[0001] The present invention relates to a fuel cell arrangement and in particular to a solid
oxide fuel cell arrangement.
[0002] It is known that a fuel cell arrangement comprises one, or more, fuel cell modules,
each fuel cell module comprises a plurality of fuel cells arranged within a housing
and each housing is arranged within a pressure vessel. Conventionally the pressure
vessel has internal insulation and/or cooling fluid using passages within the pressure
vessel to maintain the temperature of the pressure vessel at a sufficiently low temperature
to guarantee the integrity of the pressure vessel. In the case of solid oxide fuel
cells operating at higher temperatures, for example 700°C to 1000°C, the thermal management
of the heat flux to the pressure vessel is difficult.
[0003] The conventional arrangement suffers from problems. The maintaining of a uniform
thermal gradient in the pressure vessel is compromised by the cooling fluid passages
producing thermal gradients by design and this may result in the loss of parts of
the insulation in service leading to local hot spots in the pressure vessel. These
local hot spots cause local stress concentrations in the pressure vessel due to differential
thermal expansion and thereby reduce the life of the pressure vessel. Internal insulation
gives rise to condensation, at some zone within the insulation, which may promote
the spalling off of parts of the internal insulation in service leading to local hot
spots in the pressure vessel. The condensation may also lead to accelerated corrosion
at the pressure vessel/internal insulation interface. In contrast, local failure of
external insulation is failsafe because it would result in cool spots rather than
hot spots. Accelerated corrosion of the pressure vessel may occur at the interface
between the insulation and the pressure vessel, to an extent dependent on the material
of the pressure vessel, and inspection of the pressure vessel for corrosion is restricted
by the insulation. Cooling of the pressure vessel increases the system heat loss,
which may reduce the efficiency of the electrical system.
[0004] There is a difficulty in providing a pressure vessel for fuel cell modules, which
provides the required integrity and affordability considering the combination of pressure
and temperature and the need to cover all the operating conditions of the fuel cell
arrangement.
[0005] US2005/054209A1 and
US2005/054210A1 disclose a fuel cell arrangement in which module housings, containing fuel cell bundles,
are surrounded by a pressure vessel. The fuel cell bundles are of the tubular solid
oxide fuel cell type and have interior air electrodes and exterior fuel electrodes.
Fuel is supplied into the module housings and around the fuel cell bundles to the
exterior fuel electrodes of the fuel cell bundles. Air is supplied into an air accumulation
space between the pressure vessel and the module housings and air is supplied from
the air accumulation space into the interior of the fuel cell bundles to the interior
air electrodes of the fuel cell bundles.
[0006] US2004/08676SA1 discloses a fuel cell arrangement in which an enclosure encloses a fuel cell stack
and that the enclosure comprises three concentric cylindrical shells which define
two concentric chambers closed at top and bottom by circular plates. Air is supplied
sequentially through the concentric chambers to the fuel cell stack in the enclosure
and the concentric chambers are portions of a continuous flow pathway.
[0007] US5366819 discloses a fuel cell arrangement in which a stack furnace surrounds stacks of solid
oxide fuel cells and reforming reactors. Air is supplied to the stacks and air leaves
the stacks and passes over the reforming reactors before it exits the stack furnace
through a heat exchanger to heat incoming air. Fuel flows through the reforming reactors
and into the stacks.
[0008] Accordingly the present invention seeks to provide a novel fuel cell arrangement,
which reduces, preferably overcomes the above-mentioned problems.
[0009] Accordingly the present invention provides a fuel cell arrangement comprising at
least one fuel cell module, each fuel cell module comprises a plurality of fuel cells,
each fuel cell comprises an anode electrode, a cathode electrode and an electrolyte,
the at least one fuel cell module is hollow and defines a chamber, the at least one
fuel cell module is arranged within at least one inner vessel and the at least one
inner vessel is arranged within an outer pressure vessel, means to supply oxidant
to the cathode electrodes, means to supply fuel to the anode electrodes, the means
to supply oxidant supplies oxidant into a space between the at least one inner vessel
and the outer pressure vessel, the means to supply oxidant is arranged to supply oxidant
to the space within the inner vessel, the space within the inner vessel is arranged
to supply oxidant to the cathode electrodes, the means to supply fuel is arranged
to supply fuel to the chamber in the at least one fuel cell module and the chamber
in the at least one fuel cell module is arranged to supply fuel to the anode electrodes
of the at least one fuel cell module, means to re-circulate unused oxidant from the
cathode electrodes back to the cathode electrodes and the means to supply oxidant
to the cathode electrodes is arranged such that the pressure in the space between
the outer pressure vessel and the at least one inner vessel is greater than the pressure
in the at least one inner vessel such that the at least one inner vessel is subjected
to a compressive load.
[0010] Preferably the means to re-circulate unused oxidant from the cathode electrodes back
to the cathode electrodes comprises at least one ejector, pump, fan, blower or turbomachine.
[0011] Preferably the means to supply oxidant supplies the oxidant from the space between
the at least one inner vessel and the outer pressure vessel into the at least one
inner vessel.
[0012] Preferably the means to supply oxidant supplies the oxidant from the space between
the at least one inner vessel and the outer pressure vessel into the at least one
inner vessel through the at least one ejector, pump, fan, blower or turbomachine.
[0013] Alternatively the means to supply oxidant supplies a first portion of the oxidant
through at least one restrictor to the space between the at least one inner vessel
and the outer pressure vessel, the means to supply oxidant supplies a second portion
of the oxidant into the at least one inner vessel, the means to supply oxidant supplies
the second portion of the oxidant into the at least inner vessel through the at least
one ejector, pump, fan, blower or turbomachine, the means to supply oxidant supplies
the first portion of oxidant from the space between the outer pressure vessel and
the at least one inner vessel into the at least one inner vessel through the at least
one restrictor and the at least one ejector, pump, fan, blower or turbomachine.
[0014] Preferably the means to supply oxidant supplies the oxidant from the space between
the at least one inner vessel and the outer pressure vessel to a space between the
inner vessel and the at least one fuel cell module, there are means to supply unused
oxidant to the space between at least one inner vessel and the at least one fuel cell
module, the means to supply unused oxidant to the space between the at least one inner
vessel and the at least one fuel cell module comprises the at least one ejector, pump,
fan, blower or turbomachine.
[0015] Preferably the means to supply unused oxidant to the space between the at least one
inner vessel and the at least one fuel cell module comprises at least one combustor,
means to supply unused oxidant to the at least one combustor and means to supply unused
fuel to the at least one combustor and means to supply the products of the at least
one combustor to the at least one ejector, pump, fan, blower or turbomachine.
[0016] Preferably insulation is provided on the inner surface of the at least one inner
vessel. Preferably a space is provided between the insulation and the inner surface
of the at least one inner vessel. Insulation may be provided on the outer surface
of the at least one inner vessel. Preferably a space is provided between the insulation
and the outer surface of the at least one inner vessel. Insulation may be provided
on the outer surface of the outer pressure vessel.
[0017] Preferably there is a plurality of inner vessels, alternatively there is a single
inner vessel and a plurality of fuel cell modules are arranged within each inner vessel.
[0018] Preferably the means to supply oxidant comprises a pump or a compressor, the compressor
is connected to a turbine and a portion of the unused oxidant is supplied to the turbine
to drive the turbine.
[0019] Preferably a first pressure sensor is arranged to measure the pressure in the space
between the at least one inner vessel and the outer pressure vessel, a second pressure
sensor is arranged to measure the pressure in the space between the at least one inner
vessel and the at least one fuel cell module and a monitor is arranged to compare
the pressure measured by the first pressure sensor and the pressure measured by the
second pressure sensor to determine if there is an overpressure due to component malfunction
or burning of fuel in the fuel cell module.
[0020] Preferably the at least one ejector, pump, fan, blower or turbomachine is arranged
such that it extends radially with respect to the axes of the at least one inner vessel
with the inlet of the at least one ejector, pump, fan, blower or turbomachine arranged
at the radially inner end and the exhaust of the at least one ejector, pump, fan,
blower or turbomachine arranged at the radially outer end.
[0021] The at least one ejector, pump, fan, blower or turbomachine may be arranged such
that it extends axially with respect to the axes of the of at least one inner vessel
with the inlet of the at least one ejector pump, fan, blower or turbomachine arranged
at one axial end of the inner vessel and the exhaust of the at least one ejector,
pump, fan, blower or turbomachine at a central region of the inner vessel.
[0022] The at least one inner vessel defines a space with a wall member secured to the at
least one inner vessel, the means to supply oxidant supplies oxidant into the space
between the at least one inner vessel and the wall member.
[0023] The means to supply oxidant may supply oxidant from the space between the at least
one inner vessel and the wall member to a space within the at least one inner vessel.
[0024] The means to supply oxidant may supply oxidant from the space between the at least
one inner vessel and the wall member to the space between the at least one inner vessel
and the outer pressure vessel.
[0025] The means to supply oxidant may supply the oxidant from the space between the at
least one inner vessel and the wall member to the space within the at least one inner
vessel through the at least one ejector, pump, fan, blower or turbomachine.
[0026] The means to supply oxidant to the space within the at least one inner vessel may
supply the oxidant through at least one ejector, pump, fan, blower or turbomachine
to a space between the at least one inner vessel and the at least one fuel cell module.
[0027] The at least one ejector, pump, fan, blower or turbomachine may supply unused oxidant
from the at least one fuel cell module to the space between the at least one inner
vessel and the at least one fuel cell module.
[0028] There may be means to supply unused oxidant from the at least one fuel cell module
to at least one combustor, means to supply unused fuel from the at least one fuel
cell module to the at least one combustor, and means to supply the products of at
least one combustor to the at least one ejector, pump, fan, blower or turbomachine.
[0029] Preferably the fuel cells are solid oxide fuel cells.
[0030] The present invention will be more fully described by way of example with reference
to the accompanying drawings in which:-
Figure 1 is a longitudinal cross-sectional view through a fuel cell arrangement according
to the present invention.
Figure 2 is an isometric view of the fuel cell arrangement shown in figure 1.
Figure 3 is an enlarged cross-sectional view along line A-A through the fuel cell
arrangement in figure 1.
Figure 4 is a longitudinal cross-sectional view through an alternative fuel cell arrangement
according to the present invention.
Figure 5 is a longitudinal cross-sectional view through an alternative fuel cell arrangement
according to the present invention.
Figure 6 is a longitudinal cross-sectional view through an alternative fuel cell arrangement
according to the present invention.
Figure 7 is an enlarged perspective view of a fuel cell module.
Figure 8 is a cross-sectional view through an inner vessel of an alternative inner
vessel suitable for use in figure 6.
Figure 9 is a longitudinal schematic cross-sectional view through an alternative fuel
cell arrangement according to the present invention.
Figure 10 is a sectional view along line W-W in figure 9.
[0031] A fuel cell arrangement 10 according to the present invention is shown in figures
1 to 3. The fuel cell arrangement 10 comprises at least one solid oxide fuel cell
module 12, preferably there are a plurality of solid oxide fuel cell modules 12. Each
solid oxide fuel cell module 12 comprises a hollow porous support member 13 and a
plurality of solid oxide fuel cells 14. Each hollow porous support member 13 has at
least one chamber 16 extending therethrough and comprises two planar, parallel, flat
surfaces 15 and 17 upon which the solid oxide fuel cells 14 are arranged, as shown
more clearly in figure 7. Each solid oxide fuel cell module 12 is a sealed assembly,
while allowing the flow of fuel through the at least one chamber 16 in the hollow
porous support member 13. Each solid oxide fuel cell 14 comprises an anode electrode
18, a cathode electrode 22 and an electrolyte 20. The solid oxide fuel cells 14 are
arranged such that the anode electrodes 18 are arranged on the outer surface, the
two planar, parallel, flat surfaces 15 and 17, of the hollow porous support member
13, the electrolytes 20 are arranged on the anode electrodes 18 and the cathode electrodes
22 are arranged on the electrolytes 20. The solid oxide fuel cells 14 are also arranged
such that the anode electrode 18 of one solid oxide fuel cell 14 is electrically connected
in series with the cathode electrode 22 of an adjacent solid oxide fuel cell 14.
[0032] In this arrangement each solid oxide fuel cell module 12 is arranged within a single
inner vessel 24 and the inner vessel 24 is arranged within an outer pressure vessel
28. In this arrangement the inner vessel 24 defines a space 26 and a space 30 is defined
between the inner vessel 24 and the outer pressure vessel 28. The inner vessel 24
and the outer pressure vessel 28 are preferably substantially tubular, e.g. circular
in cross-section, and arranged coaxially. Other suitable shapes may be used for the
inner vessel and the pressure vessel and they need not be arranged coaxially.
[0033] There are means 32 to supply oxidant to the cathode electrodes 22 of the solid oxide
fuel cells 14 of the at least one fuel cell module 12 and there are means 34 to supply
fuel to the anode electrodes 18 of the solid oxide fuel cells 14 of the at least one
solid oxide fuel cell module 12.
[0034] The means 32 to supply oxidant comprises a pump, not shown, to supply compressed
air, or oxygen, via a pipe 36 into the space 30 between the inner vessel 24 and the
outer pressure vessel 28. The means 32 to supply oxidant also comprises a pipe 38
to supply the oxidant, compressed air or oxygen, from the space 30 into the space
26 within the inner vessel 24. The means 32 to supply oxidant may further comprise
flow guide members, or ducts, (not shown) to direct the flow of oxidant, compressed
air or oxygen, in the space 26 such that the oxidant flows over the cathode electrodes
22 of the solid oxide fuel cells 14 of the at least one solid oxide fuel cell module
12 and thus the means 32 to supply oxidant is arranged to supply oxidant to the space
26 within the inner vessel 24 and the space 26 within the inner vessel 24 is arranged
to supply oxidant to the cathode electrodes 22.
[0035] The means 34 to supply fuel comprises a pump, not shown, to supply prereformed fuel,
reformed fuel, preprocessed fuel or unreformed fuel, via pipe 42 directly through
the outer pressure vessel 28, the inner vessel 24 into a chamber 16 in the hollow
porous support member 13 of the at least one fuel cell module 12 and then from the
chamber 16 through the hollow porous support member 13 to the anode electrodes 18
of the solid oxide fuel cells 14 of the at least one solid oxide fuel cell module
12 and thus the means 34 to supply fuel is arranged to supply fuel to the chamber
16 in the at least one fuel cell module 12 and the chamber 16 in the at least one
fuel cell module 12 is arranged to supply fuel to the anode electrodes 18 of the at
least one fuel cell module 12. The fuel prereformer and fuel pre-processor remove
higher hydrocarbons and sulphur from the fuel.
[0036] A portion 42A of the fuel pipe 42, the portion passing through the space 30 between
the pressure vessel 28 and the inner vessel 24, preferably comprises an inner pipe
and an outer pipe such that leakage of any fuel from the inner pipe is contained within
the outer pipe and is prevented from entering the space 30, so that there cannot be
a build up of unburned fuel.
[0037] There are means 44 to remove the exhaust gases from the cathode electrodes 22 of
the solid oxide fuel cells 14 of the at least one solid oxide fuel cell module 12.
The means 44 to remove the exhaust gases comprises a pipe 46, which passes directly
through the inner vessel 24 and the outer pressure vessel 28. The means 44 to remove
the exhaust gases further comprises flow guide members, or ducts, (not shown) to direct
the flow of exhaust gases in the space 26 such that the exhaust flows from the cathode
electrodes 22 of the solid oxide fuel cells 14 of the at least one solid oxide fuel
cell module 12 to the pipe 46.
[0038] The design is arranged such that in operation the pressure in the space 30 between
the inner vessel 24 and the outer pressure vessel 28 is different to, higher than,
the pressure in the space 26 within the inner vessel 24 such that normally the inner
vessel 24 is subjected to a compressive load. The pressure difference between the
space 26 and the space 30 on opposite sides of the inner vessel 24 is arranged to
be less than the pressure difference between the space 30 and atmosphere on opposite
sides of the outer pressure vessel 28.
[0039] In this arrangement the cooler outer pressure vessel 28 is highly loaded, highly
stressed, and the hotter inner vessel 24 is more lightly loaded, lightly stressed,
and the inner vessel 24 is designed to resist buckling, rather than to have high creep
strength under all operating conditions.
[0040] In addition the design is arranged such that there is oxidant, compressed air or
oxygen, in the space 30 between the inner vessel 24 and the outer pressure vessel
28 and there is oxidant, compressed air or oxygen, in the space 26 within the inner
vessel 24. The design is arranged such that the fuel is only within the hollow porous
support members 13 of the solid oxide fuel cell modules 12 and the pipe 42.
[0041] Also the temperature within the space 30 may be below the auto-ignition temperature
of the fuel. The space between the inner and outer pipes is vented to atmosphere and
preferably the space between the inner and outer pipes is monitored to detect the
presence of leaking fuel, so that the inner pipe may be repaired or replaced.
[0042] In operation the flow of the oxidant, compressed air or oxygen, through the space
30 between the inner vessel 24 and the outer pressure vessel 28, as indicated by arrow
B, acts as a coolant flow for the inner vessel 24 and as a thermal barrier to heat
flow from the inner vessel 24 to the outer pressure vessel 28. The positions of the
pipes 36 and 38 are chosen to maximise the effectiveness of the flow of oxidant, compressed
air or oxygen, to provide cooling of the inner vessel 24 and to provide a thermal
barrier to the heat flux. In this arrangement the position of the pipe 38 into the
inner vessel 24 is at the opposite end of the inner vessel 24 relative to the position
of the pipe 36 into the outer pressure vessel 28.
[0043] The flow of the oxidant, compressed air or oxygen, through the space 26 within the
inner vessel 24 is indicated by arrow C.
[0044] Figure 3 shows the inner vessel 24 and the outer pressure vessel 28 in more detail.
A layer of insulation 48 is provided on the outer surface of the outer pressure vessel
28 to reduce heat loss to maximise the efficiency of the system and to protect personnel.
External insulation of the outer pressure vessel 28 is preferred to internal insulation
of the outer pressure vessel 28 because it allows inspection of the inner surface
of the outer pressure vessel 28, which is required periodically for safety reasons
and to satisfy compulsory inspection requirements of pressure vessels. External insulation
of the outer pressure vessel also avoids accelerated corrosion, which is known to
occur with internal insulation at the pressure vessel/insulation interface.
[0045] A layer of insulation 50 is provided on the inner surface of the inner vessel 24
and preferably a space 52 is provided between the layer of insulation 50 and the inner
surface of the inner vessel 24. This layer of insulation 50 and space 52 enable the
inner vessel 24 to operate at a substantially lower temperature than the solid oxide
fuel cell module 12. Additional layers of insulation and spaces may be provided within
the inner vessel 24 to further reduce the operating temperature of the inner vessel
24. An additional layer of insulation 54 may be provided on the outer surface of the
inner vessel 24 to further reduce the heat flux transmitted from the inner vessel
24 to the outer pressure vessel 28. A space may be provided between the layer of insulation
54 and the outer surface of the inner vessel 24.
[0046] The use of the insulating layers 48, 50 and 54 and the spaces 30 and 52 for a cooling
flow of oxidant permits the use of affordable and readily available alloys for the
inner vessel 24 and the outer pressure vessel 28. The mass of alloy/metal used to
make the inner vessel 24 and the outer pressure vessel, particularly the outer pressure
vessel 28, is significant and the avoidance of the use of expensive high temperature
superalloys is important in minimising the cost of the fuel cell arrangement 10.
[0047] An alternative fuel cell arrangement 110 according to the present invention is shown
in figure 4, and like parts are denoted by like numerals.
[0048] In this arrangement the fuel cell arrangement 110 also comprises a gas turbine engine
60. The gas turbine engine 60 comprises a compressor 62 and a turbine 64, and the
turbine 64 is arranged to drive the compressor 62 via a shaft 65.
[0049] The anode electrodes 18 of the solid oxide fuel cells 14 on the hollow support member
13 of the solid oxide fuel cell module 12 are supplied with a fuel by a fuel supply
manifold 66 from the pipe 42. The cathode electrodes 22 of the solid oxide fuel cells
14 of the solid oxide fuel cell module 12 are supplied with oxidant by an oxidant
manifold 70.
[0050] The anode electrodes 18 are provided with an unused fuel collection manifold 68 into
which unused fuel is discharged. The unused fuel collection manifold 68 is connected
to the pipe 42 via pipes 72 and 74 such that a first portion of the unused fuel is
supplied, recirculated, to the fuel manifold 66. A fuel ejector 76 is provided to
induce the supply, recirculation, of unused fuel from the unused fuel collection manifold
68 to the fuel manifold 66. The pipes 72, 74 and fuel ejector 76 form means to recirculate
the unused fuel from the anode electrodes 18 of the solid oxide fuel cells 14 back
to the anode electrodes 18 of the solid oxide fuel cells 14. The fuel ejector 76 pressurises
the unused fuel and mixes the unused fuel with the fuel supplied by the fuel supply
34 through the pipe 42 to the fuel manifold 66. The unused fuel from the unused fuel
collection manifold 68 is supplied to the secondary nozzle 76B of the fuel ejector
76, fuel from the fuel supply 34 is supplied to the primary nozzle 76A of the fuel
ejector 76 and the mixed unused fuel and fuel is discharged from exhaust nozzle 76C
to the fuel manifold 66.
[0051] The unused fuel collection manifold 68 is also connected to a combustor 78 via the
pipe 72 and a further pipe 80 such that a second portion of the unused fuel is supplied
to the combustor 78.
[0052] The cathode electrodes 22 are provided with an unused oxidant collection duct 82
into which unused oxidant is discharged. The unused oxidant collection duct 82 is
connected to the space 26 within the inner vessel 24 via ducts 84 and 86, the combustor
78 and a duct 88 such that a first portion of the unused oxidant is supplied, recirculated,
to the oxidant manifold 70. An oxidant ejector 90 is provided to induce the supply,
recirculation, of unused oxidant from the unused oxidant collection duct 82 to the
oxidant manifold 70. The ducts 84, 86, 88 and oxidant ejector 90 form means to recirculate
unused oxidant from the cathode electrodes 22 of the solid oxide fuel cells 14 back
to the cathode electrodes 22 of the solid oxide fuel cells 14. The duct 84, 86 and
88 are defined by portions of the inner vessel 24.
[0053] The second portion of unused fuel supplied to a fuel burner in the combustor 78 is
burnt in the first portion of unused oxidant supplied to the combustor 78 to produce
hot gases. The hot gases produced in the combustor 78 are arranged to flow with unused
oxidant through the duct 88 and the oxidant ejector 90 into the space 26 between the
inner vessel 24 and the housing 16 and thence to the oxidant manifold 70. The products,
the hot gases and unused oxidant, of the combustor 78 are supplied by the combustor
78 and duct 88 to the secondary nozzle 90B of the oxidant ejector 90. The oxidant
ejector 90 pressurises the products of the combustor 78 and mixes the products of
the combustor 78 with the oxidant supplied by the compressor 62 to the primary nozzle
90A of the oxidant ejector 90 to preheat the oxidant supplied by the compressor 62.
The oxidant ejector 90 discharges the mixed gases from the exhaust nozzle 90C of the
oxidant ejector 90 into the space 26.
[0054] The unused oxidant collection duct 82 is also connected to the turbine 64 via the
duct 84 and a further duct 92 such that a second portion of the unused oxidant is
supplied to the turbine 64. The second portion of the unused oxidant drives the turbine
64. The second portion of the unused oxidant then flows through a pipe 94 and is discharged
through an exhaust 96. The turbine 64 may also drive an electrical generator 100.
[0055] In this arrangement three distinct zones X, Y and Z are created. The zone X, the
space 30 between the inner vessel 24 and the outer pressure vessel 28, the zone Y,
the space 26 between the inner vessel 24 and the solid oxide fuel cell modules 12,
and the zone Z, the space within the fuel pipe 42, fuel supply manifold 66, the hollow
porous support member 13, the unused fuel collection manifold 68, the pipes 72 and
80 to the combustor 78, the pipe 74 and the fuel ejector 76. The zone X, the space
30, contains compressed oxidant, e.g. compressed air or oxygen. The zone Y, the space
26, contains unused oxidant from the unused oxidant collection duct 82 and hot gases
produced by the combustor 78 and oxidant supplied by the compressor 62. The hot gases
from the combustor 78 has no fuel content for practical purposes and creates a safe
zone and provides an oxidising atmosphere. The presence of an oxidising environment
in zone Y, space 26, is important because it allows the use of conventional high temperature
alloys to make a high integrity inner vessel 24. Such high temperature alloys are
designed to operate with good high temperature corrosion resistance and strength in
an oxidising atmosphere. The zone Z is the only space where fuel is present and even
then it is contained within pipes 42, 72, 74 and 80, fuel ejector 76, the fuel burner
in the combustor 78 and the hollow support member 13 of the solid oxide fuel cell
modules 12. Failure of any of the pipes 42, 72, 74 or 80, fuel ejector 76, fuel burner
or hollow support member 13 of the solid oxide fuel cell modules 12 would have to
occur to release fuel into zone Y. If there was a release of fuel into the zone Y
to achieve a stoichiometric temperature, the pressure peak would only be 30bar, which
is containable by the pressure vessel system. As an additional safety consideration,
the zone Z is a compact volume and the total amount of fuel present in zone z is small,
so that even if all the fuel leaked from zone Z and mixed with oxidant, compressed
air or oxygen, in zone Y before igniting, the resulting overpressure is modest and
is easily contained by the outer pressure vessel.
[0056] A first pressure sensor 114 is arranged to measure the pressure in the space 30 between
the inner vessel 24 and the outer pressure vessel 28, a second pressure sensor 116
is arranged to measure the pressure in the space 26 in the inner vessel 24 and a monitor
118 is arranged to compare the pressure measured by the first pressure sensor 114
and the pressure measured by the second pressure sensor 116 to determine if there
is an overpressure due to component malfunction or burning of fuel in one or more
of the solid oxide fuel cell module (s) 12. The monitor 118 sends a signal to an indicator
120, an alarm or a display, if an overpressure is detected. The monitor 118 may also
send a signal to shut down the solid oxide fuel cell arrangement if an overpressure
is detected.
[0057] A further fuel cell arrangement 210 according to the present invention is shown in
figure 5, and is similar to the arrangement shown in figure 4 and like parts are denoted
by like numerals.
[0058] The fuel cell arrangement 210 in figure 5 differs in that the flow of oxidant supplied
by the compressor 62 is divided and a first portion is supplied through pipe 36A directly,
at full pressure, to the primary nozzle 90A of the oxidant ejector 90 and a second
portion is supplied through pipe 36B and a restrictor, or an alternative pressure
drop device, 102 to the space 30, zone X, between the inner vessel 24 and the outer
pressure vessel 28. The second portion of oxidant subsequently enters the space 26,
zone Y, by flowing through a restrictor, or an alternative pressure drop device, 104
and mixing with the flow out of the exhaust nozzle 90C of the oxidant ejector 90.
The relative sizes of the restrictors 102 and 104 determines the pressure in zone
X, space 30. The pressure in zone x, space 30, is between the pressure of the compressed
oxidant supplied by the compressor 62 and the pressure in zone Y, space 26. The pressure
in zone X is less than the pressure delivered by the compressor 62 and the pressure
in zone X is greater than the pressure in zone Y. Thus, this arrangement controls
the pressure drop across the inner vessel 24 and is arranged to reduce the normal
pressure load/drop across the inner vessel 24 by lowering the pressure in zone X,
space 30.
[0059] The oxidant ejector may be a jet pump. Alternatively other means may be provided
to pressurise and mix the products of the combustor with the oxidant supplied by the
compressor. For example a turbomachine, a fan, a pump or a blower may be provided
to pressurise the products of the combustor and a separate mixer may be provided to
mix the products of the combustor and the oxidant. The turbomachine may be driven
by a free power turbine. The fan, pump or blower may be driven by a free power turbine,
electrically or by other suitable means.
[0060] The fuel ejector may be a jet pump. Alternatively other means may be provided to
pressurise and mix the unused fuel with the fuel supplied by the fuel supply. For
example a turbomachine, a fan, a pump or a blower may be provided to pressurise the
unused fuel and a separate mixer may be provided to mix the unused fuel and the fuel.
The turbomachine may be driven by a free power turbine. The fan, pump or blower may
be driven by a free power turbine, electrically or by other suitable means.
[0061] An alternative fuel cell arrangement 310 according to the present invention is shown
in figure 6, and is similar to that shown in figure 4 and like parts are denoted by
like numerals. The fuel cell arrangement 310 differs in that there is a plurality
of inner vessels 24A and 24B arranged within the outer pressure vessel 28. In this
arrangement the inner vessels 24A and 24B are arranged coaxially within the outer
pressure vessel 28 with a space 30 therebetween. The inner vessels 24A and 24B and
the outer pressure vessel 28 are substantially tubular, e.g. circular in cross-section,
but other suitable shapes may be used. The inner vessels 24A and 24B may be toroidal
in shape.
[0062] Furthermore, this arrangement shows a plurality of solid oxide fuel cell modules
12 in each of the inner vessels 24A and 24B.
[0063] In this arrangement the solid oxide fuel cell modules 12 are arranged such that the
longitudinal direction of the solid oxide fuel cell modules 12 extend substantially
radially with respect to the axes of the inner vessels 24A and 24B and with the flat
surfaces 15 and 17 of the solid oxide fuel cell modules 12 arranged in planes perpendicular
to the axes of the inner vessels 24A and 24B. The solid oxide fuel cell modules 12
are arranged in stacks such that the solid oxide fuel cell modules 12 are spaced apart
axially and the stacks are circumferentially arranged around the axes of the inner
vessels 24A and 24B. The flow of oxidant across the flat surfaces 15 and 17, and hence
the cathode electrodes 22, is arranged to be radially inwardly or circumferentially
with respect to the axis of the inner vessels 24A and 24B. To aid the radially inward
flow of oxidant it is preferred that the oxidant ejector, or oxidant ejectors, 90
are arranged such that they extend radially with respect to the axes of the inner
vessels 24A and 24B with the primary nozzles 90A arranged at the radially inner ends
and the exhaust nozzles 90C at the radially outer ends.
[0064] In another arrangement, not shown, the solid oxide fuel cell modules 12 are arranged
such that the longitudinal direction of the solid oxide fuel cell modules 12 extend
substantially perpendicularly with respect to radii from the axes of the inner vessels
24A and 24B and with the flat surfaces 15 and 17 of the solid oxide fuel cell modules
12 arranged in planes perpendicular to the axes of the inner vessels 24A and 24B.
The solid oxide fuel cell modules 12 are arranged in stacks such that the solid oxide
fuel cell modules 12 are spaced apart axially and the stacks are circumferentially
arranged around the axes of the inner vessels 24A and 24B. The flow of oxidant across
the flat surfaces 15 and 17, and hence the cathode electrodes 22, is arranged to be
radially inwardly with respect to the axis of the inner vessels 24A and 24B. To aid
the radially inward flow of oxidant it is preferred that the oxidant ejector, or oxidant
ejectors, 90 are arranged such that they extend radially with respect to the axes
of the inner vessels 24A and 24B with the primary nozzles 90A arranged at the radially
inner ends and the exhaust nozzles 90C at the radially outer ends.
[0065] The radially inward flow of oxidant across the fuel cell modules 12 produces an accelerating
flow due to the reduction in flow area in the radially inward direction and this prevents
flow separation.
[0066] It is preferred to arrange the axes of the outer pressure vessel and inner vessels
vertically, but it may be possible to arrange the axes of the outer pressure vessel
and inner vessels horizontally.
[0067] An alternative inner vessel suitable for use in the fuel cell arrangement of figure
6 is shown in figure 8. The inner vessel 24C is tubular and has an axis T. The inner
vessel 24C has a first end 400 and a second end 402. The inner vessel 24C is provided
with an internal tubular support member 404, which is coaxial with the inner vessel
24C and which extends between and is secured to the first and second ends 400 and
402 to stiffen the inner vessel 24C. The inner vessel 24C is provided with a plurality
of devices 406, which allow radial expansion and contraction of the first and second
ends 400 and 402 of the inner vessel 24C, due to thermal expansion and contraction
of the tubular support member 404. The devices 406 resist axial load, compression
or tension, on the inner vessel 24C. The devices 406 are preferably arranged on both
of the first and second ends 400 and 402 of the inner vessel 24C, but it may possible
to provide them on only one of the first and second ends 400 and 402 of the inner
vessel 24C.
[0068] Each device 406 comprises a corrugated elongate member 408 which has longitudinally
spaced apart troughs 410 and longitudinally spaced apart peaks 412. The corrugated
elongate member 408 is secured or joined, for example by welding, brazing or bonding,
at its longitudinally spaced troughs 410 to an end 400 or 402 of the inner vessel
24C. The corrugated elongate member 408 is secured or joined, for example by welding,
brazing or bonding, at its longitudinally spaced peaks 412 to an elongate member 414.
The elongate member 414 is U-shaped in cross-section and the corrugated elongate member
408 is secured or joined to the elongate member 414 to the surface between the limbs
of the U-shaped elongate member 414.
[0069] Each device 406 extends radially relative to the axis T of the inner vessel 24C and
thus there is a plurality of devices 406 angularly spaced apart on each of the first
and second ends 400 and 402 or on one of the first and second ends 400 and 402.
[0070] A further fuel cell arrangement 510 according to the present invention is shown in
figures 9 and 10 and is similar to that shown in figure 4, and like parts are denoted
by like numerals.
[0071] In this arrangement the fuel cell arrangement 510 also comprises a gas turbine engine
60. The gas turbine engine 60 comprises a compressor 62 and a turbine 64, and the
turbine 64 is arranged to drive the compressor 62 via a shaft 65.
[0072] The anode electrodes 18 of the solid oxide fuel cells 14 on the hollow support member
13 of the solid oxide fuel cell module 12 are supplied with fuel by a fuel supply
manifold 66 from the pipe 42. The cathode electrodes 22 of the solid oxide fuel cells
14 of the solid oxide fuel cell module 12 are supplied with oxidant by an oxidant
manifold 70.
[0073] The anode electrodes 18 are provided with an unused fuel collection manifold 68 into
which unused fuel is discharged. The unused fuel collection manifold 68 is connected
to the pipe 42 via pipes 72 and 74 such that a first portion of the unused fuel is
supplied, recirculated, to the fuel manifold 66. A fuel ejector 76 is provided to
induce the supply, recirculation, of unused fuel from the unused fuel collection manifold
68 to the fuel manifold 66. The pipes 72, 74 and fuel ejector 76 form means to recirculate
the unused fuel from the anode electrodes 18 of the solid oxide fuel cells 14 back
to the anode electrodes 18 of the solid oxide fuel cells 14. The fuel ejector 76 pressurises
the unused fuel and mixes the unused fuel with the fuel supplied by the fuel supply
34 through the pipe 42 to the fuel manifold 66. The unused fuel from the unused fuel
collection manifold 68 is supplied to the secondary nozzle 76B of the fuel ejector
76, fuel from the fuel supply 34 is supplied to the primary nozzle 76A of the fuel
ejector 76 and the mixed unused fuel and fuel is discharged from the exhaust nozzle
76C to the fuel manifold 66.
[0074] The unused fuel collection manifold 68 is also connected to a. combustor 78 via the
pipe 72 and a further pipe 80 such that a second portion of the unused fuel is supplied
to the combustor 78.
[0075] The cathode electrodes 22 are provided with an unused oxidant collection duct 82
into which unused oxidant is discharged. The unused oxidant collection duct 82 is
defined by the space 26 within the inner vessel 24. The unused oxidant collection
duct 82 is connected to the duct 86, the combustor 78 and a duct 88 such that a first
portion of the unused oxidant is supplied, recirculated, to the oxidant manifold 70.
An oxidant ejector 90 is provided to induce the supply, recirculation, of unused oxidant
from the unused oxidant collection duct 82 to the oxidant manifold 70. The ducts 86,
88 and the oxidant ejector 90 form means to recirculate unused oxidant from the cathode
electrodes 22 of the solid oxide fuel cells 14. The ducts 84, 86 and 88 are defined
by the portions of the inner vessel 24.
[0076] The second portion of unused fuel is supplied to a fuel burner in the combustor 78
and is burnt in the first portion of unused oxidant supplied to the combustor 78 to
product hot gases. The hot gases produced in the combustor 78 are arranged to flow
with unused oxidant through the duct 88 and oxidant ejector 90 into the space 26 within
the inner vessel 24 and thence to the oxidant manifold 70. The products, the hot gases
and unused oxidant, of the combustor 78 are supplied by the combustor 78 and the duct
88 to the secondary nozzle 90B of the oxidant ejector 90. The oxidant ejector 90 pressurises
the products of the combustor 78 and mixes the products of the combustor 78 with the
oxidant supplied by the compressor 62 to the primary nozzle 90A of the oxidant ejector
90 to preheat the oxidant supplied by the compressor 62. The oxidant ejector 90 discharges
the mixed gases from the exhaust nozzle 90C of the oxidant ejector 90 into the space
26.
[0077] The unused oxidant collection duct 82 is also connected to the turbine 64 via the
duct 92 such that a second portion of the unused oxidant is supplied to the turbines
64. The second portion of the unused oxidant drives the turbine 64. The second portion
of the unused oxidant then flows through a pipe 94 and is discharged through an exhaust
96. The turbine 64 may also drive an electrical generator 1O0.
[0078] In this arrangement the axes of the outer pressure vessel 28 and the inner vessel
24 are arranged coaxially with the space 30 therebetween and the axes of the outer
pressure vessel 28 and the inner vessel 24 extend horizontally. A plurality of the
solid oxide fuel cell modules 12 are arranged within the inner vessel 24 and the solid
oxide fuel cell modules 12 are arranged such that the longitudinal direction of the
solid oxide fuel cell modules 12 extend substantially horizontally and parallel to
the axis of the inner vessel 24 and with the flat surfaces 15 and 17 of the solid
oxide fuel cell modules 12 arranged in substantially horizontal planes. The solid
oxide fuel cell modules 12 are arranged in stacks 512 such that the solid oxide fuel
cell modules 12 in each stack 512 are spaced apart vertically and the stacks 512 are
spaced apart horizontally in the axial direction. Also at each axial position there
are a plurality of stacks 512 of solid oxide fuel cell modules 12 spaced apart horizontally
substantially transverse to the axial direction. The flow of oxidant across the flat
surfaces 15 and 17, and hence the cathode electrodes 22, of the solid oxide fuel cell
modules 12 is arranged to be transverse to the axial direction with respect to the
axis of the inner vessel 24. To aid the flow of oxidant the stacks 512 of solid oxide
fuel cell modules 12 at each axial position are located in boxes 514. The boxes 514
have a base 516, a top 518, two axially spaced sides 520 and 522 and two open ends.
Each stack 512 of solid oxide fuel cell modules 12 is supplied with fuel from a fuel
supply manifold 66 and supplies unused fuel to an unused fuel collection manifold
68, as discussed previously. oxidant flows into the boxes 514 through one open end
of each box 514 from the oxidant supply manifold 70, over the cathode electrodes 22
of the solid oxide fuel cells 14 of the solid oxide fuel cell modules 12 and out of
the other open end of each box 514 to a respective fuel reformer 524. Each fuel reformer
524 is heated by the respective flow of oxidant. The oxidant from each box 514 then
flows to the oxidant collection duct 82 and then flows either through the duct 92
to the turbine 64 or through the duct 86 to the combustor 78. Each fuel reformer 524
supplies fuel to the fuel supply manifold 66 for the stacks 512 in the associated
box 514. The unused fuel in the unused fuel collection manifolds 68 is supplied through
the duct 80 to the combustor 78 or through the duct 74 to the fuel ejector 76 as discussed
previously. The top 518 and sides 520 and 522 of the boxes 514 are provided with insulation.
The boxes 514 define flow guide members to direct the flow of oxidant, compressed
air or oxygen, in the space 26 such that the oxidant flows over the cathode electrodes
22 of the solid oxide fuel cells 14 of the solid oxide fuel cell modules 12. The cathode
electrodes 22 are thus in contact with the oxidant in the space 26 within the inner
vessel 24.
[0079] The arrangement in Figure 9 differs in that the oxidant from the compressor 62 is
not supplied directly to the space 30 between the inner vessel 24 and the outer pressure
vessel 28, instead the oxidant is supplied directly to a space 26B defined by a portion
24C of the inner vessel 24 and a wall member 24B secured to the inner vessel 24. The
oxidant is then supplied from the space 26B to the primary nozzle 90A of the oxidant
ejector 90. The space 26B is pressurised to a pressure substantially the same as the
pressure of the oxidant supplied by the compressor 62 and is the same as the pressure
in the space 30 between the inner vessel 24 and the outer pressure vessel 28. No flammable
gases are present in the space 26B so that the safety is not significantly affected.
The connection of the pipe 36 from the compressor 62 to the space 26B is not sealed,
so that the space 30 between the inner vessel 24 and the outer pressure vessel 28
is pressurised to the pressure of the oxidant supplied by the compressor 62, but there
is no flow of oxidant around, or through, the space 30. The space 26B is connected
to the oxidant ejector 90 by a duct 526. The space 26B is separated from the space
26A in the inner vessel 24 by the portion 24C of inner vessel 24, which is a horizontal
wall so that the pressure in the space 30 between the inner vessel 24 and the outer
pressure vessel 28 and the pressure in the space 26B is higher than the pressure in
the space 26A in the inner vessel 24.
[0080] The space 26B is also used to provide electrical cables, pipes etc.
[0081] The fuel cell arrangements in figures 1, 4, 5, 6 and 8 are preferably arranged such
that the axes of the outer pressure vessel and the inner vessel are arranged vertically,
but the axes of the outer pressure vessel and the inner vessel may be arranged horizontally.
[0082] The fuel cell arrangement of the present invention has a number of advantages. The
most important advantages relate to safety risks and pressure containment integrity.
[0083] The presence of the inner vessel; or inner vessels, and its, or their, associated
insulation and cooling enables the outer pressure vessel to operate with a greater
safety margin on temperature during normal operation and the outer pressure vessel
is protected from direct exposure to flames and high temperatures which may occur
following a failure of a solid oxide fuel cell module.
[0084] The entire volume within the inner vessel, or inner vessels, into which the solid
oxide fuel cell module, or solid oxide fuel cell modules, may leak can be maintained
above a predetermined temperature, the auto-ignition temperature, for the possible
fuel/oxidant mixtures. This makes the fuel cell arrangement safer because it is impossible
for a build up of leaking fuel outside the fuel pipes to create conditions suitable
for an explosion, because the leaking fuel immediately ignites and burns at the leak
site or leak sites. These conditions apply for all generating load points for the
fuel cell arrangement, leaving only short periods during the start up and cool down
phases where this is not so and other precautions against explosive ignition are taken.
[0085] The detection of overpressure in the fuel cell arrangement due to malfunction of
components or ignition of fuel in the fuel cell module is easy because it produces
a pressure difference reversal across the inner vessel, e.g. at normal conditions
the pressure inside the inner vessel is less than the pressure between the inner vessel
and the outer pressure vessel and at overpressure conditions the pressure inside the
inner vessel is more than the pressure between the inner vessel and the outer pressure
vessel.
[0086] The use of a double vessel arrangement, e.g. inner vessel, or inner vessels, and
outer pressure vessel, enables the outer pressure vessel to be protected from the
high temperature environment of the fuel cell stack by the inner vessel, or inner
vessels. The outer pressure vessel forms the main pressure containment of the arrangement
and operates at a lower temperature than a single pressure vessel arrangement and
operates with a greater safety margin than a single pressure vessel arrangement.
[0087] In one arrangement the use of insulation on the inside of the inner vessel and the
use of an air supply to the cathode electrodes of the fuel cell stack as a coolant
between the inner vessel and the outer pressure vessel allows the use of lower grade,
and hence cheaper, alloys for the pressure vessels.
[0088] In another arrangement the air between the inner vessel and outer pressure vessel
is stagnant and acts as a further layer of insulation.
[0089] The inner vessel, or inner vessels, only have to withstand low pressure loading,
and hence stress levels, and allow the complete enclosed volume within the inner vessel,
or inner vessels, to operate above the auto-ignition temperature of fuel and air mixtures
that may be present in the case of a fault/leak. This brings significant safety advantages
by preventing the development of conditions suitable for an explosion and avoids considerable
complication of the fuel cell arrangement to prevent explosions.
[0090] The present invention enables the use of a physical configuration for the cost effective
implementation of a fuel cell arrangement with recirculation of the unused oxidant
from the cathode electrodes back to the cathode electrodes together with the products
of combustion of the unused oxidant from the cathode electrodes and unused fuel from
the anode electrodes and fresh oxidant This fuel cell arrangement also has recirculation
of the unused fuel from the anode electrodes back to the cathode electrodes together
with fresh fuel. Although the present invention has been described with reference
to solid oxide fuel cell modules with solid oxide fuel cells arranged thereon, and
supported by, a hollow porous support member with two planar, parallel, flat surfaces,
the present invention is also applicable to solid oxide fuel cell modules where the
solid oxide fuel cells are supported by the anode electrodes or where the solid oxide
fuel cells are supported by the electrolyte(s).
[0091] Although the present invention has been described with reference to solid oxide fuel
cell modules with solid oxide fuel cells arranged on a hollow porous support member
with two planar, parallel, flat surfaces, the present invention is also applicable
to hollow tubular solid oxide fuel cell modules with solid oxide fuel cells arranged
with the anode electrodes within the cathode electrodes and the fuel supplied into
the hollow tubular solid oxide fuel cell modules. The tubular solid oxide fuel cells
may be supported by a hollow porous tubular member radially within the anode electrodes,
the solid oxide fuel cells may be supported by the anode electrodes or the solid oxide
fuel cells may be supported by the electrolyte(s).
[0092] The presence of a fuel cell arrangement with recirculation of the unused oxidant
from the cathode electrodes back to the cathode electrodes together with fresh oxidant
from the space between the inner vessel and the outer vessel provides a greater compression
load on the inner vessel. The recirculation of the unused oxidant from the cathode
electrodes back to the cathode electrodes is provided by the fresh oxidant, which
is at a higher pressure in the space between the inner vessel and the outer pressure
vessel because it is delivered from a compressor. The recirculation of the unused
oxidant from the cathode electrodes back to the cathode electrodes takes place entirely
within the inner vessel. There is also a combustor within the recirculation path for
the unused oxidant to burn unused fuel in a portion of the unused oxidant. The unused
oxidant from the solid oxide fuel cells is collected within the inner vessel and a
portion of the unused oxidant is supplied to the turbine to drive the compressor and
a portion of the unused oxidant is recirculated back to the cathode electrodes of
the solid oxide fuel cells. A pressure difference across the inner vessel ensures
that, in the case of a leak path through the inner vessel, there is a flow of cold
fresh oxidant from the space between the inner vessel and the outer pressure vessel
to the space within the inner vessel to enhance the inherent safety of the arrangement.
[0093] The recirculation of the unused oxidant may be achieved using a blower, or other
suitable device as previously mentioned, but there would be a lower pressure difference
between the space within the inner vessel and the space between the inner vessel and
the outer pressure vessel.
[0094] Although the present invention has been described with reference to solid oxide fuel
cells, the present invention is equally applicable to molten carbonate fuel cells
or other types of fuel cells operating at high temperatures, e.g. more than 300°C.
1. A fuel cell arrangement (110) comprising at least one fuel cell module (12), each
fuel cell module (12) comprises a plurality of fuel cells (14), each fuel cell (14)
comprises an anode electrode (18), a cathode electrode (22) and an electrolyte (20),
the at least one fuel cell module (12) is hollow and defines at least one chamber
(16), the at least one fuel cell module (12) is arranged within at least one inner
vessel (24) and the at least one inner vessel (24) is arranged within an outer pressure
vessel (28), means (32) to supply oxidant to the cathode electrodes (22), means (34)
to supply fuel to the anode electrodes (18), the means (32) to supply oxidant supplies
oxidant into a space (30) between the at least one inner vessel (24) and the outer
pressure vessel (28), characterised in that the means (32) to supply oxidant is arranged to supply oxidant to the space (26)
within the inner vessel (24), the space (26) within the inner vessel (24) is arranged
to supply oxidant to the cathode electrodes (22), the means (34) to supply fuel is
arranged to supply fuel to the at least one chamber (16) in the at least one fuel
cell module (12), the at least one chamber (16) in the at least one fuel cell module
(12) is arranged to supply fuel to the anode electrodes (18) of the at least one fuel
cell module (12), means (84, 86, 88, 90) to re-circulate unused oxidant from the cathode
electrodes (22) back to the cathode electrodes (22) and the means (32) to supply oxidant
to the cathode electrodes (22) is arranged such that the pressure in the space (30)
between the outer pressure vessel (28) and the at least one inner vessel (24) is greater
than the pressure in the at least one inner vessel (24) such that the at least one
inner vessel (24) is subjected to a compressive load.
2. A fuel cell arrangement as claimed in claim 1 wherein the means (84, 86, 88, 90) to
re-circulate unused oxidant from the cathode electrodes (22) back to the cathode electrodes
(22) comprises at least one ejector (90), pump, fan, blower or turbomachine.
3. A fuel cell arrangement as claimed in claim 2 wherein the means (32) to supply oxidant
supplies the oxidant from the space (30) between the at least one inner vessel (24)
and the outer pressure vessel (28) into the at least one inner vessel (24).
4. A fuel cell arrangement as claimed in claim 3 wherein the means (32) to supply oxidant
supplies the oxidant from the space (30) between the at least one inner vessel (24)
and the outer pressure vessel (28) into the at least one inner vessel (24) through
the at least one ejector (90). pump, fan, blower or turbomachine.
5. A fuel cell arrangement as claimed in claim 3 wherein the means (32) to supply oxidant
supplies a first portion (36B) of the oxidant through at least one restrictor (102)
to the space (30) between the at least one inner vessel (24) and the outer pressure
vessel (28), the means (32) to supply oxidant supplies a second portion (36A) of the
oxidant into the at least one inner vessel (24), the means (32) to supply oxidant
supplies the second portion (36A) of the oxidant into the at least inner vessel (24)
through the at least one ejector (90), pump, fan, blower or turbomachine, the means
(32) to supply oxidant supplies the first portion (36B) of oxidant from the space
(30) between the outer pressure vessel (28) and the at least one inner vessel (24)
into the at least one inner vessel (24) through at least one restrictor (104) and
at least one ejector (90), pump, fan, blower or turbomachine.
6. A fuel cell arrangement as claimed in claim 3 wherein the means (32) to supply oxidant
supplies the oxidant from the space (30) between the at least one inner vessel (24)
and the outer pressure vessel (28) to a space (26) between the inner vessel (24) and
the at least one fuel cell module (12), there are means to supply unused oxidant to
a space (26) between the at least one inner vessel (24) and the at least one fuel
cell module (12), the means to supply unused oxidant to the space (26) between the
at least one inner vessel (24) and the at least one fuel cell module (12) comprises
the at least one ejector (90), pump, fan, blower or turbomachine.
7. A fuel cell arrangement as claimed in claim 6 wherein the means to supply unused oxidant
to the space between the at least one inner vessel (24) and the at least one fuel
cell module (12) comprises at least one combustor (78), means to supply unused oxidant
to the at least one combustor (78) and means to supply unused fuel to the at least
one combustor (78) and means to supply the products of the at least one combustor
(78) to the at least one ejector (90), pump, fan, blower or turbomachine.
8. A fuel cell arrangement as claimed in any of claims 1 to 7 wherein insulation (50)
is provided on the inner surface of the at least one inner vessel (24), a space (52)
is provided between the insulation (50) and the inner surface of the at least one
inner vessel (24), insulation (54) is provided on the outer surface of the at least
one inner vessel (24), a space is provided between the insulation (54) and the outer
surface of the at least one inner vessel (24), insulation (48) is provided on the
outer surface of the outer pressure vessel (28).
9. A fuel cell arrangement as claimed in any of claims 1 to 8 wherein there is a plurality
of inner vessels (24) or a single inner vessel (24) and a plurality of fuel cell modules
(12) are arranged within each inner vessel (24).
10. A fuel cell arrangement as claimed in any of claims 1 to 9 wherein the means (32)
to supply oxidant comprises a pump or a compressor (62), the compressor (62) is connected
to a turbine (64) and a portion of the unused oxidant is supplied to the turbine (64)
to drive the turbine (64)
11. A fuel cell arrangement as claimed in any of claims 1 to 10 wherein a first pressure
sensor (114) is arranged to measure the pressure in the space (30) between the at
least one inner vessel (24) and the outer pressure vessel (28), a second pressure
sensor (116) is arranged to measure the pressure in the space (26) between the at
least one inner vessel (24) and the at least one fuel cell module (12) and a monitor
(118) is arranged to compare the pressure measured by the first pressure sensor (114)
and the pressure measured by the second pressure sensor (116) to determine if there
is an overpressure due to component malfunction or burning of fuel in the fuel cell
module (12).
12. A fuel cell arrangement as claimed in claim 4, claim 5, claim 6 or claim 7 wherein
the at least one ejector (90), pump, fan, blower or turbomachine is arranged such
that it extends radially with respect to the axes of the at least one inner vessel
(24) with the inlet (90A) of the at least one ejector (90), pump, fan, blower or turbomachine
arranged at the radially inner end and the exhaust (90C) of the at least one ejector
(90), pump, fan, blower or turbomachine arranged at the radially outer end.
13. A fuel cell arrangement as claimed in claim 1 or claim 2 wherein the at least one
inner vessel (24) defines a space (30) with a wall member (24C) secured to the at
least one inner vessel (24), the means (32) to supply oxidant supplies oxidant into
the space (26B) between the at least one inner vessel (24) and the wall member (24C).
14. A fuel cell arrangement as claimed in claim 13 wherein the means (32) to supply oxidant
supplies oxidant from the space between the at least one inner vessel (24) and the
wall member to the space (26) within the at least one inner vessel (24).
15. A fuel cell arrangement as claimed in claim 14 wherein the means (32) to supply oxidant
supplies the oxidant from the space between the at least one inner vessel (24) and
the wall member to the space within the at least one inner vessel (24) through the
at least one ejector (90), pump, fan, blower or turbomachine.
16. A fuel cell arrangement as claimed in claim 13, claim 14 or claim 15 wherein the means
(32) to supply oxidant supplies oxidant from the space between the at least one inner
vessel (24) and the wall member to the space between the at least one inner vessel
(24) and the outer pressure vessel (28).
17. A fuel cell arrangement as claimed in claim 4, claim 5, claim 6, claim 7 or claim
15 wherein the at least one ejector (90), pump, fan, blower or turbomachine is arranged
such that it extends axially with respect to the axes of the of at least one inner
vessel (24) with the inlet (90A) of the at least one ejector (90), pump, fan, blower
or turbomachine arranged at one axial end of the inner vessel (24) and the exhaust
(90C) of the at least one ejector (90), pump, fan, blower or turbomachine arranged
at a central region of the inner vessel (24).
18. A fuel cell arrangement as claimed in claim 2 wherein the means (32) to supply oxidant
to the space (26) within the at least one inner vessel (24) supplies the oxidant through
the at least one ejector (90), pump, fan, blower or turbomachine to a space between
the at least one inner vessel (24) and the at least one fuel cell module (12).
19. A fuel cell arrangement as claimed in claim 18 wherein the at least one ejector (90),
pump, fan, blower or turbomachine supplies unused oxidant from the at least one fuel
cell module (12) to the space between the at least one inner vessel (24) and the at
least one fuel cell module (12).
20. A fuel cell arrangement as claimed in claim 19 wherein there are means to supply unused
oxidant from the at least one fuel cell module (12) to at least one combustor (78),
means to supply unused fuel from the at least one fuel cell module (12) to the at
least one combustor (78), and means to supply the products of the at least one combustor
(78) to the at least one ejector (90), pump, fan, blower or turbomachine.
21. A fuel cell arrangement as claimed in any of claims 1 to 20 wherein the fuel cells
(14) are solid oxide fuel cells.
1. Brennstoffzellenanordnung (110), umfassend mindestens ein Brennstoffzellenmodul (12),
wobei jedes Brennstoffzellenmodul (12) eine Mehrzahl an Brennstoffzellen (14) umfasst,
wobei jede Brennstoffzelle (14) eine Anodenelektrode (18), eine Kathodenelektrode
(22) und einen Elektrolyt (20) umfasst, wobei das mindestens eine Brennstoffzellenmodul
(12) hohl ist und mindestens eine Kammer (16) definiert, wobei das mindestens eine
Brennstoffzellenmodul (12) innerhalb mindestens eines inneren Behälters (24) angeordnet
ist, und der mindestens eine innere Behälter (24) innerhalb eines äußeren Druckbehälters
(28) angeordnet ist, Mittel (32) zum Zuführen von Oxidationsmittel zu den Kathodenelektroden
(22), Mittel (34) zum Zuführen von Brennstoff zu den Anodenelektroden (18), wobei
das Mittel (32) zum Zuführen von Oxidationsmittel Oxidationsmittel in einen Raum (30)
zwischen dem mindestens einen inneren Behälter (24) und dem äußeren Druckbehälter
(28) zuführt, dadurch gekennzeichnet, dass das Mittel (32) zum Zuführen von Oxidationsmittel zum Zuführen von Oxidationsmittel
in den Raum (26) innerhalb des inneren Behälters (24) angeordnet ist, der Raum (26)
innerhalb des inneren Behälters (24) zum Zuführen von Oxidationsmittel zu den Kathodenelektroden
(22) angeordnet ist, das Mittel (34) zum Zuführen von Brennstoff zum Zuführen von
Brennstoff in die mindestens eine Kammer (16) in dem mindestens einen Brennstoffzellenmodul
(12) angeordnet ist, die mindestens eine Kammer (16) in dem mindestens einen Brennstoffzellenmodul
(12) zum Zuführen von Brennstoff zu den Anodenelektroden (18) des mindestens einen
Brennstoffzellenmoduls (12) angeordnet ist, Mittel (84, 86, 88, 90) zum Rezirkulieren
von ungebrauchtem Oxidationsmittel von den Kathodenelektroden (22) zurück zu den Kathodenelektroden
(22), und das Mittel (32) zum Zuführen von Oxidationsmittel zu den Kathodenelektroden
(22) derart angeordnet ist, dass der Druck in dem Raum (30) zwischen dem äußeren Druckbehälter
(28) und dem mindestens einen inneren Behälter (24) den Druck in dem mindestens einen
inneren Behälter (24) übersteigt, sodass der mindestens eine innere Behälter (24)
einer Drucklast ausgesetzt ist.
2. Brennstoffzellenanordnung nach Anspruch 1, wobei das Mittel (84, 86, 88, 90) zum Rezirkulieren
von ungebrauchtem Oxidationsmittel von den Kathodenelektroden (22) zurück zu den Kathodenelektroden
(22) mindestens ein/-e/-n Ejektor (90), Pumpe, Leitrad, Gebläse oder Turbomaschine
umfasst.
3. Brennstoffzellenanordnung nach Anspruch 2, wobei das Mittel (32) zum Zuführen von
Oxidationsmittel das Oxidationsmittel von dem Raum (30) zwischen dem mindestens einen
inneren Behälter (24) und dem äußeren Druckbehälter (28) in den mindestens einen inneren
Behälter (24) zuführt.
4. Brennstoffzellenanordnung nach Anspruch 3, wobei das Mittel (32) zum Zuführen von
Oxidationsmittel das Oxidationsmittel von dem Raum (30) zwischen dem mindestens einen
inneren Behälter (24) und dem äußeren Druckbehälter (28) in den mindestens einen inneren
Behälter (24) durch das/den/die mindestens ein/-e/-n Ejektor (90), Pumpe, Leitrad,
Gebläse oder Turbomaschine zuführt.
5. Brennstoffzellenanordnung nach Anspruch 3, wobei das Mittel (32) zum Zuführen von
Oxidationsmittel einen ersten Teil (36B) des Oxidationsmittel durch mindestens einen
Durchflussbegrenzer (102) in den Raum (30) zwischen dem mindestens einen inneren Behälter
(24) und dem äußeren Druckbehälter (28) zuführt, das Mittel (32) zum Zuführen von
Oxidationsmittel einen zweiten Teil (36A) des Oxidationsmittels in den mindestens
einen inneren Behälter (24) zuführt, das Mittel (32) zum Zuführen von Oxidationsmittel
den zweiten Teil (36A) des Oxidationsmittel in den mindestens einen inneren Behälter
(24) durch das/die/den mindestens ein/e/n Ejektor (90), Pumpe, Leitrad, Gebläse oder
Turbomaschine zuführt, das Mittel (32) zum Zuführen von Oxidationsmittel den ersten
Teil (36B) Oxidationsmittel von dem Raum (30) zwischen dem äußeren Druckbehälter (28)
und dem mindestens einen inneren Behälter (24) in den mindestens einen inneren Behälter
(24) durch mindestens einen Durchflussbegrenzer (104) und mindestens ein/-e/-n Ejektor
(90), Pumpe, Leitrad, Gebläse oder Turbomaschine zuführt.
6. Brennstoffzellenanordnung nach Anspruch 3, wobei das Mittel (32) zum Zuführen von
Oxidationsmittel das Oxidationsmittel von dem Raum (30) zwischen dem mindestens einen
inneren Behälter (24) und dem äußeren Druckbehälter (28) in einen Raum (26) zwischen
dem inneren Behälter (24) und dem mindestens einen Brennstoffzellenmodul (12) zuführt,
Mittel vorhanden sind, um ungebrauchtes Oxidationsmittel in den Raum (26) zwischen
dem mindestens einen inneren Behälter (24) und dem mindestens einen Brennstoffzellenmodul
(12) zuzuführen, das Mittel zum Zuführen von ungebrauchtem Oxidationsmittel in den
Raum (26) zwischen dem mindestens einen inneren Behälter (24) und dem mindestens einen
Brennstoffzellenmodul (12) das/die/den mindestens ein/-e/-n Ejektor (90), Pumpe, Leitrad,
Gebläse oder Turbomaschine umfasst.
7. Brennstoffzellenanordnung nach Anspruch 6, wobei das Mittel zum Zuführen von ungebrauchtem
Oxidationsmittel in den Raum zwischen dem mindestens einen inneren Behälter (24) und
dem mindestens einen Brennstoffzellenmodul (12) mindestens eine Brennkammer (78),
Mittel zum Zuführen von ungebrauchtem Oxidationsmittel zu der mindestens einen Brennkammer
(78) und Mittel zum Zuführen von ungebrauchtem Brennstoff zu der mindestens einen
Brennkammer (78) und Mittel zum Zuführen der Produkte der mindestens einen Brennkammer
(78) zu dem/der mindestens einen/-r Ejektor (90), Pumpe, Leitrad, Gebläse oder Turbomaschine
umfasst.
8. Brennstoffzellenanordnung nach einem der Ansprüche 1 bis 7, wobei Isolierung (50)
an der Innenfläche des mindestens einen inneren Behälters (24) bereitgestellt ist,
ein Raum (52) zwischen der Isolierung (50) und der Innenfläche des mindestens einen
inneren Behälters (24) bereitgestellt ist, Isolierung (54) an der Außenfläche des
mindestens einen inneren Behälters (24) bereitgestellt ist, ein Raum zwischen der
Isolierung (54) und der Außenfläche des mindestens einen inneren Behälters (24) bereitgestellt
ist, Isolierung (48) an der Außenfläche des äußeren Druckbehälters (28) bereitgestellt
ist.
9. Brennstoffzellenanordnung nach einem der Ansprüche 1 bis 8, wobei eine Mehrzahl an
inneren Behältern (24) oder ein einzelner innerer Behälter (24) vorhanden ist, und
eine Mehrzahl an Brennstoffzellenmodulen (12) innerhalb jedes inneren Behälters (24)
angeordnet ist.
10. Brennstoffzellenanordnung nach einem der Ansprüche 1 bis 9, wobei das Mittel (32)
zum Zuführen von Oxidationsmittel eine Pumpe oder einen Kompressor (62) umfasst, wobei
der Kompressor (62) mit einer Turbine (64) verbunden ist, und ein Teil des ungebrauchten
Oxidationsmittels zu der Turbine (64) zugeführt wird, um die Turbine (64) anzutreiben.
11. Brennstoffzellenanordnung nach einem der Ansprüche 1 bis 10, wobei ein erster Drucksensor
(114) zum Messen des Drucks in dem Raum (30) zwischen dem mindestens einen inneren
Behälter (24) und dem äußeren Druckbehälter (28) angeordnet ist, ein zweiter Drucksensor
(116) zum Messen des Drucks in dem Raum (26) zwischen dem mindestens einen inneren
Behälter (24) und dem mindestens einen Brennstoffzellenmodul (12) angeordnet ist,
und ein Überwachungsgerät (118) zum Vergleichen des von dem ersten Drucksensor (114)
gemessenen Drucks und des von dem zweiten Drucksensor (116) gemessenen Drucks angeordnet
ist, um zu bestimmen, ob aufgrund einer Komponentenfehlfunktion oder des Verbrennens
von Brennstoff in dem Brennstoffzellenmodul (12) ein Überdruck vorliegt.
12. Brennstoffzellenanordnung nach Anspruch 4, Anspruch 5, Anspruch 6 oder Anspruch 7,
wobei das/die/der mindestens eine Ejektor (90), Pumpe, Leitrad, Gebläse oder Turbomaschine
derart angeordnet ist, dass es/sie/er sich in Bezug auf die Achsen des mindestens
einen inneren Behälters (24) radial erstreckt, wobei der Einlass (90A) von dem/der
mindestens eine/-n Ejektor (90), Pumpe, Leitrad, Gebläse oder Turbomaschine an dem
radial inneren Ende angeordnet ist, und der Auslass (90C) von dem/der mindestens eine/-n
Ejektor (90), Pumpe, Leitrad, Gebläse oder Turbomaschine an dem radial äußeren Ende
angeordnet ist.
13. Brennstoffzellenanordnung nach Anspruch 1 oder Anspruch 2, wobei der mindestens eine
innere Behälter (24) einen Raum (30) mit einem Wandelement (24C), an dem mindestens
einen inneren Behälter (24) befestigt, definiert, das Mittel (32) zum Zuführen von
Oxidationsmittel Oxidationsmittel in den Raum (26B) zwischen dem mindestens einen
inneren Behälter (24) und dem Wandelement (24C) zuführt.
14. Brennstoffzellenanordnung nach Anspruch 13, wobei das Mittel (32) zum Zuführen von
Oxidationsmittel Oxidationsmittel von dem Raum zwischen dem mindestens einen inneren
Behälter (24) und dem Wandelement zu dem Raum (26) innerhalb des mindestens einen
inneren Behälters (24) zuführt.
15. Brennstoffzellenanordnung nach Anspruch 14, wobei das Mittel (32) zum Zuführen von
Oxidationsmittel das Oxidationsmittel von dem Raum zwischen dem mindestens einen inneren
Behälter (24) und dem Wandelement zu dem Raum innerhalb des mindestens einen inneren
Behälters (24) durch mindestens ein/-e/-n Ejektor (90), Pumpe, Leitrad, Gebläse oder
Turbomaschine zuführt.
16. Brennstoffzellenanordnung nach Anspruch 13, Anspruch 14 oder Anspruch 15, wobei das
Mittel (32) zum Zuführen von Oxidationsmittel Oxidationsmittel von dem Raum zwischen
dem mindestens einen inneren Behälter (24) und dem Wandelement zu dem Raum zwischen
dem mindestens einen inneren Behälter (24) und dem äußeren Druckbehälter (28) zuführt.
17. Brennstoffzellenanordnung nach Anspruch 4, Anspruch 5, Anspruch 6, Anspruch 7 oder
Anspruch 15, wobei das/die/der mindestens eine Ejektor (90), Pumpe, Leitrad, Gebläse
oder Turbomaschine derart angeordnet ist, dass es/sie/er sich axial in Bezug auf die
Achsen des mindestens einen inneren Behälters (24) erstreckt, wobei der Einlass (90A)
des/der mindestens eine/-n Ejektors (90), Pumpe, Leitrads, Gebläses oder Turbomaschine
an einem axialen Ende des inneren Behälters (24) angeordnet ist, und der Auslass (90C)
der/des mindestens eine/-n Ejektors (90), Pumpe, Leitrads, Gebläses oder Turbomaschine
an einer zentralen Region des inneren Behälters (24) angeordnet ist.
18. Brennstoffzellenanordnung nach Anspruch 2, wobei das Mittel (32) zum Zuführen von
Oxidationsmittel in den Raum (26) innerhalb des mindestens einen inneren Behälters
(24) das Oxidationsmittel durch das/die/den mindestens ein/-e/-n Ejektor (90), Pumpe,
Leitrad, Gebläse oder Turbomaschine in einen Raum zwischen dem mindestens einen inneren
Behälter (24) und dem mindestens einen Brennstoffzellenmodul (12) zuführt.
19. Brennstoffzellenanordnung nach Anspruch 18, wobei das/die/der mindestens ein/-e Ejektor
(90), Pumpe, Leitrad, Gebläse oder Turbomaschine ungebrauchtes Oxidationsmittel von
dem mindestens einen Brennstoffzellenmodul (12) in den Raum zwischen dem mindestens
einen inneren Behälter (24) und dem mindestens einen Brennstoffzellenmodul (12) zuführt.
20. Brennstoffzellenanordnung nach Anspruch 19, wobei Mittel zum Zuführen ungebrauchten
Oxidationsmittels von dem mindestens einen Brennstoffzellenmodul (12) zu der mindestens
einen Brennkammer (78), Mittel zum Zuführen ungebrauchten Brennstoffs von dem mindestens
einen Brennstoffzellenmodul (12) zu der mindestens einen Brennkammer (78) und Mittel
zum Zuführen der Produkte der mindestens einen Brennkammer (78) zu dem/der mindestens
einen Ejektor (90), Pumpe, Leitrad, Gebläse oder Turbomaschine vorhanden sind.
21. Brennstoffzellenanordnung nach einem der Ansprüche 1 bis 20, wobei die Brennstoffzellen
(14) Festoxidbrennstoffzellen sind.
1. Agencement de piles à combustible (110) comprenant au moins un module de piles à combustible
(12), chaque module de piles à combustible (12) comprend une pluralité de piles à
combustible (14), chaque pile à combustible (14) comprend une électrode anode (18),
une électrode cathode (22) et une électrolyte (20), l'au moins un module de piles
à combustible (12) est creux et définit au moins une chambre (16), l'au moins un module
de piles à combustible (12) est agencé à l'intérieur d'au moins une cuve interne (24)
et l'au moins une cuve interne (24) est agencée à l'intérieur d'une cuve sous pression
externe (28), un moyen (32) pour délivrer l'oxydant aux électrodes cathodes (22),
un moyen (34) pour délivrer le carburant aux électrodes anodes (18), le moyen (32)
pour délivrer l'oxydant délivre l'oxydant dans un espace (30) entre l'au moins une
cuve interne (24) et la cuve sous pression externe (28), caractérisé en ce que le moyen (32) pour délivrer l'oxydant est agencé pour délivrer l'oxydant dans l'espace
(26) à l'intérieur de la cuve interne (24), l'espace (26) à l'intérieur de la cuve
interne (24) est agencé pour délivrer l'oxydant aux électrodes cathodes (22), le moyen
(34) pour délivrer le carburant est agencé pour délivrer le carburant à l'au moins
une chambre (16) dans l'au moins un module de piles à combustible (12), l'au moins
une chambre (16) dans l'au moins un module de piles à combustible (12) est agencée
pour délivrer le carburant aux électrodes anodes (18) de l'au moins un module de piles
à combustible (12), un moyen (84, 86, 88, 90) pour renvoyer l'oxydant inutilisé en
provenance des électrodes cathodes (22) vers les électrodes cathodes (22) et le moyen
(32) pour délivrer l'oxydant aux électrodes cathodes (22) est agencé de manière à
ce que la pression dans l'espace (30) entre la cuve sous pression externe (28) et
l'au moins une cuve interne (24) soit supérieure à la pression dans l'au moins une
cuve interne (24) de manière à ce que l'au moins une cuve interne (24) soit soumise
à une charge de compression.
2. Agencement de piles à combustible selon la revendication 1, dans lequel le moyen (84,
86, 88, 90) pour renvoyer l'oxydant inutilisé en provenance des électrodes cathodes
(22) vers les électrodes cathodes (22) comprend au moins un élément parmi un éjecteur
(90), une pompe, un ventilateur, un soufflante ou une turbomachine.
3. Agencement de piles à combustible selon la revendication 2, dans lequel le moyen (32)
pour délivrer l'oxydant délivre l'oxydant depuis l'espace (30) entre l'au moins une
cuve interne (24) et la cuve sous pression externe (28) dans l'au moins une cuve interne
(24).
4. Agencement de piles à combustible selon la revendication 3, dans lequel le moyen (32)
pour délivrer l'oxydant délivre l'oxydant depuis l'espace (30) entre l'au moins une
cuve interne (24) et la cuve sous pression externe (28) dans l'au moins une cuve interne
(24) au travers de l'au moins un élément parmi un éjecteur (90), une pompe, un ventilateur,
une soufflante ou une turbomachine.
5. Agencement de piles à combustible selon la revendication 3, dans lequel le moyen (32)
pour délivrer l'oxydant délivre une première partie (36B) de l'oxydant au travers
d'au moins un restricteur (102) dans l'espace (30) entre l'au moins une cuve interne
(24) et la cuve sous pression externe (28), le moyen (32) pour délivrer l'oxydant
délivre une seconde partie (36A) de l'oxydant dans l'au moins une cuve interne (24),
le moyen (32) pour délivrer l'oxydant délivre la seconde partie (36A) de l'oxydant
dans l'au moins une cuve interne (24) au travers de l'au moins un élément parmi un
éjecteur (90), une pompe, un ventilateur, une soufflante ou une turbomachine, le moyen
(32) pour délivrer l'oxydant délivre la première partie (36B) de l'oxydant depuis
l'espace (30) entre la cuve sous pression externe (28) et l'au moins une cuve interne
(24) dans l'au moins une cuve interne (24) au travers d'au moins un restricteur (104)
et au moins un élément parmi un éjecteur (90), une pompe, un ventilateur, une soufflante
ou une turbomachine.
6. Agencement de piles à combustible selon la revendication 3, dans lequel le moyen (32)
pour délivrer l'oxydant délivre l'oxydant depuis l'espace (30) entre l'au moins une
cuve interne (24) et la cuve sous pression externe (28) dans un espace (26) entre
la cuve interne (24) et l'au moins un module de piles à combustible (12), un moyen
est prévu pour délivrer l'oxydant inutilisé dans un espace (26) entre l'au moins une
cuve interne (24) et l'au moins un module de piles à combustible (12), le moyen pour
délivrer l'oxydant inutilisé dans un espace (26) entre l'au moins une cuve interne
(24) et l'au moins un module de piles à combustible (12) comprend l'au moins un élément
parmi un éjecteur (90), une pompe, un ventilateur, une soufflante ou une turbomachine.
7. Agencement de piles à combustible selon la revendication 6 dans lequel le moyen pour
délivrer l'oxydant inutilisé dans l'espace entre l'au moins une cuve interne (24)
et l'au moins un module de piles à combustible (12) comprend au moins une chambre
de combustion (78), un moyen pour délivrer l'oxydant inutilisé à l'au moins une chambre
de combustion (78) et un moyen pour délivrer le carburant inutilisé à l'au moins une
chambre de combustion (78) et un moyen pour délivrer les produits de l'au moins une
chambre de combustion (78) à l'au moins un élément parmi un éjecteur (90), une pompe,
un ventilateur, une soufflante ou une turbomachine.
8. Agencement de piles à combustible selon l'une quelconque des revendications 1 à 7
dans lequel une isolation (50) est prévue sur la surface interne de l'au moins une
cuve interne (24), un espace (52) est prévu entre l'isolation (50) et la surface interne
de l'au moins une cuve interne (24), une isolation (54) est prévue sur la surface
externe de l'au moins une cuve interne (24), un espace est prévu entre l'isolation
(54) et la surface externe de l'au moins une cuve interne (24), une isolation (48)
est prévue sur la surface externe de la cuve sous pression externe (28).
9. Agencement de piles à combustible selon l'une quelconque des revendications 1 à 8
dans lequel sont prévues une pluralité de cuves internes (24) ou une seule cuve interne
(24) et une pluralité de modules de piles à combustible (12) sont agencés à l'intérieur
de chaque cuve interne (24).
10. Agencement de piles à combustible selon l'une quelconque des revendications 1 à 9
dans lequel le moyen (32) pour délivrer l'oxydant comprend une pompe ou un compresseur
(62), le compresseur (62) est connecté à une turbine (64) et une partie de l'oxydant
inutilisé est délivrée à la turbine (64) pour entraîner la turbine (64).
11. Agencement de piles à combustible selon l'une quelconque des revendications là 10
dans lequel un premier capteur de pression (114) est agencé pour mesurer la pression
dans l'espace (30) entre l'au moins une cuve interne (24) et la cuve sous pression
externe (28), un second capteur de pression (116) est agencé pour mesurer la pression
dans l'espace (26) entre l'au moins une cuve interne (24) et l'au moins un module
de piles à combustible (12) et un contrôleur (118) est agencé pour comparer la pression
mesurée par le premier capteur de pression (114) et la pression mesurée par le second
capteur de pression (116) afin de déterminer s'il existe une surpression due à un
dysfonctionnement de composant ou à un brûlage de carburant dans le module de piles
à combustible (12).
12. Agencement de piles à combustible selon la revendication 4, 5, 6 ou 7 dans lequel
l'au moins un élément parmi un éjecteur (90), une pompe, un ventilateur, une soufflante
ou une turbomachine est agencé de manière à s'étendre dans le sens radial par rapport
aux axes de l'au moins une cuve interne (24) avec l'admission (90A) de l'au moins
un élément parmi un éjecteur (90), une pompe, un ventilateur, une soufflante ou une
turbomachine agencée au niveau de l'extrémité radialement interne et l'échappement
(90C) de l'au moins un élément parmi un éjecteur (90), une pompe, un ventilateur,
une soufflante ou une turbomachine agencé au niveau de l'extrémité radialement externe.
13. Agencement de piles à combustible selon la revendication 1 ou 2 dans lequel l'au moins
une cuve interne (24) définit un espace (30) avec un élément de paroi (24C) fixé à
l'au moins une cuve interne (24), le moyen (32) pour délivrer l'oxydant délivre l'oxydant
dans l'espace (26B) entre l'au moins une cuve interne (24) et l'élément de paroi (24C).
14. Agencement de piles à combustible selon la revendication 13, dans lequel le moyen
(32) pour délivrer l'oxydant délivre l'oxydant depuis l'espace (30) entre l'au moins
une cuve interne (24) et l'élément de paroi dans l'espace (26) à l'intérieur de l'au
moins une cuve interne (24).
15. Agencement de piles à combustible selon la revendication 14, dans lequel le moyen
(32) pour délivrer l'oxydant délivre l'oxydant depuis l'espace entre l'au moins une
cuve interne (24) et l'élément de paroi dans l'espace à l'intérieur de l'au moins
une cuve interne (24) au travers de l'au moins un élément parmi un éjecteur (90),
une pompe, un ventilateur, une soufflante ou une turbomachine.
16. Agencement de piles à combustible selon la revendication 13, 14 ou 15, dans lequel
le moyen (32) pour délivrer l'oxydant délivre l'oxydant depuis l'espace entre l'au
moins une cuve interne (24) et l'élément de paroi dans l'espace entre l'au moins une
cuve interne (24) et la cuve sous pression externe (28).
17. Agencement de piles à combustible selon la revendication 4, 5, 6, 7 ou 15 dans lequel
l'au moins un élément parmi un éjecteur (90), une pompe, un ventilateur, une soufflante
ou une turbomachine est agencé de manière à s'étendre dans le sens axial par rapport
aux axes de l'au moins une cuve interne (24) avec l'admission (90A) de l'au moins
un élément parmi un éjecteur (90), une pompe, un ventilateur, une soufflante ou une
turbomachine agencée au niveau d'une extrémité axiale de la cuve interne (24) et l'échappement
(90C) de l'au moins un élément parmi un éjecteur (90), une pompe, un ventilateur,
une soufflante ou une turbomachine agencé au niveau d'une zone centrale de la cuve
interne (24).
18. Agencement de piles à combustible selon la revendication 2 dans lequel le moyen (32)
pour délivrer l'oxydant dans l'espace (26) à l'intérieur de l'au moins une cuve interne
(24) délivre l'oxydant au travers de l'au moins un élément parmi un éjecteur (90),
une pompe, un ventilateur, une soufflante ou une turbomachine dans un espace entre
l'au moins une cuve interne (24) et l'au moins un module de piles à combustible (12).
19. Agencement de piles à combustible selon la revendication 18 dans lequel l'au moins
un élément parmi un éjecteur (90), une pompe, un ventilateur, une soufflante ou une
turbomachine délivre l'oxydant inutilisé en provenance de l'au moins un module de
piles à combustible (12) dans un espace entre l'au moins une cuve interne (24) et
l'au moins un module de piles à combustible (12).
20. Agencement de piles à combustible selon la revendication 19 dans lequel est prévu
un moyen pour délivrer l'oxydant inutilisé en provenance de l'au moins un module de
piles à combustible (12) à au moins une chambre de combustion (78), un moyen pour
délivrer le carburant inutilisé en provenance de l'au moins un module de piles à combustible
(12) à au moins une chambre de combustion (78) et un moyen pour délivrer les produits
de l'au moins une chambre de combustion (78) à l'au moins un élément parmi un éjecteur
(90), une pompe, un ventilateur, une soufflante ou une turbomachine.
21. Agencement de piles à combustible selon l'une quelconque des revendications 1 à 20
dans lequel les piles à combustible (14) sont des piles à combustible à oxyde solide.