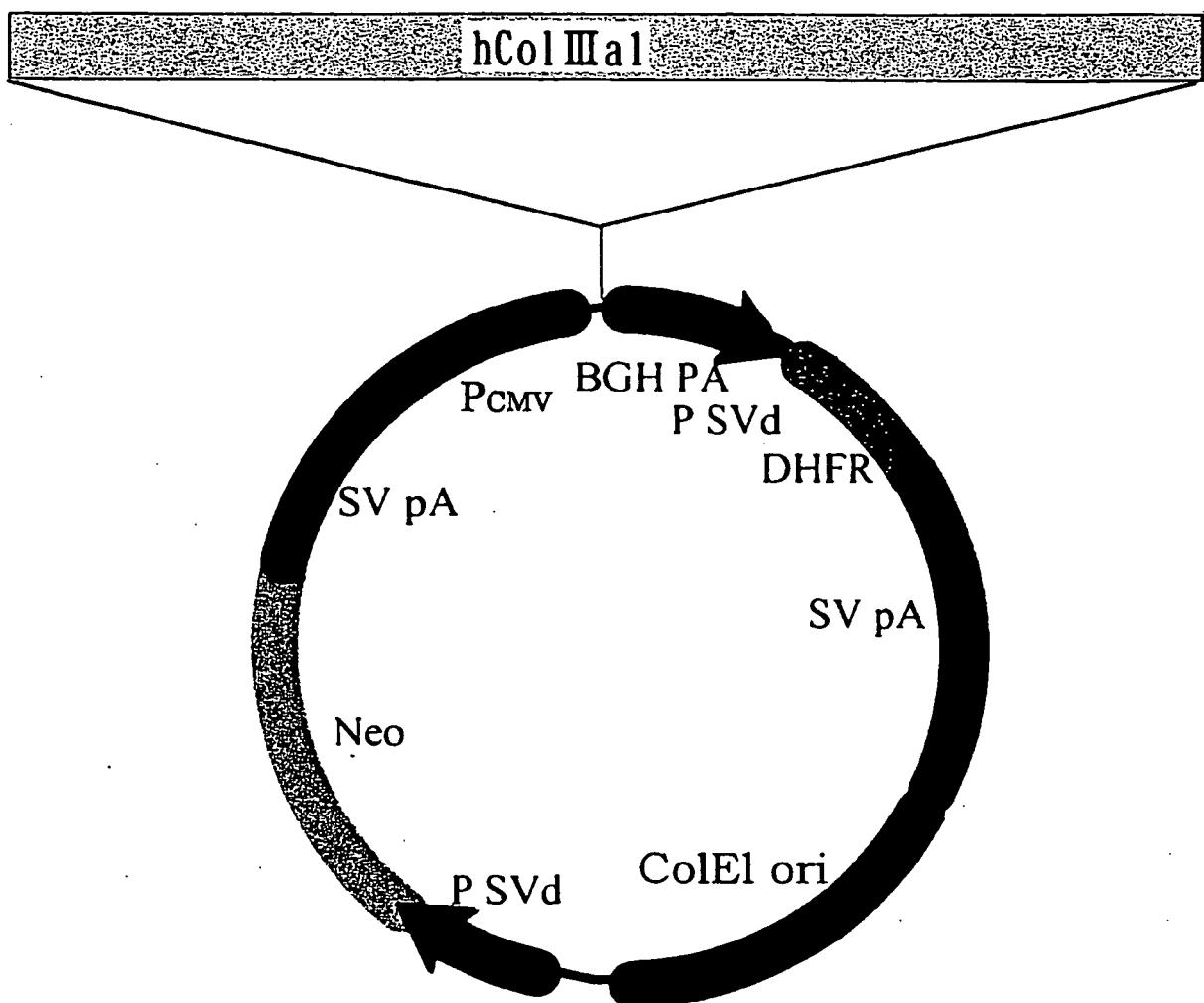


FIG. 4

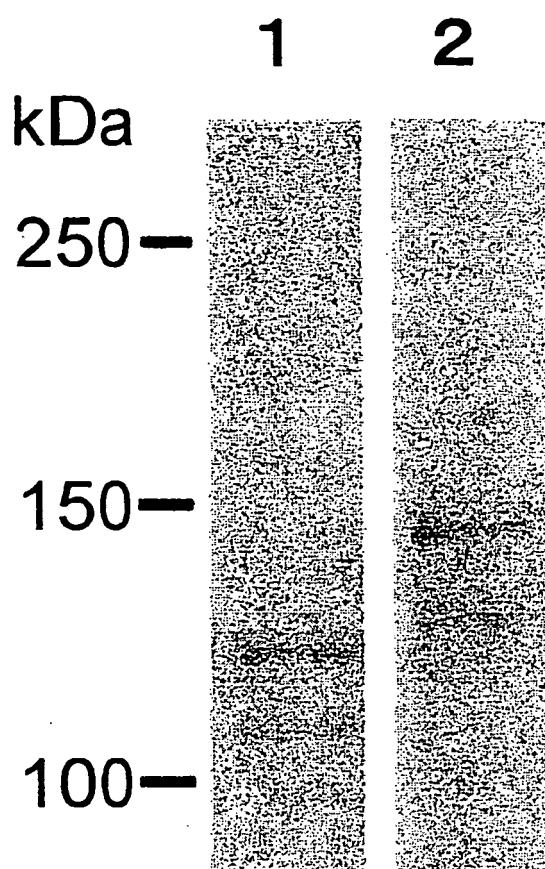
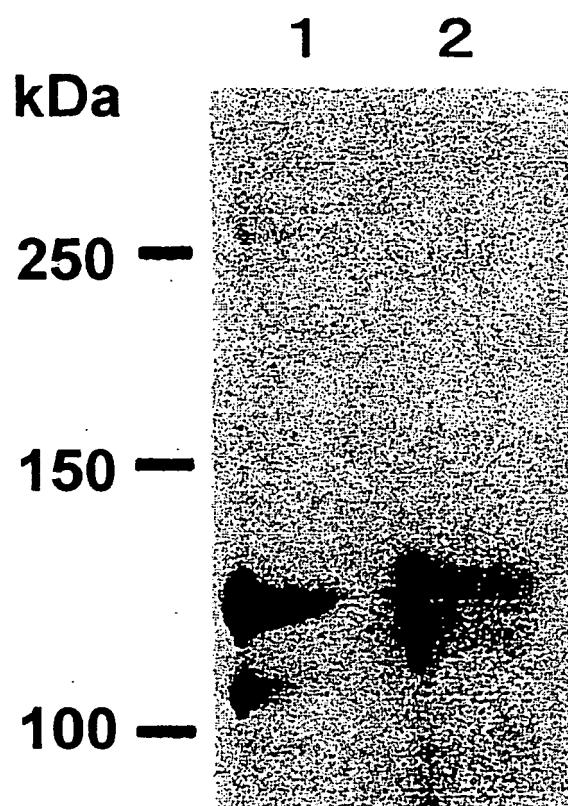
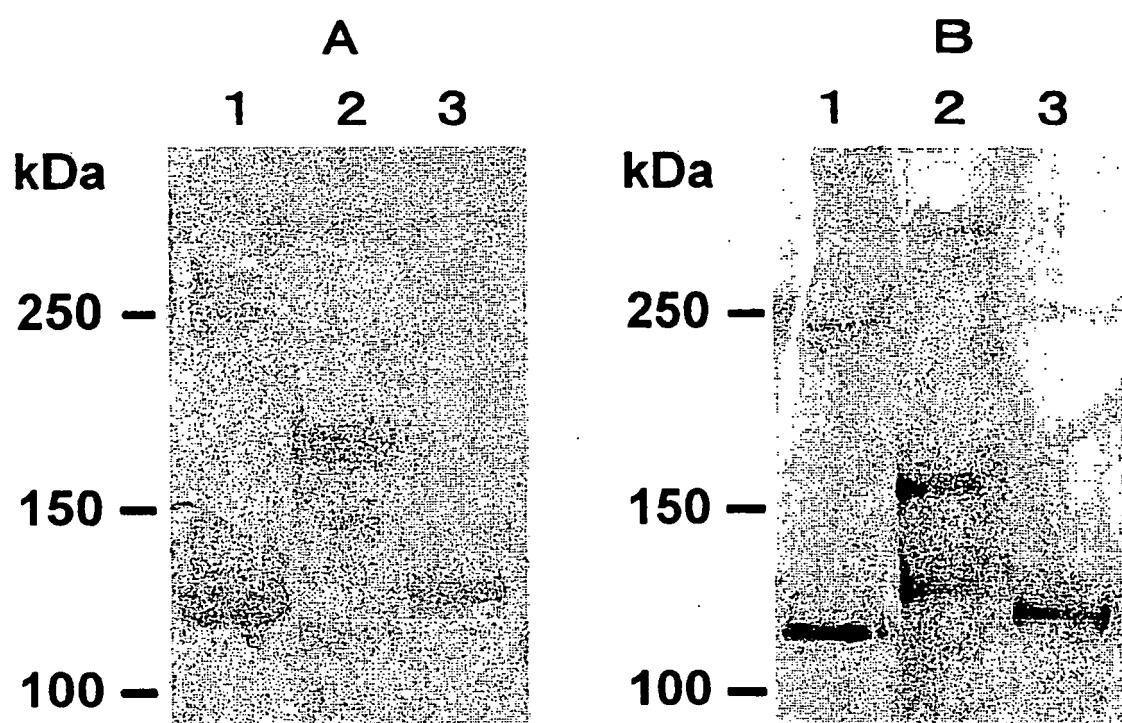




FIG. 5

FIG. 6

FIG. 7

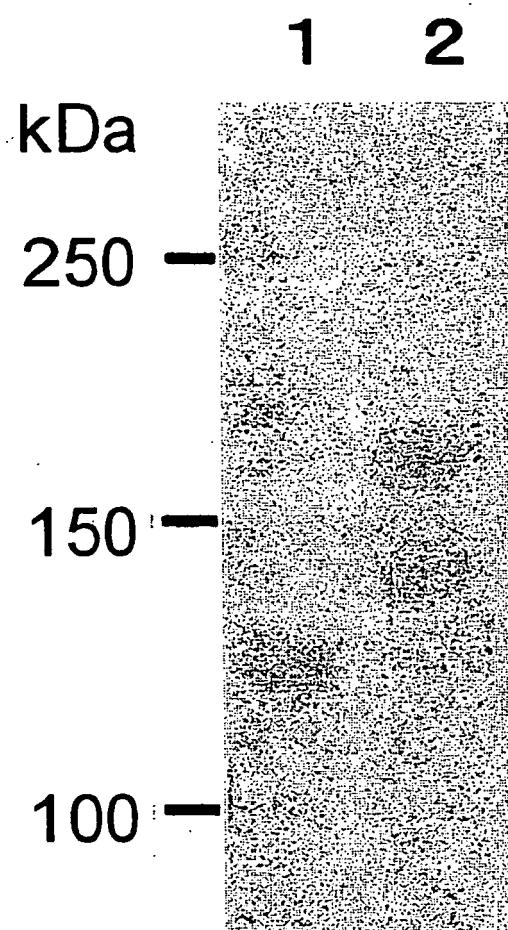


FIG. 8

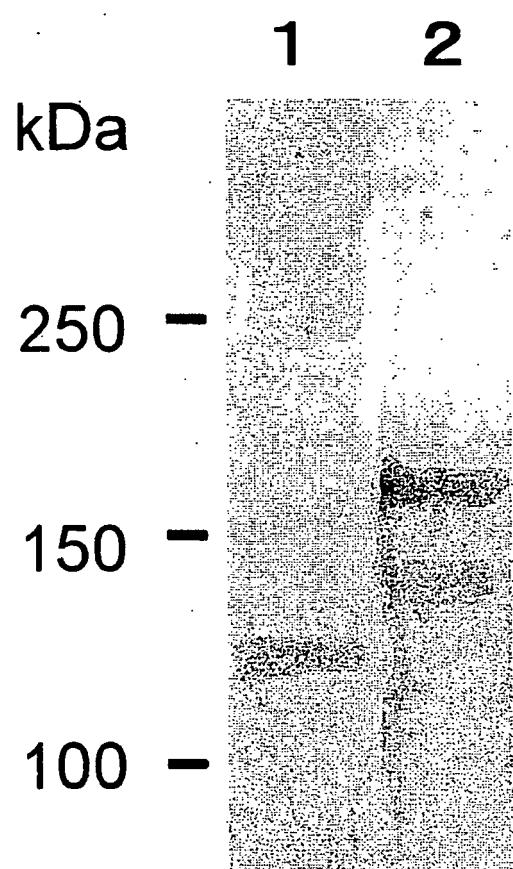


FIG. 9

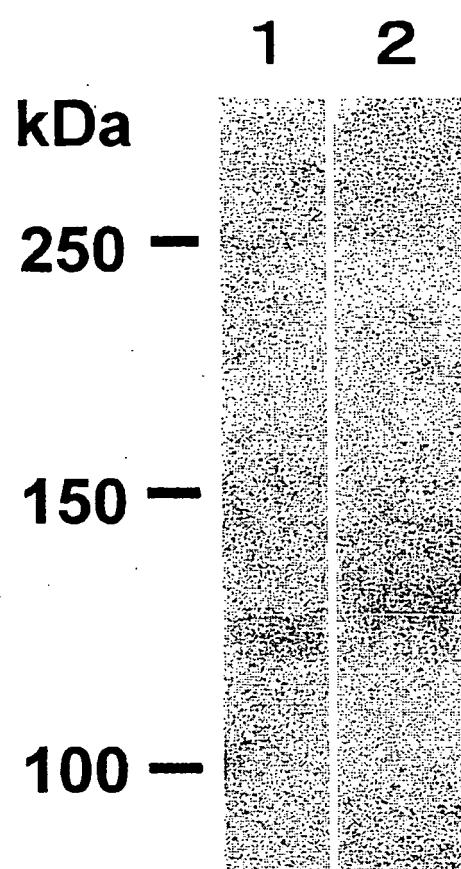


FIG. 10

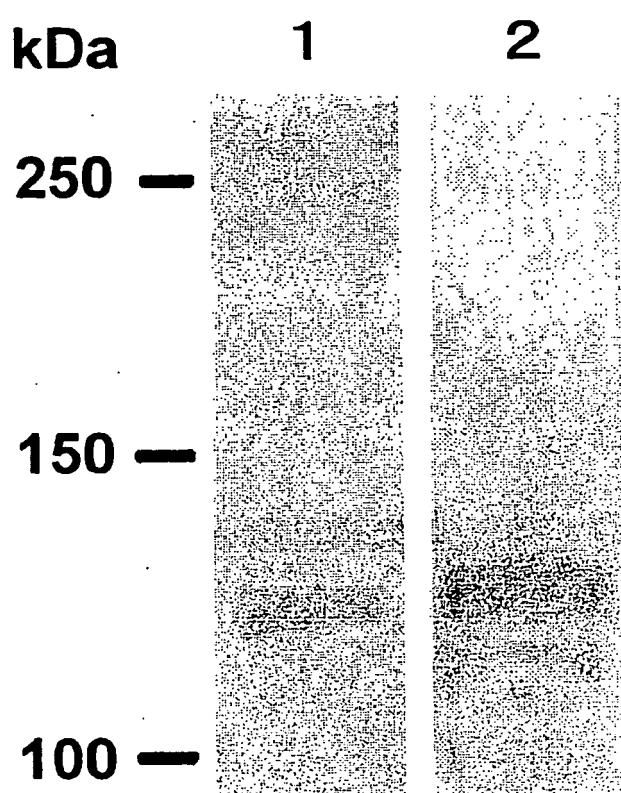


FIG. 11

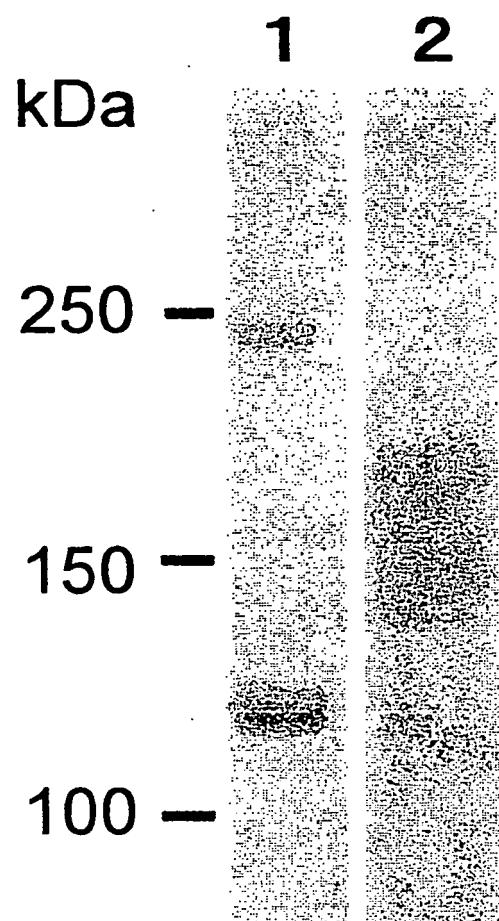


FIG. 12

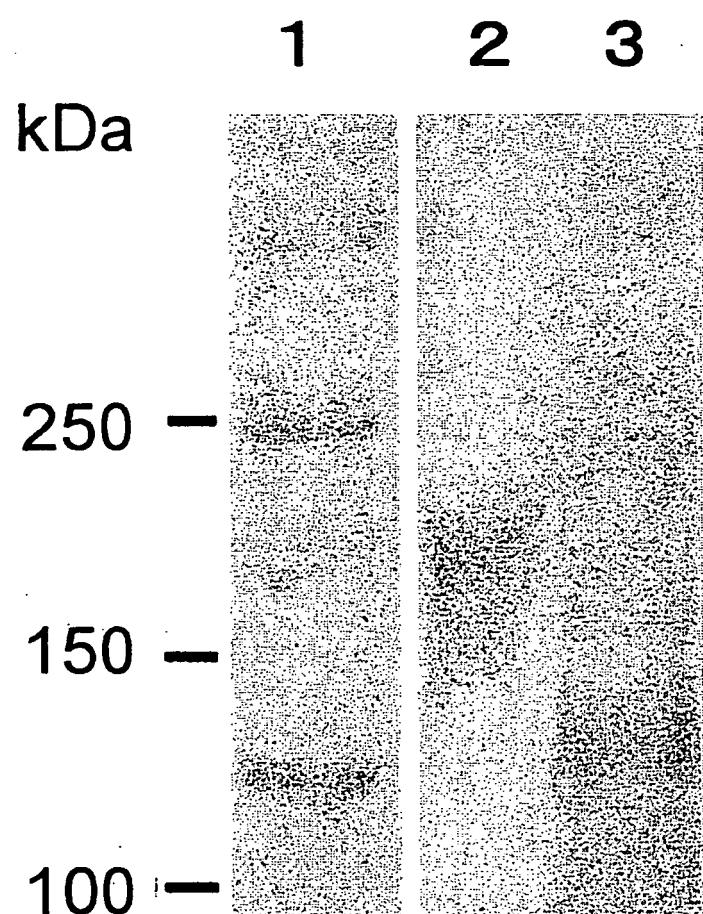


FIG. 13

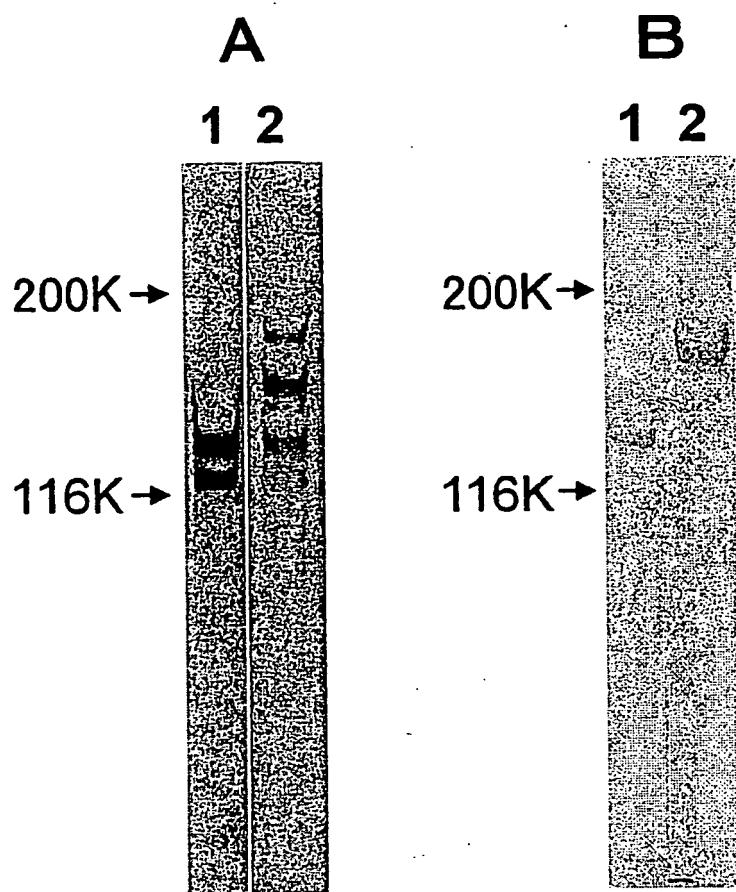


FIG. 14

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP H10179169 A [0003] [0032] [0035]
- JP H7501939 A [0007]
- JP H823979 A [0007]
- JP H11178574 A [0007]
- JP 2002325584 A [0007]
- EP 54146 A [0066]
- JP 2006306941 W [0066]
- JP 2005102999 A [0066]

Non-patent literature cited in the description

- *Surg. Forum*, 1990, vol. 10, 303 [0003]
- *J. Surg. Res.*, 1970, vol. 10, 485-491 [0003]
- *Lancet*, 1993, vol. 342, 799 [0003]
- *Science*, 1993, vol. 261, 1727-1730 [0003]
- *J. Immunol.*, 1986, vol. 136, 877-882 [0004]
- *Biomaterials*, 1990, vol. 11, 176-180 [0004]
- *Biochem. Soc.*, 2000, vol. 28, 350-353 [0005]
- *N. Engl. J. Med.*, 1984, vol. 311, 376-386 [0005]
- *Proc. Natl. Acad. Sci. USA.*, 1987, vol. 84, 764-768 [0006]
- *J. Biol. Chem.*, 1989, vol. 264, 20683-20687 [0006]
- *Biochem. J.*, 1994, vol. 298, 31-37 [0006]
- Connective Tissue and Its Heritable Disorders. Wiley-Liss Inc, 1992, 145-165 [0016]
- Molecular Cloning. Cold Spring Harbor Laboratory Press, 1989 [0016]
- *Nature*, 1970, vol. 227, 680-685 [0019]
- MATSUDAIRA et al. *J. Biol. Chem.*, 1987, vol. 261, 10035-10038 [0019]
- PCR Technology. Stockton Press, 1989 [0036]