Technical field
[0001] The present invention relates to a method and to a mobile device for collecting biomass
and for producing a pyrolysis liquid and/or char from the biomass. The biomass liquid
may e.g. comprise pyrolysis oil or tar. A novel fast pyrolysis method and apparatus
is also disclosed.
Background of the invention
[0002] Conventional pyrolysis is a heated process in the range of 200-700°C that converts
biomass into pyrolysis liquid, char, and gas, usually in the absence of oxygen and
focused on obtaining char in high yield. Fast pyrolysis, also referred to as flash
pyrolysis, on the other hand is a process, in which biomass is quickly heated to a
controlled pyrolysis temperature, and in which the gas phase is cooled quickly, whereby
it partly condenses to pyrolysis liquid. This method generally obtains a higher yield
of liquid and thus seeks to minimize the yield of the other two products. When the
biomass decomposes at the elevated pyrolysis temperature, e.g. 450-600°C, three primary
products are formed: gas, pyrolysis liquid and char.
[0003] Various methods and apparatus for producing gas or liquid from organic material have
been proposed in the prior art.
US 5,413,227 discloses an ablative pyrolysis process in a vortex reactor system, and
WO 03/057800 discloses an ablative thermolysis reactor including rotating surfaces.
WO 92/09671 discloses a method and apparatus employing a vessel, which forms a torus or helix,
through which feedstock can be conveyed at a velocity which sustains the feedstock
against the outer periphery of the internal surface of the vessel as it transits the
vessel.
WO 01/34725 discloses an example of flash-pyrolysis in a cyclone. Further examples of pyrolysis
apparatus are provided in
WO 88/09364 and
CA 2 365 785.
[0005] Despite the achievements in pyrolysis and fast pyrolysis, it has been found that
one barrier to efficient exploitation of biomass in fuel production is the cost conferred
by collection and transportation of the biomass. Biomass is usually collected from
growth sites, where it is loaded onto a truck or trailer for transportation thereof
to a pyrolysis facility. Due to the relatively low concentration of energy per volume
of biomass, production of even small amounts of usable pyrolysis liquid requires collection,
transportation and storage of large volumes of biomass. Additionally, though the prior
art pyrolysis systems are useful for many purposes, they have been found to have certain
limitations, as some of them are bulky, some have a low efficiency, and some require
adjustment of e.g. rotor blades, which reduces overall cost efficiency.
Summary of the invention
[0006] It is an object of preferred embodiments of the present invention to provide a method
and a mobile unit for collecting biomass which improves efficiency in biomass collection
and exploitation. It is a further object of preferred embodiments of the present invention
to provide a pyrolysis method and apparatus, which allow for a compact and efficient
pyrolysis assembly.
[0007] In a first aspect, the invention provides a method for collecting biomass and for
producing a pyrolysis liquid from the biomass, comprising the steps of:
- collecting the biomass from a growth site, such as a field or forest, by means of
a mobile unit;
- continuously feeding the biomass into a pyrolysis apparatus accommodated by the mobile
unit, as the mobile unit traverses the growth site;
- decomposing the biomass into pyrolysis liquid, char and pyrolysis gas, the step of
decomposing being carried out in the pyrolysis apparatus;
- separating the pyrolysis liquid from the char and pyrolysis gas and collecting the
pyrolysis liquid, the method being characterised in that the step of decomposing the
biomass is carried out, while further biomass is simultaneously being collected from
the growth site by means of the mobile unit.
[0008] In a second aspect, the invention provides a mobile unit for collecting biomass and
for producing pyrolysis liquid from the biomass, the unit comprising:
- a pyrolysis apparatus for decomposing the biomass into pyrolysis liquid, char and
pyrolysis gas;
- a biomass collector for collecting the biomass from a growth site;
- a biomass conveyor for continuously feeding the biomass into the pyrolysis apparatus;
- a separation system for separating the pyrolysis liquid from the char and pyrolysis
gas,
the mobile unit being characterised in that the biomass collector, the biomass conveyor
and the pyrolysis apparatus are operable such that the pyrolysis apparatus can decompose
the biomass, while further biomass is simultaneously collected from the growth site
by means of the biomass collector.
[0009] The pyrolysis takes place while further biomass is simultaneously being collected
and continuously fed to the pyrolysis apparatus. Hence, pyrolysis takes place while
the mobile unit traverses the growth site, and while biomass is being collected simultaneously.
Transportation of relatively large volumes of biomass from the growth site to a remote
pyrolysis facility may thus be avoided. As pyrolysis liquid has a significantly higher
energy concentration per volume than biomass, a certain amount of energy requires
less space when present in the form of pyrolysis liquid than when present in the form
of biomass, and the energy may thus be more conveniently conveyed to the intended
consumer in the form of pyrolysis liquid. Pyrolysis liquid may be transported from
the growth site to the intended consumer or to a storage facility by means of tank
trucks or vessels (e.g. ISO tank containers), or conveyed through pipe lines under
adequate pumping action.
[0010] The pyrolysis apparatus may include any apparatus known per se, such as e.g. any
one of the apparatus disclosed in
US 5,413,227,
WO 03/057800,
WO 92/09671,
WO 01/34725,
WO 88/09364 or
CA 2 365 785. The present inventors have devised an alternative and novel pyrolysis apparatus,
which is particularly well suited for the purpose of a mobile pyrolysis unit, and
which will be described below.
[0011] The mobile unit may comprise a wheeled support structure. A coupling system may be
provided for coupling the unit to a power-driven vehicle. Alternatively, the mobile
unit may incorporate an engine or motor, so that the mobile unit is self-propelled.
The engine or motor of the mobile unit may utilize the pyrolysis gas, pyrolysis liquid
and/or char as fuel, whereby the need for a separate fuel source of the mobile unit
may be reduced or even eliminated. Likewise, in embodiments of the invention, in which
the mobile unit is not self-propelled, the propelling drive means, e.g. tractor or
truck, may utilize the pyrolysis gas, pyrolysis liquid and/or char as a fuel source.
[0012] In the present context, biomass is to be understood as any organic matter, such as
plants and animals or residues thereof, such as wood, agricultural and forestry process
waste materials, or industrial, human and animal waste, including petrochemical-based
waste feedstock. The chemical energy stored in plants and animals derives from solar
energy photosynthesis and can be converted to usable liquid, such as oil or tar, in
a heated process, i.e. pyrolysis.
[0013] The term pyrolysis liquid is to be understood as any organic liquid derived from
biomass in a pyrolysis process, such as bio-oil or tar, the components having a boiling
point in the range 0-500°C. Pyrolysis vapour is to be understood as any vapour or
gas derived from biomass in a pyrolysis process, such as vaporized pyrolysis liquid.
[0014] To efficiently cool char from the pyrolysis process before possible ejection thereof
from the mobile unit, the process may include the step of collecting dirt from the
growth site and mixing the dirt with the char to thereby cool the char. In other words,
dirt may be utilized as a cooling source for waste matter deriving from pyrolysis,
and the need for e.g. water cooling may be eliminated. It will hence be appreciated
that the mobile unit may comprise a dirt collector for collecting dirt from the growth
site and a mixer for mixing the dirt with the char to thereby cool the char, as well
as a dirt and char ejector for ejecting the mix or slurry of char and dirt from the
mobile unit.
[0015] A press for pilletizing and collecting the char as a bi-product may be provided.
[0016] The mix of char and dirt may be fed into a furrow formed by appropriate means of
the mobile unit, such as by a tine. The tine may be arranged such with respect to
the dirt and char ejector that the mix of char and dirt can be fed into the furrow
during use of the mobile unit. Subsequently, the char mix may be covered with dirt
to enhance decomposition of the char.
[0017] At least a portion of the pyrolysis gas produced by the pyrolysis process may be
combusted In a furnace forming part of the pyrolysis apparatus, the furnace producing
heat for the pyrolysis process. Exhaust fume of the furnace may be expelled via a
fume outlet of the furnace. In addition to pyrolysis gas, at least a portion of the
char may be combusted in the furnace.
[0018] Prior to feeding of the biomass into the pyrolysis apparatus, the biomass may be
fed to a pre-heating device, in which it is preheated and possibly dried before it
enters the pyrolysis apparatus. The exhaust fume produced in the furnace may be utilized
as a heat source in the pre-heating device. Exhaust fume from the furnace may also
be guided to a first heat exchanger, in which it heats intake air for the furnace.
Alternatively or additionally, a conduit, which is connectable to an exhaust outlet
of the power-driven vehicle or an exhaust outlet of the engine of the mobile unit,
may be provided to allow exhaust gas of the vehicle or of the engine as a heat source
in the first heat exchanger or in the process of pre-heating and/or drying the biomass.
[0019] The mobile unit may advantageously include a shredder for shredding the collected
biomass upstream of the pyrolysis apparatus, e.g. upstream of the pre-heating device.
A biomass buffer may be included to allow more biomass to be collected than what is
being processed in the pyrolysis apparatus. For example, operation of the collector
may be interrupted e.g. for manoeuvring the vehicle or for inspection without interruption
of the pyrolysis apparatus. In one embodiment, the pre-heating device serves as the
biomass buffer.
[0020] At the step of separating the pyrolysis liquid from the char and pyrolysis gas, the
pyrolysis liquid and at least a portion of the pyrolysis gas may be conveyed to a
separator for separating the pyrolysis liquid from the pyrolysis gas, and at least
a portion of the separated pyrolysis gas may be conveyed back to the furnace as a
fuel source therein. Further, at least a portion of the separated liquid may be conveyed
back to the pyrolysis apparatus as a cooling source in a pyrolysis condenser. The
condenser may be integrated in the pyrolysis apparatus, or it may be constitute a
separate unit, which does not form part of the pyrolysis apparatus. Before the liquid
enters the condenser, it is preferably cooled in a second heat exchanger, which may
utilize air as a cooling source. The air, which exits the second heat exchanger, may
be mixed with the intake air for the furnace upstream or downstream of the first heat
exchanger, e.g. to improve combustion efficiency in the furnace.
[0021] In one embodiment, the pyrolysis apparatus comprises a centrifuge defining a centrifuge
chamber, and at the step of decomposing the biomass, the method of the invention may
comprise the step imparting rotation on biomass distributed in gas volume in the centrifuge,
whereby the biomass is forced towards an outer wall of the centrifuge chamber. The
outer wall of the centrifuge chamber is maintained at a temperature of 350 - 700°C
to effect a pyrolysis process at or near the outer wall of the centrifuge chamber,
whereby the biomass decomposes into the pyrolysis liquid, pyrolysis gas and char,
the gas and liquid being on gaseous form.
[0022] In a particularly compact embodiment of the pyrolysis apparatus, the condenser is
integrated in the pyrolysis apparatus. In this embodiment, the centrifuge chamber
of the pyrolysis apparatus is delimited by an inner wall and an outer wall, and an
outlet is provided for feeding biomass into the centrifuge chamber. A rotor is arranged
to impart rotation on the biomass in the centrifuge chamber to force the biomass towards
the outer wall of the centrifuge chamber under the action of centrifugal forces. A
heating system is included for maintaining the outer wall of the centrifuge chamber
at a temperature of 350 - 700°C to effect the pyrolysis process at or near the outer
wall of the centrifuge chamber and to thereby decompose the biomass into char, pyrolysis
gas and pyrolysis vapours, which can be condensed into pyrolysis liquid in the condenser.
The heating system may include the furnace as describe above, the centrifuge being
preferably arranged coaxially within the furnace, whereby heat for the pyrolysis process
is transported across the outer wall of the centrifuge by conduction. The inner wall
of the centrifuge chamber may be permeable to the pyrolysis vapours and gas, so that
the condenser may be arranged centrally within the centrifuge chamber.
[0023] The present pyrolysis method and apparatus confer several benefits. No inert gas
for fluidization and heat transport is required, thereby reducing overall dimensions
of the apparatus at a given capacity. Further, residence time of solids and vapours
are decoupled from heat transfer. Additionally, no sand is needed as heat transport
or heat transmission medium, thereby reducing wear and tear and eliminating the need
for subsequent separation of sand and char. Thanks to the rotational motion Imparted
on the biomass in the centrifuge chamber, the area of the outer wall of the centrifuge
chamber is in contact with the biomass, while centrifugal forces ensure an even pressure
of biomass towards the outer wall, thereby ensuring improved utilization of the reactive
surface in the pyrolysis apparatus and consequently higher specific capacity. As char
is forced towards the outer wall of the centrifuge chamber, gas separation may occur
within the centrifuge chamber, i.e. within the pyrolysis chamber itself. As the char
particles are forced towards the wall by centrifugal forces and gas may be filtered
by passage from the outer wall of the centrifuge chamber through a layer of biomass
to an inner wall of the centrifuge chamber, the need for a separate cyclone may be
eliminated. Additionally, as biomass is forced towards the reactive surface, i.e.
the outer wall of the centrifuge chamber, by centrifugal forces, the need for additional
means for imparting the biomass is reduced, thereby reducing wear and tear and consequently
maintenance costs. Thanks to the rotational layout of the centrifuge chamber and rotor,
there is no need to adjust e.g. angles of blades or distance between blades and a
tube wall, as in certain prior art devices. Further, contact between metal parts may
be eliminated, and contact between metal parts and biomass strongly reduced, as the
rotating motion is imparted on the biomass particles mainly as a result of a similar
movement in the gas phase originating from the motion of the rotor. Operation is accordingly
less vulnerable to changes in biomass material properties, such as particle size distribution
and humidity as well as to fluctuations of biomass feeding speed to the reactor. As
char is conveyed away from the reactor, preferably continuously, a high heat conduction
between the reactor wall, i.e. the outer wall of the centrifuge chamber, and the biomass
material is ensured, resulting in improved efficiency and improved pyrolysis liquid
yield. The improved pyrolysis yield is conferred by a steep temperature gradient in
the biomass material.
[0024] In embodiments of the present invention, biomass in the rotor is subjected to centrifugal
forces greater than 2000 times the force of gravity.
[0025] The gas phase retention time in the rotor is preferably at most 5 seconds. The ratio
of the diameter of the rotor and the diameter of the centrifuge chamber is preferably
at least 0.5, such as at least 0.6, 0.7, 1 or at least 1.2.
[0026] It has been found that yield of pyrolysis liquid and, subsequently, gas and char
is influenced by choice of feed stock, reactor wall temperature, centrifugal force
and a combination of reactor gas phase temperature and residence/retention time. Whereas
the former parameters determine the initial split between fractions, the latter two
work through degradation of the initially formed pyrolysis liquids in the gas phase.
The gas phase reactions will result in rearrangements of the molecules, formation
of water (dehydration) and cracking of larger molecules constituting the liquid fraction
to smaller ones which subsequently cannot be condensed under the moderate conditions
employed. Gas phase reactions will therefore act to modify the liquid product in terms
of viscosity and water solubility but will also change the yield both on mass and
energy basis.
[0027] In order to model the effect of gas phase degradation, the reactions can be approximated
by first order irreversible chemical reactions following the well-known Ahrrenlus
expression and furthermore treating the pyrolysis centrifuge as a plug-flow reactor.
As a consequence, the degradation will be promoted by both higher temperature and
longer residence/retention time, and theoretically it is possible to obtain a certain
degree of degradation by an indefinite number of combinations of the two. For most
embodiments of the present invention it may be desired that gas phase residence/retention
time does not exceed 1 to 2 seconds in order to obtain a liquid product suitable for
fuel in acceptable yield (i.e.
Bridgwater, A.V., Peacocke, G.V.C. Fast pyrolysis processes for biomass. Renewable
& Sustainable Energy Reviews, 4, 2000).
[0028] Gas phase residence/retention time is predominantly determined by the active volume
of the reactor in combination with the amount of gas purging this volume. For systems
where there is no external inert gas purge, the consequence is that the gasses only
originate from the pyrolysis reactions of the feedstock. Therefore the residence/retention
time and subsequently the liquid product gas phase degradation is predominantly determined
by the capacity or feed rate of raw material to the reactor.
[0029] In one design of the pyrolysis centrifuge operating with a wall temperature of approximately
500°C and a centrifugal force of 10000 time the force of gravity on wheat straw, the
primary mass yield of fractions will be approximately 34% organics, 22% water (56
% liquids in total), 23 % char and 21 % gas, all on substantially dry ash-free basis.
At these conditions the gas phase temperature was found to be approximately 400°C
in a reactor with a feed rate of approximately 20 g/min and an active volume of approximately
0.53 L. Utilizing the kinetic expression for gas phase cracking of cellulose found
by Linden et al. (
Linden, A.G., Berruti, F., Scott, D.S. A kinetic model for the production of liquids
from the flash pyrolysis of cellulose. Chem. Eng. Commun., 65, 1988) the yield of organics after gas phase degradation can be computed to approximately
33 % with a corresponding gas residence/retention time of approximately 1.5 s or a
relatively minor change from the primary yield. If, on the other hand, gas phase temperature
is raised to approximately 600°C the organics yield would be reduced to approximately
5 % whereas a tenfold increase in reactor volume would reduce organics yield to approximately
25 %. From these examples it will be clear that a reactor allowing for minimization
of the combined effect of temperature and residence time on the gas phase is beneficial
in order to obtain pyrolysis liquids from biomass in acceptable yield.
[0030] In embodiments of the present invention, the outer wall of the centrifuge chamber
may heat the biomass, so that ablative pyrolysis takes place at or near the outer
wall. Preferably, this is achieved without the use of a separate transport medium,
such as stand.
[0031] At the step of conveying the pyrolysis vapors and char away from the centrifuge chamber,
the pyrolysis vapors preferably diffuse into a condenser chamber, in which the step
of condensation takes place. In a particularly compact embodiment, the centrifuge
chamber has an annular cross-section, and the condenser chamber is arranged centrally
i.e. coaxially within the rotor, whereby the pyrolysis vapors diffuse through an inner
wall of the centrifuge chamber, which is permeable to the vapors. It will thus be
appreciated that the centrifuge chamber and the condenser chamber are separated by
the inner wall of the centrifuge chamber, the inner wall comprising perforations,
so as to allow the pyrolysis vapors to diffuse from the centrifuge chamber to the
condenser chamber, in which the pyrolysis vapors may at least partly condense into
said pyrolysis liquid.
[0032] The integration of the reactor (centrifuge chamber) and condenser allow for improved
utilization of reactor volume. This contributes to the compactness of the apparatus,
in which there is no need for an external condenser remote from the reactor with associated
pipes. Additionally, thanks to the integrated condenser and reactor, the gas phase
retention time may be reduced, which has shown to improve pyrolysis liquid yield,
reduced liquid viscosity and reduced water content.
[0033] The perforations of the inner wall may define inlet openings of pipe stubs extending
radially into the condenser chamber to provide an inlet to the condenser, which is
inwardly displaced in relation to an outer periphery of the condenser chamber. The
pipe stubs preferably have a length sufficient to extend beyond condensed pyrolysis
liquid, such as viscous tar, which may accumulate at the outer periphery of the condenser
chamber.
[0034] In order to enhance condensation in the condenser chamber, a central portion of the
condenser chamber may accommodate a packing material, on which the at least a portion
of the pyrolysis vapors condense to pyrolysis liquid.
[0035] Condensation may further be enhanced by leading a cold fluid into the condenser chamber,
e.g. via a pipe arranged centrally within the condenser chamber. The fluid, which
is at a temperature below the dew point of the pyrolysis vapors, may be pyrolysis
liquid or a hydrocarbon immiscible with pyrolysis liquid. In case pyrolysis liquid
is utilized, such pyrolysis liquid may conveniently be derived from the pyrolysis
process, so that no external supply of pyrolysis liquid is needed. Any other fluid
is separated from the produced pyrolysis liquid by phase separation and recycled in
the process.
[0036] The condensation temperature may be controlled by the temperature of the utilized
fluid whereby especially the amount of water included in the liquid product may be
controlled by partial condensation. At a later stage, the gas may be dried by further
cooling in order to Increase energy content of the gas and/or mix condensed water
with combustible hot char to form a slurry and thus control reactivity.
[0037] At least a portion of the char deriving from pyrolysis of the biomass may be in the
form of fine particles, which are conveyed away from the centrifuge chamber through
openings provided in the outer wall of the centrifuge chamber and into a channel for
conveying the particles further. To enhance the flow of particles into the char separation,
a small flow of vapour may be drawn out with the char particles, preferably by arranging
the openings tangentially to the main reactor pipe whereby the motion of the rotor
blades will force vapour through the pipes. The vapour may be reentered into the reactor
through an opening near the raw material intake port. In one embodiment of the apparatus
of the present invention, a char conveyor is arranged at or near a bottom portion
of the centrifuge. The conveyor may e.g. comprise a worm drive for forwarding char
in the channel. Alternatively, char may be conveyed under the action of gravity. Means
may be provided for mixing the char with the pyrolysis liquid to form a slurry, or
char may be pilietized and collected as a separate high density energy product.
[0038] As explained above, centrifugal forces provide an outward pressure on the biomass
in the centrifuge chamber toward its outer wall. An even peripheral distribution of
material in the centrifuge chamber may be achieved by at least one rotor blade arranged
in or extending into the centrifuge chamber, whereby the biomass, char, pyrolysis
vapors in the centrifuge chamber are forced in a peripheral direction. The rotation
thereby imparted on the material generates the centrifugal forces for forcing the
material toward the reactive surface at the outer wall of the centrifuge chamber.
[0039] The biomass may be led axially or tangentially into the centrifuge chamber. Preferably,
the biomass is led tangentially into the centrifuge chamber at one or more positions
along the chamber. The biomass may be led into the centrifuge chamber via a plurality
of distinct inlets or via one single inlet, e.g. an extended slit forming a widened
mouth of a biomass inlet.
[0040] Heat for the pyrolysis process may be derived from a furnace arranged coaxially around
the centrifuge, whereby heat for the pyrolysis process is transported across the outer
wall of the centrifuge chamber by conduction. This coaxial arrangement of the furnace
further contributes to overall compactness. In the furnace, at least a portion of
said pyrolysis gas, char, liquid or hydrocarbon may be combusted, preferably without
any need for external fuel supply. A porous flame stabilizing material in the form
of a ceramic material may be incorporated within the furnace to enhace operation.
Heating by electric resistance elements, magnetic induction, a condensing vapour,
or a hot fluid e.g. liquid salt constitute alternative ways of heating the process.
[0041] The rotor may have an inner diameter of 0.01 - 5 m, and it is preferably rotated
at at least 200 rpm. In one embodiment, the diameter of the rotor is approximately
1 meter, the rotor being rotated at approximately 2000 rpm and the biomass particles
being subjected to centrifugal forces greater than 2000 times the force of gravity.
[0042] In order to efficiently collect and process the biomass, the centrifuge may be comprised
in a mobile unit, which may collect the biomass from a growth site, such as a field
or forest. The biomass may be continuously fed into the centrifuge, as the mobile
unit is moved across the growth site. Further biomass may be collected from the growth
site by means of the mobile unit concurrently with the step of decomposing the biomass
in the pyrolysis apparatus.
Brief description of the drawings
[0043] An embodiment of the invention will now be further described with reference to the
drawings, in which:
Fig. 1 is a chart illustrating an embodiment of the method and mobile unit of the
present invention;
Fig. 2 is a perspective illustration of a pyrolysis apparatus;
Fig. 3 is a partial cross-sectional view through the pyrolysis apparatus of Fig. 2.
Detailed description of the drawings
[0044] Fig. 1 illustrates the flow of air, gas and liquid in a system incorporating a pyrolysis
apparatus as disclosed herein. The system may be accommodated on a mobile unit for
simultaneously collecting biomass and processing biomass in a pyrolysis process. The
system includes a pyrolysis apparatus 200, which will be described in more detail
below with reference to Figs. 2 and 3. A motor 102 is provided for driving a rotor
of the pyrolysis apparatus. In tar/gas separator, pyrolysis liquid in the form of
tar is separated from gas. Part of the separated tar is led to a heat exchanger as
described further below, and the remaining tar is collected in tar collector 106.
Gas is led from the tar/gas separator into a furnace of the pyrolysis apparatus, in
which it is utilized as fuel for producing heat required in the pyrolysis process.
[0045] As shown in the right-hand end of Fig. 1, biomass such as strew is picked up from
a field or from another growth site and fed into a shredder, such as a roller mill
108, from which it is fed to a buffer and pre-heating device 110. Heat is transported
to the pre-heating device with exhaust gas from the furnace of the pyrolysis apparatus
200 and/or with exhaust gas from an engine of the mobile unit or from a truck or tractor
driving the mobile unit. Exhaust gas from the furnace of the pyrolysis apparatus is
conveyed through a first heat exchanger 112, in which it heats combustion air for
the furnace. As shown in the upper left corner of Fig. 1, a second heat exchanger
114 is provided for cooling that part of the tar separated in the tar/gas separator
104, which is led back into the pyrolysis apparatus. The cooling source for the second
heat exchanger 114 is air, which may be led through the first heat exchanger 112 after
it has passed the second heat exchanger 114, but before it enters the furnace of the
pyrolysis apparatus.
[0046] In this configuration, char, which is conveyed away from the pyrolysis apparatus,
is mixed with dirt picked up from the growth site in a char/dirt mixer 116 to form
a char/dirt mixture. The mixture may advantageously be distributed on the growth site,
e.g. a field, for instance into a furrow formed by a tine of the mobile unit.
[0047] The pyrolysis apparatus 200 is shown in more detail in Fig. 2. It comprises a biomass
inlet pipe 202, through which biomass is conveyed into a centrifuge chamber or reactor
204 surrounded by a furnace 206. The centrifuge chamber 204 has an outer wall 208,
through which heat is conducted from the furnace for effecting pyrolysis in the centrifuge
chamber at or near the outer wall 208. A rotor 210 forms a perforated inner wall 212
of the centrifuge chamber, the rotor being provided with rotor blades 214 for rotating
the gas phase and the biomass suspended herein within the centrifuge chamber. During
operation of the apparatus, biomass and other material in the centrifuge chamber,
such as char and pyrolysis vapors are forced by centrifugal forces towards the reactive
surface at the outer wall 208 of the centrifuge chamber 204, at which pyrolysis is
effected. Heat deflectors 216 are secured to the rotor blades for limiting heat radiation
from the furnace 206 onto the inner wall 212 of the centrifuge chamber, which surrounds
a condenser to be kept at a limited temperature well below the pyrolysis temperature
of about 350-700°C.
[0048] Condenser 218 is arranged coaxially within the centrifuge chamber 204 and comprises
a packing material 220 for enhancing condensation. Equidistant baffle plates 222 provide
a support for the packing material and for the shell of the condenser 218, and perforations
224 in the baffle plates 222 guide pyrolysis gas through the condenser to optimize
gas/liquid contact. Cold liquid is fed into the condenser via a perforated cooling
feed pipe 226.
[0049] A bottom portion of the wall 208 may be provided with holes or perforations allowing
char to fall into a channel 228, in which the char is conveyed away from the pyrolysis
apparatus by means of e.g. a worm drive conveyor 230.
[0050] It will be appreciated that the furnace, centrifuge chamber, rotor, condenser, and
char conveyor extend the entire length of the pyrolysis apparatus, the various parts
being cut-off in Fig. 2 for illustrative purposes only.
[0051] Fig. 3 shows a partial cross-section through the pyrolysis apparatus 200. The furnace
206 shown In Fig. 2 is not included in Fig. 3 for the sake of clarity. Biomass in
the centrifuge chamber 204 is illustrated as hatched area 232. As illustrated by arrows
234, pyrolysis vapors diffuse into the condenser 218 via perforations in the inner
wall 212 of the centrifuge chamber 204 (see Fig. 2), there being provided an inwardly
projecting pipe stub 236 at each perforation. Each pipe stub 236 has a plurality of
openings 238 located above the surface of the condensed pyrolysis liquid 240, through
which gas may escape into the condenser 218. The pipe stubs 236 have a length sufficient
to extend through a layer of condensed pyrolysis liquid, e.g. tar, which has accumulated
at the outer periphery of the condenser.
1. A method for collecting biomass and for producing a pyrolysis liquid and/or char from
the biomass, comprising the steps of:
- collecting the biomass from a growth site by means of a mobile unit;
- continuously feeding the biomass into a pyrolysis apparatus accommodated by the
mobile unit, as the mobile unit traverses the growth site;
- decomposing the biomass into pyrolysis liquid, char and pyrolysis gas, the step
of decomposing being carried out in said pyrolysis apparatus;
- separating the pyrolysis liquid from the char and pyrolysis gas and collecting the
pyrolysis liquid and/or char,
characterised in that
said step of decomposing the biomass is carried out, while further biomass is simultaneously
being collected from the growth site by means of the mobile unit.
2. The method of claim 1, further comprising the steps of:
- collecting dirt from the growth site and mixing said dirt with the char to thereby
cool the char;
- ejecting the mix of char and dirt from the mobile unit.
3. The method of claim 2, further comprising the step of forming a furrow in the growth
field by means of a tine of the mobile unit, and wherein, at said step of ejecting,
the mix of char and dirt is fed into the furrow.
4. The method of any of the preceding claims, wherein the pyrolysis apparatus combusts
at least a portion of said pyrolysis gas in a furnace, whereby heat and exhaust fume
is produced.
5. The method of claim 4, wherein the pyrolysis apparatus further combusts at least a
portion of said char.
6. The method of claim 4 or 5, further comprising, prior to the step of continuously
feeding the biomass into the pyrolysis apparatus:
- continuously feeding the biomass to a pre-heating device, in which the biomass is
pre-heated before it enters the pyrolysis apparatus;
- conveying said exhaust fume through the pre-heating device, whereby the exhaust
fume serves as a heat source for the biomass.
7. The method of any of claims 4-6, comprising conveying the exhaust fume from the furnace
to a first heat exchanger, in which the exhaust fume heats intake air for the furnace.
8. The method of any of claims 4-7, wherein, at the step of separating, pyrolysis liquid
and at least a portion of said pyrolysis gas is conveyed to a separator for separating
the pyrolysis liquid from the pyrolysis gas, the method further comprising:
- conveying at least a portion of the separated pyrolysis gas back to the furnace.
9. The method of claim 8, wherein the pyrolysis apparatus produces vaporized pyrolysis
liquid, the mobile unit further comprising a condenser for condensing vapours into
liquefied pyrolysis liquid, the condenser being arranged as a separate unit outside
the pyrolysis apparatus or as an integrated unit of the pyrolysis apparatus, the method
further comprising the step of conveying at least a portion of the separated liquid
back to the pyrolysis apparatus as a cooling source in the condenser.
10. The method of claim 9, wherein the condenser is integrated in the pyrolysis apparatus,
the method further comprising:
- cooling said portion of the separated liquid in a second heat exchanger before said
liquid enters the pyrolysis apparatus, wherein the second heat exchanger uses air
as a cooling source:
- mixing air, which exits the second heat exchanger, with said intake air for the
furnace upstream or downstream of the first heat exchanger.
11. The method of any of the preceding claims, wherein the pyrolysis apparatus comprises
a centrifuge defining a centrifuge chamber; the method further comprising, at said
step of decomposing:
- imparting rotation on biomass distributed in gas volume in the centrifuge chamber,
whereby the biomass is forced towards an outer wall of the centrifuge chamber;
- maintaining said outer wall at a temperature of 350 - 700 degrees Celsius to effect
a pyrolysis process at or near the outer wall of the centrifuge chamber, whereby the
biomass decomposes into said pyrolysis liquid, pyrolysis gas and char, the pyrolysis
gas and char being on gaseous form.
12. The method of any of the preceding claims, wherein the pyrolysis vapours are partially
condensed in a primary condenser, the method further comprising:
- drying the gas originating from the partial condensation and utilizing at least
a portion thereof as fuel for a furnace and/or for an engine for propelling the mobile
unit;
- mixing the resulting liquid phase consisting largely of water with the char to obtain
a slurry;
- distributing the slurry over the growth site and/or collecting it for further processing
or combustion;
- leading the vapours formed in the process of contacting hot char with liquid to
a tertiary condenser in order to condense components having a lower boiling point
than water;
- admixing the condensed vapour from the tertiary condenser with liquid product produced
by the primary condenser.
13. A mobile unit for collecting biomass and for producing pyrolysis liquid from the biomass,
the unit comprising:
- a pyrolysis apparatus the decomposing the biomass into pyrolysis liquid, char and
pyrolysis gas;
- a biomass collector for collecting the biomass from a growth site;
- a biomass conveyor for continuously feeding the biomass into the pyrolysis apparatus;
- a separation system for separating the pyrolysis liquid from the char and pyrolysis
gas,
characterised in that
the biomass collector, the biomass conveyor and the pyrolysis apparatus are operable
such that the pyrolysis apparatus can decompose the biomass, while further biomass
is simultaneously collected from the growth site by means of the biomass collector.
14. The mobile unit of claim 13, further comprising a wheeled support structure and a
coupling system for coupling the unit to a power-driven vehicle.
15. The mobile unit of claim 13, further comprising a wheeled support structure and an
engine in order for the mobile unit to be self-propelled.
16. The mobile unit of claim 14 or 15, further comprising an engine utilizing said pyrolysis
gas, pyrolysis liquid or char as fuel.
17. The mobile unit of any of claims 13-16, further comprising an apparatus for mixing
pyrolysis liquid with char to form a slurry.
18. The mobile unit of any of claims 13-17, further comprising:
- a dirt collector for collecting dirt from the growth site and mixing said dirt with
the char to thereby cool the char;
- a dirt and char ejector for ejecting the mix of char and dirt from the mobile unit.
19. The mobile unit of any of claims 13-18, further comprising a tine for forming a furrow
in the growth field, the tine being arranged such with respect to said dirt and char
ejector that the mix of char and dirt or char and water slurry can be fed into the
furrow during use of the mobile unit.
20. The mobile unit of any of claims 13-19, wherein the pyrolysis apparatus comprises
a furnace for combusting at least a portion of said pyrolysis gas and/or at least
a portion of said char, the furnace comprising an exhaust fume outlet for expelling
exhaust fume from the furnace.
21. The mobile unit of claim 20, wherein the centrifuge is arranged coaxially within a
furnace whereby heat for the pyrolysis process may be transported across the outer
wall of the centrifuge by conduction.
22. The mobile unit of claim 20 or 21, further comprising:
- a pre-heating device for preheating the biomass, the pre-heating device being arranged
upstream of the pyrolysis apparatus;
- an exhaust fume conduit for guiding said exhaust fume from said exhaust fume outlet
of the furnace to the pre-heating device.
23. The mobile unit of claim 22, wherein said exhaust fume conduit is further arranged
to guide the exhaust fume to a first heat exchanger, which is arranged to heat intake
air for the furnace.
24. The mobile unit of any of claims 13-23, further comprising a separator for separating
the pyrolysis liquid from the pyrolysis gas as the pyrolysis liquid and gas exit the
pyrolysis apparatus, the mobile unit further comprising:
- a first gas conduit for guiding the separated gas back to the furnace.
25. The mobile unit of any of claims 13-24, wherein the pyrolysis apparatus produces vaporized
pyrolysis liquid, the mobile unit further comprising a condenser for condensing vapours
into liquefied pyrolysis liquid, the condenser being arranged as a separate unit outside
the pyrolysis apparatus or as an integrated unit of the pyrolysis apparatus.
26. The mobile unit of claim 24 and 25, further comprising a fluid conduit for guiding
at least a portion of the separated liquid back to the pyrolysis apparatus as a cooling
source for the condenser.
27. The mobile unit of claims 23 and 26, further comprising:
- a second heat exchanger arranged in said fluid conduit upstream of the pyrolysis
apparatus to cool down said portion of the separated liquid;
- a first air conduit for guiding air to the second heat exchanger as a cooling source;
- a second air conduit for guiding the air, which exits the second heat exchanger,
to an inlet conduit for said intake air for the furnace, so as to mix the air in the
second air conduit into said intake air.
28. The mobile unit of claim 23 in combination with any of claims 14-16, further comprising
a conduit which is connectable to an exhaust outlet of the power-driven vehicle or
an exhaust outlet of said engine to allow exhaust gas of the vehicle or of the engine
as a heat source in the first heat exchanger.
29. The mobile unit of any of claims 13-28 further comprising a shredder for shredding
the collected biomass upstream of the pyrolysis apparatus.
30. The mobile unit of any of claims 13-29, wherein the condenser is integrated in the
pyrolysis apparatus, and wherein the pyrolysis apparatus comprises:
- a centrifuge chamber delimited by an inner wall and an outer wall;
- an inlet through which the biomass can be fed into the centrifuge chamber;
- a rotor arranged to impart rotation on biomass distributed in gas volume in the
centrifuge chamber to force the biomass towards the outer wall under the action of
centrifugal forces;
- a heating system for maintaining said outer wall at a temperature of 350 - 700 degrees
Celsius to effect the pyrolysis process at or near the outer wall of the centrifuge
chamber and to thereby decompose the biomass into char, pyrolysis gas and pyrolysis
vapors, which can be condensed into pyrolysis liquid in said condenser;
- a char conveyor for conveying the char away from the centrifuge chamber;
wherein:
- the inner wall of the centrifuge chamber is permeable to said pyrolysis vapors and
gas.
1. Verfahren zum Sammeln von Biomasse und zum Herstellen einer Pyrolyseflüssigkeit und/oder
Holzkohle aus der Biomasse, welches folgende Schritte umfasst:
- Sammeln der Biomasse von einem Anbauort mittels einer mobilen Einheit;
- kontinuierliches Zuführen der Biomasse in eine Pyrolysevorrichtung, die in der mobilen
Einheit untergebracht ist, wenn sich die mobile Einheit durch den Anbauort bewegt;
- Zersetzen der Biomasse in Pyrolyseflüssigkeit, Holzkohle und Pyrolysegas, wobei
der Schritt des Zersetzens in der Pyrolysevorrichtung ausgeführt wird;
- Trennen der Pyrolyseflüssigkeit von der Holzkohle und dem Pyrolysegas und Sammeln
der Pyrolyseflüssigkeit und/oder der Holzkohle,
dadurch gekennzeichnet, dass
der Schritt des Zersetzens der Biomasse ausgeführt wird, während gleichzeitig mittels
der mobilen Einheit weitere Biomasse von dem Anbauort gesammelt wird.
2. Verfahren nach Anspruch 1, welches ferner folgende Schritte umfasst:
- Sammeln von Erde vom Anbauort und Mischen der Erde mit der Holzkohle, um dadurch
die Holzkohle zu kühlen;
- Auswerfen der Mischung aus Holzkohle und Erde aus der mobilen Einheit.
3. Verfahren nach Anspruch 2, welches ferner den Schritt des Bildens einer Furche in
dem Anbaufeld mittels einer Zinke der mobilen Einheit umfasst, und wobei bei dem Schritt
des Auswerfens die Mischung aus Holzkohle und Erde in die Furche zugeführt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Pyrolysevorrichtung mindestens
einen Teil des Pyrolysegases in einem Ofen verbrennt, wodurch Wärme und Abgas erzeugt
werden.
5. Verfahren nach Anspruch 4, wobei die Pyrolysevorrichtung ferner mindestens einen Teil
der Holzkohle verbrennt.
6. Verfahren nach Anspruch 4 oder 5, welches ferner vor dem Schritt des kontinuierlichen
Zuführens der Biomasse in die Pyrolysevorrichtung Folgendes umfasst:
- kontinuierliches Zuführen der Biomasse zu einer Vorwärmeinrichtung, in welcher die
Biomasse vorgewärmt wird, bevor sie in die Pyrolysevorrichtung gelangt;
- Leiten des Abgases durch die Vorwärmeinrichtung, wodurch das Abgas als eine Wärmequelle
für die Biomasse dient.
7. Verfahren nach einem der Ansprüche 4-6, welches das Leiten des Abgases aus dem Ofen
zu einem ersten Wärmetauscher umfasst, in dem das Abgas Ansaugluft für den Ofen erwärmt.
8. Verfahren nach einem der Ansprüche 4-7, wobei beim Schritt des Trennens Pyrolyseflüssigkeit
und mindestens ein Teil des Pyrolysegases zu einem Separator geleitet werden, um die
Pyrolyseflüssigkeit von dem Pyrolysegas zu trennen, wobei das Verfahren ferner Folgendes
umfasst:
- Leiten von mindestens einem Teil des getrennten Pyrolysegases zurück zu dem Ofen.
9. Verfahren nach Anspruch 8, wobei die Pyrolysevorrichtung verdampfte Pyrolyseflüssigkeit
erzeugt, wobei die mobile Einheit ferner einen Kondensator zum Kondensieren von Dämpfen
in verflüssigte Pyrolyseflüssigkeit umfasst, wobei der Kondensator als eine separate
Einheit außerhalb der Pyrolysevorrichtung oder als eine integrierte Einheit der Pyrolysevorrichtung
angeordnet ist, wobei das Verfahren ferner den Schritt des Leitens von mindestens
einem Teil der getrennten Flüssigkeit zurück zu der Pyrolysevorrichtung als Kühlquelle
im Kondensator umfasst.
10. Verfahren nach Anspruch 9, wobei der Kondensator in die Pyrolysevorrichtung integriert
ist, wobei das Verfahren ferner Folgendes umfasst:
- Kühlen des Teils der getrennten Flüssigkeit in einem zweiten Wärmetauscher, bevor
die Flüssigkeit in die Pyrolysevorrichtung gelangt, wobei der zweite Wärmetauscher
Luft als Kühlquelle verwendet;
- Mischen der Luft, die aus dem zweiten Wärmetauscher austritt, mit der Ansaugluft
für den Ofen stromaufwärts oder stromabwärts des ersten Wärmetauschers.
11. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Pyrolysevorrichtung eine
Zentrifuge umfasst, die eine Zentrifugenkammer definiert, wobei das Verfahren ferner
beim Schritt des Zersetzens Folgendes umfasst:
- Versetzen der Biomasse, die im Gasvolumen in der Zentrifugenkammer verteilt ist,
in Rotation, wodurch die Biomasse in Richtung der Außenwand der Zentrifugenkammer
gedrückt wird;
- Halten der Außenwand bei einer Temperatur von 350-700 Grad Celsius zum Bewirken
eines Pyrolyseprozesses an oder nahe der Außenwand der Zentrifugenkammer, wodurch
sich die Biomasse in die Pyrolyseflüssigkeit, Pyrolysegas und Holzkohle zersetzt,
wobei das Pyrolysegas und die Holzkohle in gasförmiger Form vorliegen.
12. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Pyrolysedämpfe in einem
primären Kondensator teilweise kondensiert werden, wobei das Verfahren ferner Folgendes
umfasst:
- Trocknen des Gases, das aus der teilweisen Kondensation stammt, und Einsetzen von
mindestens einem Teil davon als Brennstoff für einen Ofen und/oder für einen Motor
zum Antreiben der mobilen Einheit;
- Mischen der resultierenden Flüssigphase, die größtenteils aus Wasser besteht, mit
der Holzkohle zum Erhalten eines Schlammes;
- Verteilen des Schlammes über den Anbauort und/oder Sammeln dessen zur Weiterverarbeitung
oder Verbrennung;
- Führen der Dämpfe, die im Prozess des Kontaktierens der heißen Holzkohle mit Flüssigkeit
gebildet wurden, zu einem tertiären Kondensator, um Komponenten mit einem niedrigeren
Siedepunkt als Wasser zu kondensieren;
- Vermischen des kondensierten Dampfes aus dem tertiären Kondensator mit flüssigem
Produkt, das durch den primären Kondensator erzeugt wird.
13. Mobile Einheit zum Sammeln von Biomasse und zum Herstellen von Pyrolyseflüssigkeit
aus der Biomasse, wobei die Einheit Folgendes umfasst:
- eine Pyrolysevorrichtung zum Zersetzen der Biomasse in Pyrolyseflüssigkeit, Holzkohle
und Pyrolysegas;
- einen Biomassekollektor zum Sammeln der Biomasse von einem Anbauort;
- einen Biomasseförderer zum kontinuierlichen Zuführen der Biomasse in die Pyrolysevorrichtung;
- ein Trennsystem zum Trennen der Pyrolyseflüssigkeit von Holzkohle und Pyrolysegas,
dadurch gekennzeichnet, dass
der Biomassekollektor, der Biomasseförderer und die Pyrolysevorrichtung derart betrieben
werden können, dass die Pyrolysevorrichtung die Biomasse zersetzen kann, während gleichzeitig
mittels des Biomassekollektors weitere Biomasse vom Anbauort gesammelt wird.
14. Mobile Einheit nach Anspruch 13, welche ferner eine Stützstruktur auf Rädern und ein
Kopplungssystem zum Koppeln der Einheit an ein Fahrzeug mit Motorantrieb umfasst.
15. Mobile Einheit nach Anspruch 13, welche ferner eine Stützstruktur auf Rädern und einen
Motor umfasst, damit die mobile Einheit selbstfahrend ist.
16. Mobile Einheit nach Anspruch 14 oder 15, welche ferner einen Motor umfasst, der das
Pyrolysegas, die Pyrolyseflüssigkeit oder die Holzkohle als Kraftstoff nutzt.
17. Mobile Einheit nach einem der Ansprüche 13-16, welche ferner eine Vorrichtung zum
Mischen der Pyrolyseflüssigkeit mit Holzkohle zum Bilden eines Schlammes umfasst.
18. Mobile Einheit nach einem der Ansprüche 13-17, welche ferner Folgendes umfasst:
- einen Erdkollektor zum Sammeln von Erde vom Anbauort und Mischen der Erde mit der
Holzkohle, um dadurch die Holzkohle zu kühlen;
- einen Erd- und Holzkohleauswerfer zum Auswerfen der Mischung aus Holzkohle und Erde
aus der mobilen Einheit.
19. Mobile Einheit nach einem der Ansprüche 13-18, welche ferner eine Zinke zum Bilden
einer Furche im Anbaufeld umfasst, wobei die Zinke derart in Bezug auf den Erd- und
Holzkohleauswerfer angeordnet ist, dass die Mischung aus Holzkohle und Erde oder Holzkohle
und Wasserschlamm während der Verwendung der mobilen Einheit in die Furche zugeführt
werden kann.
20. Mobile Einheit nach einem der Ansprüche 13-19, wobei die Pyrolysevorrichtung einen
Ofen zum Verbrennen von mindestens einem Teil des Pyrolysegases und/oder mindestens
einem Teil der Holzkohle umfasst, wobei der Ofen einen Abgasausgang zum Ausstoßen
von Abgas aus dem Ofen umfasst.
21. Mobile Einheit nach Anspruch 20, wobei die Zentrifuge koaxial innerhalb eines Ofens
angeordnet ist, wodurch Wärme für den Pyrolyseprozess durch Leitung über die Außenwand
der Zentrifuge hinweg transportiert werden kann.
22. Mobile Einheit nach Anspruch 20 oder 21, welche ferner Folgendes umfasst:
- eine Vorwärmeinrichtung zum Vorwärmen der Biomasse, wobei die Vorwärmeinrichtung
stromaufwärts von der Pyrolysevorrichtung angeordnet ist;
- einen Abgaskanal zum Führen des Abgases aus dem Abgasausgang des Ofens zur Vorwärmeinrichtung.
23. Mobile Einheit nach Anspruch 22, wobei der Abgaskanal ferner geeignet ist, das Abgas
zu einem ersten Wärmetauscher zu führen, der zum Erwärmen von Ansaugluft für den Ofen
geeignet ist.
24. Mobile Einheit nach einem der Ansprüche 13-23, welche ferner einen Separator zum Trennen
der Pyrolyseflüssigkeit von dem Pyrolysegas umfasst, wenn Pyrolyseflüssigkeit und
-gas aus der Pyrolysevorrichtung austreten, wobei die mobile Einheit ferner Folgendes
umfasst:
- einen ersten Gaskanal zum Führen des getrennten Gases zurück zum Ofen.
25. Mobile Einheit nach einem der Ansprüche 13-24, wobei die Pyrolysevorrichtung verdampfte
Pyrolyseflüssigkeit erzeugt, wobei die mobile Einheit ferner einen Kondensator zum
Kondensieren von Dämpfen in verflüssigte Pyrolyseflüssigkeit umfasst, wobei der Kondensator
als eine separate Einheit außerhalb der Pyrolysevorrichtung oder als eine integrierte
Einheit der Pyrolysevorrichtung angeordnet ist.
26. Mobile Einheit nach Anspruch 24 oder 25, welche ferner einen Fluidkanal zum Führen
von mindestens einem Teil der getrennten Flüssigkeit zurück zur Pyrolysevorrichtung
als eine Kühlquelle für den Kondensator umfasst.
27. Mobile Einheit nach Anspruch 23 und 26, welche ferner Folgendes umfasst:
- einen zweiten Wärmetauscher, der in dem Fluidkanal stromaufwärts von der Pyrolysevorrichtung
angeordnet ist, zum Abkühlen des Teils der getrennten Flüssigkeit;
- einen ersten Luftkanal zum Führen von Luft zu dem zweiten Wärmetauscher als eine
Kühlquelle;
- einen zweiten Luftkanal zum Führen der Luft, die aus dem zweiten Wärmetauscher austritt,
zu einem Einlasskanal für die Ansaugluft für den Ofen, um die Luft in dem zweiten
Luftkanal in die Ansaugluft zu mischen.
28. Mobile Einheit nach Anspruch 23 in Kombination mit einem der Ansprüche 14-16, welche
ferner einen Kanal umfasst, der mit einem Abgasausgang des Fahrzeuges mit Motorantrieb
oder einem Abgasausgang des Motors verbunden werden kann, um das Abgas des Fahrzeuges
oder des Motors als eine Wärmequelle im ersten Wärmetauscher zu gestatten.
29. Mobile Einheit nach einem der Ansprüche 13-28, welche ferner einen Shredder zum Zerkleinern
der gesammelten Biomasse stromaufwärts von der Pyrolysevorrichtung umfasst.
30. Mobile Einheit nach einem der Ansprüche 13-29, wobei der Kondensator in die Pyrolysevorrichtung
integriert ist, und wobei die Pyrolysevorrichtung Folgendes umfasst:
- eine Zentrifugenkammer, die durch eine Innenwand und eine Außenwand begrenzt ist;
- einen Einlass, durch welchen die Biomasse in die Zentrifugenkammer zugeführt werden
kann;
- einen Rotor, der dazu geeignet ist, die Biomasse, welche im Gasvolumen in der Zentrifugenkammer
verteilt ist, in Rotation zu versetzen, um die Biomasse unter der Wirkung von Zentrifugalkräften
in Richtung der Außenwand zu drücken;
- ein Heizsystem, um die Außenwand bei einer Temperatur von 350-700 Grad Celsius zu
halten, um den Pyrolyseprozess an oder nahe der Außenwand der Zentrifugenkammer zu
bewirken und dadurch die Biomasse in Holzkohle, Pyrolysegas und Pyrolysedämpfe zu
zersetzen, die in dem Kondensator in Pyrolyseflüssigkeit kondensiert werden können;
- einen Holzkohleförderer, um die Holzkohle von der Zentrifugenkammer weg zu befördern;
wobei
- die Innenwand der Zentrifugenkammer durchlässig für Pyrolysedämpfe und -gas ist.
1. Procédé pour collecter de la biomasse et pour produire un liquide de pyrolyse et/ou
un produit de carbonisation provenant de la biomasse, comprenant les étapes de :
- collecte de la biomasse à partir d'un site de développement au moyen d'une unité
mobile ;
- alimentation continue de la biomasse dans un appareil à pyrolyse logé par l'unité
mobile, tandis que l'unité mobile traverse le site de développement ;
- décomposition de la biomasse en liquide de pyrolyse, produit de carbonisation et
gaz de pyrolyse, l'étape de décomposition étant effectuée dans ledit appareil à pyrolyse
;
- séparation du liquide de pyrolyse du produit de carbonisation et du gaz de pyrolyse
et collecte du liquide de pyrolyse et/ou produit de carbonisation,
caractérisé en ce que
ladite étape de décomposition de la biomasse est réalisée, tandis qu'une autre biomasse
est collectée de manière simultanée depuis le site de développement au moyen de l'unité
mobile.
2. Procédé de la revendication 1 comprenant en outre les étapes de :
- collecte de saletés du site de développement et mélange de ladite saleté au produit
de carbonisation pour refroidir ainsi le produit de carbonisation ;
- éjection du mélange de produit de carbonisation et de saleté de l'unité mobile.
3. Procédé de la revendication 2, comprenant en outre l'étape de formation d'un sillon
au moyen d'une dent de l'unité mobile, et où, lors de ladite étape d'éjection, le
mélange de produit de carbonisation et de saleté est alimenté vers le sillon.
4. Procédé selon l'une quelconque des revendications précédentes, où l'appareil à pyrolyse
brûle au moins une partie dudit gaz de pyrolyse dans un four, d'où sont produits la
chaleur et les fumées d'échappement.
5. Procédé de la revendication 4, où l'appareil à pyrolyse brûle en outre au moins une
partie dudit produit de carbonisation.
6. Procédé de la revendication 4 ou 5, comprenant en outre, avant l'étape d'alimentation
continue de la biomasse dans l'appareil à pyrolyse :
- l'alimentation continue de la biomasse vers un dispositif de préchauffe, dans lequel
la biomasse est préchauffée avant d'entrer dans l'appareil à pyrolyse ;
- le transport desdites fumées d'échappement par le dispositif de préchauffage, où
les fumées d'échappement servent de source de chaleur pour la biomasse.
7. Procédé de l'une quelconque des revendications 4-6, comprenant le transport des fumées
d'échappement du four vers un premier échangeur thermique, dans lequel les fumées
d'échappement chauffent l'air d'admission pour le four.
8. Procédé de l'une quelconque des revendications 4-7, où, à l'étape de séparation, le
liquide de pyrolyse et au moins une partie dudit gaz de pyrolyse est transporté vers
un séparateur pour séparer le liquide de pyrolyse du gaz de pyrolyse, le procédé comprenant
en outre :
- le transport d'au moins une partie du gaz de pyrolyse séparé vers le four.
9. Procédé de la revendication 8, où l'appareil à pyrolyse produit du liquide de pyrolyse
vaporisé, l'unité mobile comprenant en outre un condensateur pour condenser des vapeurs
dans le liquide de pyrolyse liquéfié, le condensateur étant disposé comme une unité
séparée hors de l'appareil à pyrolyse ou comme une unité intégrée de l'appareil à
pyrolyse, le procédé comprenant en outre l'étape de transport d'au moins une partie
du liquide séparé vers l'appareil à pyrolyse comme source de refroidissement dans
le condensateur.
10. Procédé de la revendication 9, où le condensateur est intégré dans l'appareil à pyrolyse,
le procédé comprenant en outre :
- le refroidissement de ladite partie du liquide séparé dans un deuxième échangeur
thermique avant que ledit liquide n'entre dans l'appareil à pyrolyse, où le deuxième
échangeur thermique utilise de l'air comme source de refroidissement :
- le mélange de l'air, qui sort du deuxième échangeur de chaleur, avec ledit air d'admission
pour l'aval ou l'amont du four du premier échangeur thermique.
11. Procédé selon l'une quelconque des revendications précédentes, où l'appareil à pyrolyse
comprend une centrifugeuse définissant une chambre centrifugeuse, le procédé comprenant
en outre à ladite étape de décomposition :
- la transmission de la rotation sur la biomasse répartie sur le volume de gaz dans
la chambre centrifugeuse, où la biomasse est poussée vers une paroi extérieure de
la chambre centrifugeuse ;
- le maintien de ladite paroi extérieure à une température de 350-700 degrés Celsius
pour effectuer un processus de pyrolyse sur ou près de la paroi extérieure de la chambre
centrifugeuse, où la biomasse se décompose en ledit liquide de pyrolyse, gaz de pyrolyse
et produit de carbonisation sous forme gazeuse.
12. Procédé selon l'une quelconque des revendications précédentes, où les vapeurs de pyrolyse
sont partiellement condensées dans un premier condensateur, le procédé comprenant
en outre :
- le séchage du gaz provenant de la condensation partielle et utilisant au moins une
partie de celui-ci comme combustible pour un four et/ou pour un moteur servant à propulser
l'unité mobile ;
- le mélange de la phase liquide résultante consistant principalement en eau avec
le produit de carbonisation pour obtenir une suspension ;
- la répartition de la suspension sur le site de développement et/ou la collecte de
celle-ci pour un traitement ou une combustion ultérieurs ;
- le fait d'amener les vapeurs formées dans le processus de contact avec le produit
de carbonisation avec le liquide vers un troisième condensateur afin de condenser
des composants ayant un point d'ébullition inférieur à l'eau ;
- le mélange de la vapeur condensée du condensateur tertiaire avec le produit liquide
produit par le premier condensateur.
13. Unité mobile pour collecter de la biomasse et pour produire un liquide de pyrolyse
provenant de la biomasse, l'unité comprenant :
- un appareil à pyrolyse pour décomposer la biomasse en liquide de pyrolyse, produit
de carbonisation et gaz de pyrolyse ;
- un collecteur de biomasse pour collecter la biomasse à partir d'un site de développement
;
- un transporteur de biomasse pour alimenter en continu la biomasse dans l'appareil
à pyrolyse ;
- un système de séparation pour séparer le liquide de pyrolyse du produit de carbonisation
et du gaz de pyrolyse,
caractérisé en ce que
le collecteur de biomasse, le transporteur de biomasse et l'appareil à pyrolyse sont
utilisables de sorte que l'appareil à pyrolyse puisse décomposer la biomasse, tandis
qu'une autre biomasse est collectée de manière simultanée depuis le site de développement
au moyen du collecteur de biomasse.
14. Unité mobile de la revendication 13, comprenant en outre une structure de support
à roues et un système de couplage pour coupler l'unité à un véhicule électrique.
15. Unité mobile de la revendication 13, comprenant en outre une structure de support
à roues et un moteur pour que l'unité mobile soit autopropulsée.
16. Unité mobile de la revendication 14 ou 15, comprenant un moteur utilisant ledit gaz
de pyrolyse, liquide de pyrolyse ou produit de carbonisation comme combustible.
17. Unité mobile de l'une quelconque des revendications 13-16, comprenant en outre un
appareil pour mélanger le liquide de pyrolyse afin de former une suspension.
18. Unité mobile de l'une quelconque des revendications 13-17, comprenant en outre
- un collecteur de saletés provenant du site de développement et le mélange de ladite
saleté au produit de carbonisation pour refroidir ainsi le produit de carbonisation
;
- un éjecteur de saleté et de produit de carbonisation pour éjecter le mélange de
produit de carbonisation et de saleté de l'unité mobile.
19. Unité mobile de l'une quelconque des revendications 13-18, comprenant en outre une
dent pour former un sillon dans le site de développement, la dent étant disposée par
rapport audit éjecteur de saleté et de produit de carbonisation, de sorte que le mélange
de produit de carbonisation et de saleté ou de produit de carbonisation et de suspension
aqueuse soit alimenté dans le sillon au cours de l'utilisation de l'unité mobile.
20. Unité mobile de l'une quelconque des revendications 13-19, où l'appareil à pyrolyse
comprend un four pour brûler au moins une partie dudit gaz de pyrolyse et/ou au moins
une partie dudit produit de carbonisation, le four comprenant une sortie de fumées
d'échappement pour expulser les fumées d'échappement du four.
21. Unité mobile de la revendication 20, où la centrifugeuse est disposée coaxialement
dans un four où la chaleur pour le processus de pyrolyse peut être transportée de
l'autre côté de la paroi extérieure de la centrifugeuse par conduction.
22. Unité mobile de la revendication 20 ou 21, comprenant en outre
- un dispositif de préchauffe pour préchauffer la biomasse, le dispositif de préchauffe
étant disposé en aval de l'appareil à pyrolyse ;
- un conduit des fumées d'échappement pour guider lesdites fumées d'échappement de
ladite sortie des fumées d'échappement du four vers le dispositif de préchauffe.
23. Unité mobile de la revendication 22, où ledit conduit des fumées d'échappement est
en outre disposé pour guider les fumées d'échappement vers un premier échangeur thermique,
qui est disposé pour chauffer l'eau d'admission pour le four.
24. Unité mobile de l'une quelconque des revendications 13-23, comprenant en outre un
séparateur pour séparer le liquide de pyrolyse du gaz de pyrolyse quand le liquide
de pyrolyse sort de l'appareil à pyrolyse, l'unité mobile comprenant en outre :
- un premier conduit de gaz pour guider le gaz séparé vers le four.
25. Unité mobile selon l'une quelconque des revendications 13-24, où l'appareil à pyrolyse
produit du liquide de pyrolyse vaporisé, l'unité mobile comprenant en outre un condensateur
pour condenser des vapeurs dans le liquide de pyrolyse liquéfié, le condensateur étant
disposé comme une unité séparée hors de l'appareil à pyrolyse ou comme une unité intégrée
de l'appareil à pyrolyse.
26. Unité mobile de la revendication 24 et 25, comprenant en outre un conduite de liquide
pour guider au moins une partie du liquide séparé vers l'appareil à pyrolyse comme
source de refroidissement pour le condensateur.
27. Unité mobile des revendications 23 et 26, comprenant en outre :
- un deuxième échangeur thermique disposé dans ledit conduit de liquide en amont de
l'appareil à pyrolyse pour refroidir ladite partie du liquide séparé ;
- un premier conduit d'air pour guider l'air vers le deuxième échangeur de chaleur
comme source de refroidissement ;
- un deuxième conduit d'air pour guider l'air, qui sort du deuxième échangeur thermique,
vers un conduit d'entrée pour ledit air d'admission pour le four de manière à mélanger
l'air du deuxième conduit d'air dans ledit air d'admission.
28. Unité mobile de la revendication 23 en combinaison avec l'une quelconque de revendications
14-16, comprenant en outre un conduit qui peut être raccordé à une sortie d'échappement
du véhiculé électrique ou une sortie d'échappement dudit moteur pour permettre l'échappement
des gaz du véhicule ou du moteur comme source de chaleur dans premier échangeur thermique.
29. Unité mobile selon l'une quelconque des revendications 13-28, comprenant en outre
un broyeur pour broyer la biomasse collecté en amont de l'appareil à pyrolyse.
30. Unité mobile selon l'une quelconque des revendications 13-29, où le condensateur est
intégré à l'appareil à pyrolyse et où l'appareil à pyrolyse comprend :
- une chambre centrifugeuse délimitée par une paroi intérieure et une paroi extérieure
;
- une entrée par laquelle la biomasse peut être alimentée dans la chambre centrifugeuse
;
- un rotor disposé de manière à transmettre la rotation sur la biomasse répartie en
volume de gaz dans la chambre centrifugeuse pour pousser la biomasse vers la paroi
extérieure sous l'action des forces centrifuges ;
- un système de chauffage pour maintenir ladite paroi extérieure à une température
de 350-700 degrés Celsius pour effectuer un processus de pyrolyse sur ou près de la
paroi extérieure de la chambre centrifugeuse, et pour décomposer ainsi la biomasse
en produit de carbonisation, gaz de pyrolyse et vapeurs de pyrolyse, qui peuvent être
condensés dans le liquide de pyrolyse dans ledit condensateur ;
- un transporteur de produit de carbonisation pour transporter le produit de carbonisation
hors de la chambre centrifugeuse ;
où :
- la paroi intérieure de la chambre centrifugeuse est perméable auxdites vapeurs et
gaz de pyrolyse.