(19)
(11) EP 1 879 980 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Claims EN

(48) Corrigendum issued on:
21.08.2013 Bulletin 2013/34

(45) Mention of the grant of the patent:
24.04.2013 Bulletin 2013/17

(21) Application number: 06722934.4

(22) Date of filing: 03.05.2006
(51) International Patent Classification (IPC): 
C10B 53/02(2006.01)
A01D 43/00(2006.01)
C10B 47/22(2006.01)
(86) International application number:
PCT/DK2006/000242
(87) International publication number:
WO 2006/117006 (09.11.2006 Gazette 2006/45)

(54)

A METHOD AND A MOBILE UNIT FOR COLLECTING AND PYROLYSING BIOMASS

VERFAHREN UND MOBILE EINHEIT ZUM SAMMELN UND PYROLYSIEREN VON BIOMASSE

PROCEDE ET UNITE MOBILE DE RAMASSAGE ET PYROLYSE DE BIOMASSE


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30) Priority: 03.05.2005 EP 05076033
03.05.2005 US 676960 P

(43) Date of publication of application:
23.01.2008 Bulletin 2008/04

(73) Proprietor: Danmarks Tekniske Universitet
2800 Lyngby (DK)

(72) Inventors:
  • BECH, Niels
    DK-2830 Virum (DK)
  • DAM-JOHANSEN, Kim
    DK-3300 Frederiksværk (DK)

(74) Representative: Frederiksen, Jakob Pade et al
Inspicos A/S Kogle Allé 2 P.O. Box 45
2970 Hørsholm
2970 Hørsholm (DK)


(56) References cited: : 
WO-A-99/66008
WO-A1-2005/067694
   
  • WIENS JERRY: "MOBILE PYROLYSIS SYSTEM FOR ON-SITE BIOMASS CONVERSION TO LIQUID AND SOLID FUELS" INST OF GAS TECHNOL, 1980, pages 713-720, XP008052810 CHICAGO, ILL, USA
  • LINNEBORN JOHANNES ET AL: "MOBILE PYROLYSIS PLANT FOR THE PRODUCTION OF CHARCOAL AND CONDENSABLE HYDROCARBONS FROM BIOMASS" SOLAR ENERGY R&D IN THE EUROPEAN COMMUNITY, SERIES E, ENERGY FROM BIOMASS D. REIDEL PUBL CO, vol. 1, 1981, pages 176-180, XP008052802 DORDRECHT, NETH
  • BRIDGWATER A V ET AL: "Fast pyrolysis processes for biomass" RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, ELSEVIERS SCIENCE, NEW YORK, NY, US, vol. 4, no. 1, March 2000 (2000-03), pages 1-73, XP004268416 ISSN: 1364-0321
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technical field



[0001] The present invention relates to a method and to a mobile device for collecting biomass and for producing a pyrolysis liquid and/or char from the biomass. The biomass liquid may e.g. comprise pyrolysis oil or tar. A novel fast pyrolysis method and apparatus is also disclosed.

Background of the invention



[0002] Conventional pyrolysis is a heated process in the range of 200-700°C that converts biomass into pyrolysis liquid, char, and gas, usually in the absence of oxygen and focused on obtaining char in high yield. Fast pyrolysis, also referred to as flash pyrolysis, on the other hand is a process, in which biomass is quickly heated to a controlled pyrolysis temperature, and in which the gas phase is cooled quickly, whereby it partly condenses to pyrolysis liquid. This method generally obtains a higher yield of liquid and thus seeks to minimize the yield of the other two products. When the biomass decomposes at the elevated pyrolysis temperature, e.g. 450-600°C, three primary products are formed: gas, pyrolysis liquid and char.

[0003] Various methods and apparatus for producing gas or liquid from organic material have been proposed in the prior art. US 5,413,227 discloses an ablative pyrolysis process in a vortex reactor system, and WO 03/057800 discloses an ablative thermolysis reactor including rotating surfaces. WO 92/09671 discloses a method and apparatus employing a vessel, which forms a torus or helix, through which feedstock can be conveyed at a velocity which sustains the feedstock against the outer periphery of the internal surface of the vessel as it transits the vessel. WO 01/34725 discloses an example of flash-pyrolysis in a cyclone. Further examples of pyrolysis apparatus are provided in WO 88/09364 and CA 2 365 785.

[0004] JERRY WIENS: "MOBILE PYROLYSIS SYSTEM FOR ON-SITE BIOMASS CONVERSION TO LIQUID AND SOLID FUELS" INSTITUTE OF GAS TECHNOLOGY, 1980, pages 713-720, XP008052810 CHICAGO, ILL. USA discloses a mobile pyrolysis unit for producing char and pyrolytic oil from biomass, wherein the mobile pyrolysis unit comprises two low-boy trailers.

[0005] Despite the achievements in pyrolysis and fast pyrolysis, it has been found that one barrier to efficient exploitation of biomass in fuel production is the cost conferred by collection and transportation of the biomass. Biomass is usually collected from growth sites, where it is loaded onto a truck or trailer for transportation thereof to a pyrolysis facility. Due to the relatively low concentration of energy per volume of biomass, production of even small amounts of usable pyrolysis liquid requires collection, transportation and storage of large volumes of biomass. Additionally, though the prior art pyrolysis systems are useful for many purposes, they have been found to have certain limitations, as some of them are bulky, some have a low efficiency, and some require adjustment of e.g. rotor blades, which reduces overall cost efficiency.

Summary of the invention



[0006] It is an object of preferred embodiments of the present invention to provide a method and a mobile unit for collecting biomass which improves efficiency in biomass collection and exploitation. It is a further object of preferred embodiments of the present invention to provide a pyrolysis method and apparatus, which allow for a compact and efficient pyrolysis assembly.

[0007] In a first aspect, the invention provides a method for collecting biomass and for producing a pyrolysis liquid from the biomass, comprising the steps of:
  • collecting the biomass from a growth site, such as a field or forest, by means of a mobile unit;
  • continuously feeding the biomass into a pyrolysis apparatus accommodated by the mobile unit, as the mobile unit traverses the growth site;
  • decomposing the biomass into pyrolysis liquid, char and pyrolysis gas, the step of decomposing being carried out in the pyrolysis apparatus;
  • separating the pyrolysis liquid from the char and pyrolysis gas and collecting the pyrolysis liquid, the method being characterised in that the step of decomposing the biomass is carried out, while further biomass is simultaneously being collected from the growth site by means of the mobile unit.


[0008] In a second aspect, the invention provides a mobile unit for collecting biomass and for producing pyrolysis liquid from the biomass, the unit comprising:
  • a pyrolysis apparatus for decomposing the biomass into pyrolysis liquid, char and pyrolysis gas;
  • a biomass collector for collecting the biomass from a growth site;
  • a biomass conveyor for continuously feeding the biomass into the pyrolysis apparatus;
  • a separation system for separating the pyrolysis liquid from the char and pyrolysis gas,
the mobile unit being characterised in that the biomass collector, the biomass conveyor and the pyrolysis apparatus are operable such that the pyrolysis apparatus can decompose the biomass, while further biomass is simultaneously collected from the growth site by means of the biomass collector.

[0009] The pyrolysis takes place while further biomass is simultaneously being collected and continuously fed to the pyrolysis apparatus. Hence, pyrolysis takes place while the mobile unit traverses the growth site, and while biomass is being collected simultaneously. Transportation of relatively large volumes of biomass from the growth site to a remote pyrolysis facility may thus be avoided. As pyrolysis liquid has a significantly higher energy concentration per volume than biomass, a certain amount of energy requires less space when present in the form of pyrolysis liquid than when present in the form of biomass, and the energy may thus be more conveniently conveyed to the intended consumer in the form of pyrolysis liquid. Pyrolysis liquid may be transported from the growth site to the intended consumer or to a storage facility by means of tank trucks or vessels (e.g. ISO tank containers), or conveyed through pipe lines under adequate pumping action.

[0010] The pyrolysis apparatus may include any apparatus known per se, such as e.g. any one of the apparatus disclosed in US 5,413,227, WO 03/057800, WO 92/09671, WO 01/34725, WO 88/09364 or CA 2 365 785. The present inventors have devised an alternative and novel pyrolysis apparatus, which is particularly well suited for the purpose of a mobile pyrolysis unit, and which will be described below.

[0011] The mobile unit may comprise a wheeled support structure. A coupling system may be provided for coupling the unit to a power-driven vehicle. Alternatively, the mobile unit may incorporate an engine or motor, so that the mobile unit is self-propelled. The engine or motor of the mobile unit may utilize the pyrolysis gas, pyrolysis liquid and/or char as fuel, whereby the need for a separate fuel source of the mobile unit may be reduced or even eliminated. Likewise, in embodiments of the invention, in which the mobile unit is not self-propelled, the propelling drive means, e.g. tractor or truck, may utilize the pyrolysis gas, pyrolysis liquid and/or char as a fuel source.

[0012] In the present context, biomass is to be understood as any organic matter, such as plants and animals or residues thereof, such as wood, agricultural and forestry process waste materials, or industrial, human and animal waste, including petrochemical-based waste feedstock. The chemical energy stored in plants and animals derives from solar energy photosynthesis and can be converted to usable liquid, such as oil or tar, in a heated process, i.e. pyrolysis.

[0013] The term pyrolysis liquid is to be understood as any organic liquid derived from biomass in a pyrolysis process, such as bio-oil or tar, the components having a boiling point in the range 0-500°C. Pyrolysis vapour is to be understood as any vapour or gas derived from biomass in a pyrolysis process, such as vaporized pyrolysis liquid.

[0014] To efficiently cool char from the pyrolysis process before possible ejection thereof from the mobile unit, the process may include the step of collecting dirt from the growth site and mixing the dirt with the char to thereby cool the char. In other words, dirt may be utilized as a cooling source for waste matter deriving from pyrolysis, and the need for e.g. water cooling may be eliminated. It will hence be appreciated that the mobile unit may comprise a dirt collector for collecting dirt from the growth site and a mixer for mixing the dirt with the char to thereby cool the char, as well as a dirt and char ejector for ejecting the mix or slurry of char and dirt from the mobile unit.

[0015] A press for pilletizing and collecting the char as a bi-product may be provided.

[0016] The mix of char and dirt may be fed into a furrow formed by appropriate means of the mobile unit, such as by a tine. The tine may be arranged such with respect to the dirt and char ejector that the mix of char and dirt can be fed into the furrow during use of the mobile unit. Subsequently, the char mix may be covered with dirt to enhance decomposition of the char.

[0017] At least a portion of the pyrolysis gas produced by the pyrolysis process may be combusted In a furnace forming part of the pyrolysis apparatus, the furnace producing heat for the pyrolysis process. Exhaust fume of the furnace may be expelled via a fume outlet of the furnace. In addition to pyrolysis gas, at least a portion of the char may be combusted in the furnace.

[0018] Prior to feeding of the biomass into the pyrolysis apparatus, the biomass may be fed to a pre-heating device, in which it is preheated and possibly dried before it enters the pyrolysis apparatus. The exhaust fume produced in the furnace may be utilized as a heat source in the pre-heating device. Exhaust fume from the furnace may also be guided to a first heat exchanger, in which it heats intake air for the furnace. Alternatively or additionally, a conduit, which is connectable to an exhaust outlet of the power-driven vehicle or an exhaust outlet of the engine of the mobile unit, may be provided to allow exhaust gas of the vehicle or of the engine as a heat source in the first heat exchanger or in the process of pre-heating and/or drying the biomass.

[0019] The mobile unit may advantageously include a shredder for shredding the collected biomass upstream of the pyrolysis apparatus, e.g. upstream of the pre-heating device. A biomass buffer may be included to allow more biomass to be collected than what is being processed in the pyrolysis apparatus. For example, operation of the collector may be interrupted e.g. for manoeuvring the vehicle or for inspection without interruption of the pyrolysis apparatus. In one embodiment, the pre-heating device serves as the biomass buffer.

[0020] At the step of separating the pyrolysis liquid from the char and pyrolysis gas, the pyrolysis liquid and at least a portion of the pyrolysis gas may be conveyed to a separator for separating the pyrolysis liquid from the pyrolysis gas, and at least a portion of the separated pyrolysis gas may be conveyed back to the furnace as a fuel source therein. Further, at least a portion of the separated liquid may be conveyed back to the pyrolysis apparatus as a cooling source in a pyrolysis condenser. The condenser may be integrated in the pyrolysis apparatus, or it may be constitute a separate unit, which does not form part of the pyrolysis apparatus. Before the liquid enters the condenser, it is preferably cooled in a second heat exchanger, which may utilize air as a cooling source. The air, which exits the second heat exchanger, may be mixed with the intake air for the furnace upstream or downstream of the first heat exchanger, e.g. to improve combustion efficiency in the furnace.

[0021] In one embodiment, the pyrolysis apparatus comprises a centrifuge defining a centrifuge chamber, and at the step of decomposing the biomass, the method of the invention may comprise the step imparting rotation on biomass distributed in gas volume in the centrifuge, whereby the biomass is forced towards an outer wall of the centrifuge chamber. The outer wall of the centrifuge chamber is maintained at a temperature of 350 - 700°C to effect a pyrolysis process at or near the outer wall of the centrifuge chamber, whereby the biomass decomposes into the pyrolysis liquid, pyrolysis gas and char, the gas and liquid being on gaseous form.

[0022] In a particularly compact embodiment of the pyrolysis apparatus, the condenser is integrated in the pyrolysis apparatus. In this embodiment, the centrifuge chamber of the pyrolysis apparatus is delimited by an inner wall and an outer wall, and an outlet is provided for feeding biomass into the centrifuge chamber. A rotor is arranged to impart rotation on the biomass in the centrifuge chamber to force the biomass towards the outer wall of the centrifuge chamber under the action of centrifugal forces. A heating system is included for maintaining the outer wall of the centrifuge chamber at a temperature of 350 - 700°C to effect the pyrolysis process at or near the outer wall of the centrifuge chamber and to thereby decompose the biomass into char, pyrolysis gas and pyrolysis vapours, which can be condensed into pyrolysis liquid in the condenser. The heating system may include the furnace as describe above, the centrifuge being preferably arranged coaxially within the furnace, whereby heat for the pyrolysis process is transported across the outer wall of the centrifuge by conduction. The inner wall of the centrifuge chamber may be permeable to the pyrolysis vapours and gas, so that the condenser may be arranged centrally within the centrifuge chamber.

[0023] The present pyrolysis method and apparatus confer several benefits. No inert gas for fluidization and heat transport is required, thereby reducing overall dimensions of the apparatus at a given capacity. Further, residence time of solids and vapours are decoupled from heat transfer. Additionally, no sand is needed as heat transport or heat transmission medium, thereby reducing wear and tear and eliminating the need for subsequent separation of sand and char. Thanks to the rotational motion Imparted on the biomass in the centrifuge chamber, the area of the outer wall of the centrifuge chamber is in contact with the biomass, while centrifugal forces ensure an even pressure of biomass towards the outer wall, thereby ensuring improved utilization of the reactive surface in the pyrolysis apparatus and consequently higher specific capacity. As char is forced towards the outer wall of the centrifuge chamber, gas separation may occur within the centrifuge chamber, i.e. within the pyrolysis chamber itself. As the char particles are forced towards the wall by centrifugal forces and gas may be filtered by passage from the outer wall of the centrifuge chamber through a layer of biomass to an inner wall of the centrifuge chamber, the need for a separate cyclone may be eliminated. Additionally, as biomass is forced towards the reactive surface, i.e. the outer wall of the centrifuge chamber, by centrifugal forces, the need for additional means for imparting the biomass is reduced, thereby reducing wear and tear and consequently maintenance costs. Thanks to the rotational layout of the centrifuge chamber and rotor, there is no need to adjust e.g. angles of blades or distance between blades and a tube wall, as in certain prior art devices. Further, contact between metal parts may be eliminated, and contact between metal parts and biomass strongly reduced, as the rotating motion is imparted on the biomass particles mainly as a result of a similar movement in the gas phase originating from the motion of the rotor. Operation is accordingly less vulnerable to changes in biomass material properties, such as particle size distribution and humidity as well as to fluctuations of biomass feeding speed to the reactor. As char is conveyed away from the reactor, preferably continuously, a high heat conduction between the reactor wall, i.e. the outer wall of the centrifuge chamber, and the biomass material is ensured, resulting in improved efficiency and improved pyrolysis liquid yield. The improved pyrolysis yield is conferred by a steep temperature gradient in the biomass material.

[0024] In embodiments of the present invention, biomass in the rotor is subjected to centrifugal forces greater than 2000 times the force of gravity.

[0025] The gas phase retention time in the rotor is preferably at most 5 seconds. The ratio of the diameter of the rotor and the diameter of the centrifuge chamber is preferably at least 0.5, such as at least 0.6, 0.7, 1 or at least 1.2.

[0026] It has been found that yield of pyrolysis liquid and, subsequently, gas and char is influenced by choice of feed stock, reactor wall temperature, centrifugal force and a combination of reactor gas phase temperature and residence/retention time. Whereas the former parameters determine the initial split between fractions, the latter two work through degradation of the initially formed pyrolysis liquids in the gas phase. The gas phase reactions will result in rearrangements of the molecules, formation of water (dehydration) and cracking of larger molecules constituting the liquid fraction to smaller ones which subsequently cannot be condensed under the moderate conditions employed. Gas phase reactions will therefore act to modify the liquid product in terms of viscosity and water solubility but will also change the yield both on mass and energy basis.

[0027] In order to model the effect of gas phase degradation, the reactions can be approximated by first order irreversible chemical reactions following the well-known Ahrrenlus expression and furthermore treating the pyrolysis centrifuge as a plug-flow reactor. As a consequence, the degradation will be promoted by both higher temperature and longer residence/retention time, and theoretically it is possible to obtain a certain degree of degradation by an indefinite number of combinations of the two. For most embodiments of the present invention it may be desired that gas phase residence/retention time does not exceed 1 to 2 seconds in order to obtain a liquid product suitable for fuel in acceptable yield (i.e. Bridgwater, A.V., Peacocke, G.V.C. Fast pyrolysis processes for biomass. Renewable & Sustainable Energy Reviews, 4, 2000).

[0028] Gas phase residence/retention time is predominantly determined by the active volume of the reactor in combination with the amount of gas purging this volume. For systems where there is no external inert gas purge, the consequence is that the gasses only originate from the pyrolysis reactions of the feedstock. Therefore the residence/retention time and subsequently the liquid product gas phase degradation is predominantly determined by the capacity or feed rate of raw material to the reactor.

[0029] In one design of the pyrolysis centrifuge operating with a wall temperature of approximately 500°C and a centrifugal force of 10000 time the force of gravity on wheat straw, the primary mass yield of fractions will be approximately 34% organics, 22% water (56 % liquids in total), 23 % char and 21 % gas, all on substantially dry ash-free basis. At these conditions the gas phase temperature was found to be approximately 400°C in a reactor with a feed rate of approximately 20 g/min and an active volume of approximately 0.53 L. Utilizing the kinetic expression for gas phase cracking of cellulose found by Linden et al. (Linden, A.G., Berruti, F., Scott, D.S. A kinetic model for the production of liquids from the flash pyrolysis of cellulose. Chem. Eng. Commun., 65, 1988) the yield of organics after gas phase degradation can be computed to approximately 33 % with a corresponding gas residence/retention time of approximately 1.5 s or a relatively minor change from the primary yield. If, on the other hand, gas phase temperature is raised to approximately 600°C the organics yield would be reduced to approximately 5 % whereas a tenfold increase in reactor volume would reduce organics yield to approximately 25 %. From these examples it will be clear that a reactor allowing for minimization of the combined effect of temperature and residence time on the gas phase is beneficial in order to obtain pyrolysis liquids from biomass in acceptable yield.

[0030] In embodiments of the present invention, the outer wall of the centrifuge chamber may heat the biomass, so that ablative pyrolysis takes place at or near the outer wall. Preferably, this is achieved without the use of a separate transport medium, such as stand.

[0031] At the step of conveying the pyrolysis vapors and char away from the centrifuge chamber, the pyrolysis vapors preferably diffuse into a condenser chamber, in which the step of condensation takes place. In a particularly compact embodiment, the centrifuge chamber has an annular cross-section, and the condenser chamber is arranged centrally i.e. coaxially within the rotor, whereby the pyrolysis vapors diffuse through an inner wall of the centrifuge chamber, which is permeable to the vapors. It will thus be appreciated that the centrifuge chamber and the condenser chamber are separated by the inner wall of the centrifuge chamber, the inner wall comprising perforations, so as to allow the pyrolysis vapors to diffuse from the centrifuge chamber to the condenser chamber, in which the pyrolysis vapors may at least partly condense into said pyrolysis liquid.

[0032] The integration of the reactor (centrifuge chamber) and condenser allow for improved utilization of reactor volume. This contributes to the compactness of the apparatus, in which there is no need for an external condenser remote from the reactor with associated pipes. Additionally, thanks to the integrated condenser and reactor, the gas phase retention time may be reduced, which has shown to improve pyrolysis liquid yield, reduced liquid viscosity and reduced water content.

[0033] The perforations of the inner wall may define inlet openings of pipe stubs extending radially into the condenser chamber to provide an inlet to the condenser, which is inwardly displaced in relation to an outer periphery of the condenser chamber. The pipe stubs preferably have a length sufficient to extend beyond condensed pyrolysis liquid, such as viscous tar, which may accumulate at the outer periphery of the condenser chamber.

[0034] In order to enhance condensation in the condenser chamber, a central portion of the condenser chamber may accommodate a packing material, on which the at least a portion of the pyrolysis vapors condense to pyrolysis liquid.

[0035] Condensation may further be enhanced by leading a cold fluid into the condenser chamber, e.g. via a pipe arranged centrally within the condenser chamber. The fluid, which is at a temperature below the dew point of the pyrolysis vapors, may be pyrolysis liquid or a hydrocarbon immiscible with pyrolysis liquid. In case pyrolysis liquid is utilized, such pyrolysis liquid may conveniently be derived from the pyrolysis process, so that no external supply of pyrolysis liquid is needed. Any other fluid is separated from the produced pyrolysis liquid by phase separation and recycled in the process.

[0036] The condensation temperature may be controlled by the temperature of the utilized fluid whereby especially the amount of water included in the liquid product may be controlled by partial condensation. At a later stage, the gas may be dried by further cooling in order to Increase energy content of the gas and/or mix condensed water with combustible hot char to form a slurry and thus control reactivity.

[0037] At least a portion of the char deriving from pyrolysis of the biomass may be in the form of fine particles, which are conveyed away from the centrifuge chamber through openings provided in the outer wall of the centrifuge chamber and into a channel for conveying the particles further. To enhance the flow of particles into the char separation, a small flow of vapour may be drawn out with the char particles, preferably by arranging the openings tangentially to the main reactor pipe whereby the motion of the rotor blades will force vapour through the pipes. The vapour may be reentered into the reactor through an opening near the raw material intake port. In one embodiment of the apparatus of the present invention, a char conveyor is arranged at or near a bottom portion of the centrifuge. The conveyor may e.g. comprise a worm drive for forwarding char in the channel. Alternatively, char may be conveyed under the action of gravity. Means may be provided for mixing the char with the pyrolysis liquid to form a slurry, or char may be pilietized and collected as a separate high density energy product.

[0038] As explained above, centrifugal forces provide an outward pressure on the biomass in the centrifuge chamber toward its outer wall. An even peripheral distribution of material in the centrifuge chamber may be achieved by at least one rotor blade arranged in or extending into the centrifuge chamber, whereby the biomass, char, pyrolysis vapors in the centrifuge chamber are forced in a peripheral direction. The rotation thereby imparted on the material generates the centrifugal forces for forcing the material toward the reactive surface at the outer wall of the centrifuge chamber.

[0039] The biomass may be led axially or tangentially into the centrifuge chamber. Preferably, the biomass is led tangentially into the centrifuge chamber at one or more positions along the chamber. The biomass may be led into the centrifuge chamber via a plurality of distinct inlets or via one single inlet, e.g. an extended slit forming a widened mouth of a biomass inlet.

[0040] Heat for the pyrolysis process may be derived from a furnace arranged coaxially around the centrifuge, whereby heat for the pyrolysis process is transported across the outer wall of the centrifuge chamber by conduction. This coaxial arrangement of the furnace further contributes to overall compactness. In the furnace, at least a portion of said pyrolysis gas, char, liquid or hydrocarbon may be combusted, preferably without any need for external fuel supply. A porous flame stabilizing material in the form of a ceramic material may be incorporated within the furnace to enhace operation. Heating by electric resistance elements, magnetic induction, a condensing vapour, or a hot fluid e.g. liquid salt constitute alternative ways of heating the process.

[0041] The rotor may have an inner diameter of 0.01 - 5 m, and it is preferably rotated at at least 200 rpm. In one embodiment, the diameter of the rotor is approximately 1 meter, the rotor being rotated at approximately 2000 rpm and the biomass particles being subjected to centrifugal forces greater than 2000 times the force of gravity.

[0042] In order to efficiently collect and process the biomass, the centrifuge may be comprised in a mobile unit, which may collect the biomass from a growth site, such as a field or forest. The biomass may be continuously fed into the centrifuge, as the mobile unit is moved across the growth site. Further biomass may be collected from the growth site by means of the mobile unit concurrently with the step of decomposing the biomass in the pyrolysis apparatus.

Brief description of the drawings



[0043] An embodiment of the invention will now be further described with reference to the drawings, in which:

Fig. 1 is a chart illustrating an embodiment of the method and mobile unit of the present invention;

Fig. 2 is a perspective illustration of a pyrolysis apparatus;

Fig. 3 is a partial cross-sectional view through the pyrolysis apparatus of Fig. 2.


Detailed description of the drawings



[0044] Fig. 1 illustrates the flow of air, gas and liquid in a system incorporating a pyrolysis apparatus as disclosed herein. The system may be accommodated on a mobile unit for simultaneously collecting biomass and processing biomass in a pyrolysis process. The system includes a pyrolysis apparatus 200, which will be described in more detail below with reference to Figs. 2 and 3. A motor 102 is provided for driving a rotor of the pyrolysis apparatus. In tar/gas separator, pyrolysis liquid in the form of tar is separated from gas. Part of the separated tar is led to a heat exchanger as described further below, and the remaining tar is collected in tar collector 106. Gas is led from the tar/gas separator into a furnace of the pyrolysis apparatus, in which it is utilized as fuel for producing heat required in the pyrolysis process.

[0045] As shown in the right-hand end of Fig. 1, biomass such as strew is picked up from a field or from another growth site and fed into a shredder, such as a roller mill 108, from which it is fed to a buffer and pre-heating device 110. Heat is transported to the pre-heating device with exhaust gas from the furnace of the pyrolysis apparatus 200 and/or with exhaust gas from an engine of the mobile unit or from a truck or tractor driving the mobile unit. Exhaust gas from the furnace of the pyrolysis apparatus is conveyed through a first heat exchanger 112, in which it heats combustion air for the furnace. As shown in the upper left corner of Fig. 1, a second heat exchanger 114 is provided for cooling that part of the tar separated in the tar/gas separator 104, which is led back into the pyrolysis apparatus. The cooling source for the second heat exchanger 114 is air, which may be led through the first heat exchanger 112 after it has passed the second heat exchanger 114, but before it enters the furnace of the pyrolysis apparatus.

[0046] In this configuration, char, which is conveyed away from the pyrolysis apparatus, is mixed with dirt picked up from the growth site in a char/dirt mixer 116 to form a char/dirt mixture. The mixture may advantageously be distributed on the growth site, e.g. a field, for instance into a furrow formed by a tine of the mobile unit.

[0047] The pyrolysis apparatus 200 is shown in more detail in Fig. 2. It comprises a biomass inlet pipe 202, through which biomass is conveyed into a centrifuge chamber or reactor 204 surrounded by a furnace 206. The centrifuge chamber 204 has an outer wall 208, through which heat is conducted from the furnace for effecting pyrolysis in the centrifuge chamber at or near the outer wall 208. A rotor 210 forms a perforated inner wall 212 of the centrifuge chamber, the rotor being provided with rotor blades 214 for rotating the gas phase and the biomass suspended herein within the centrifuge chamber. During operation of the apparatus, biomass and other material in the centrifuge chamber, such as char and pyrolysis vapors are forced by centrifugal forces towards the reactive surface at the outer wall 208 of the centrifuge chamber 204, at which pyrolysis is effected. Heat deflectors 216 are secured to the rotor blades for limiting heat radiation from the furnace 206 onto the inner wall 212 of the centrifuge chamber, which surrounds a condenser to be kept at a limited temperature well below the pyrolysis temperature of about 350-700°C.

[0048] Condenser 218 is arranged coaxially within the centrifuge chamber 204 and comprises a packing material 220 for enhancing condensation. Equidistant baffle plates 222 provide a support for the packing material and for the shell of the condenser 218, and perforations 224 in the baffle plates 222 guide pyrolysis gas through the condenser to optimize gas/liquid contact. Cold liquid is fed into the condenser via a perforated cooling feed pipe 226.

[0049] A bottom portion of the wall 208 may be provided with holes or perforations allowing char to fall into a channel 228, in which the char is conveyed away from the pyrolysis apparatus by means of e.g. a worm drive conveyor 230.

[0050] It will be appreciated that the furnace, centrifuge chamber, rotor, condenser, and char conveyor extend the entire length of the pyrolysis apparatus, the various parts being cut-off in Fig. 2 for illustrative purposes only.

[0051] Fig. 3 shows a partial cross-section through the pyrolysis apparatus 200. The furnace 206 shown In Fig. 2 is not included in Fig. 3 for the sake of clarity. Biomass in the centrifuge chamber 204 is illustrated as hatched area 232. As illustrated by arrows 234, pyrolysis vapors diffuse into the condenser 218 via perforations in the inner wall 212 of the centrifuge chamber 204 (see Fig. 2), there being provided an inwardly projecting pipe stub 236 at each perforation. Each pipe stub 236 has a plurality of openings 238 located above the surface of the condensed pyrolysis liquid 240, through which gas may escape into the condenser 218. The pipe stubs 236 have a length sufficient to extend through a layer of condensed pyrolysis liquid, e.g. tar, which has accumulated at the outer periphery of the condenser.


Claims

1. A method for collecting biomass and for producing a pyrolysis liquid and/or char from the biomass, comprising the steps of:

- collecting the biomass from a growth site by means of a mobile unit;

- continuously feeding the biomass into a pyrolysis apparatus accommodated by the mobile unit, as the mobile unit traverses the growth site;

- decomposing the biomass into pyrolysis liquid, char and pyrolysis gas, the step of decomposing being carried out in said pyrolysis apparatus;

- separating the pyrolysis liquid from the char and pyrolysis gas and collecting the pyrolysis liquid and/or char,

characterised in that
said step of decomposing the biomass is carried out, while further biomass is simultaneously being collected from the growth site by means of the mobile unit.
 
2. The method of claim 1, further comprising the steps of:

- collecting dirt from the growth site and mixing said dirt with the char to thereby cool the char;

- ejecting the mix of char and dirt from the mobile unit.


 
3. The method of claim 2, further comprising the step of forming a furrow in the growth field by means of a tine of the mobile unit, and wherein, at said step of ejecting, the mix of char and dirt is fed into the furrow.
 
4. The method of any of the preceding claims, wherein the pyrolysis apparatus combusts at least a portion of said pyrolysis gas in a furnace, whereby heat and exhaust fume is produced.
 
5. The method of claim 4, wherein the pyrolysis apparatus further combusts at least a portion of said char.
 
6. The method of claim 4 or 5, further comprising, prior to the step of continuously feeding the biomass into the pyrolysis apparatus:

- continuously feeding the biomass to a pre-heating device, in which the biomass is pre-heated before it enters the pyrolysis apparatus;

- conveying said exhaust fume through the pre-heating device, whereby the exhaust fume serves as a heat source for the biomass.


 
7. The method of any of claims 4-6, comprising conveying the exhaust fume from the furnace to a first heat exchanger, in which the exhaust fume heats intake air for the furnace.
 
8. The method of any of claims 4-7, wherein, at the step of separating, pyrolysis liquid and at least a portion of said pyrolysis gas is conveyed to a separator for separating the pyrolysis liquid from the pyrolysis gas, the method further comprising:

- conveying at least a portion of the separated pyrolysis gas back to the furnace.


 
9. The method of claim 8, wherein the pyrolysis apparatus produces vaporized pyrolysis liquid, the mobile unit further comprising a condenser for condensing vapours into liquefied pyrolysis liquid, the condenser being arranged as a separate unit outside the pyrolysis apparatus or as an integrated unit of the pyrolysis apparatus, the method further comprising the step of conveying at least a portion of the separated liquid back to the pyrolysis apparatus as a cooling source in the condenser.
 
10. The method of claim 9, wherein the condenser is integrated in the pyrolysis apparatus, the method further comprising:

- cooling said portion of the separated liquid in a second heat exchanger before said liquid enters the pyrolysis apparatus, wherein the second heat exchanger uses air as a cooling source:

- mixing air, which exits the second heat exchanger, with said intake air for the furnace upstream or downstream of the first heat exchanger.


 
11. The method of any of the preceding claims, wherein the pyrolysis apparatus comprises a centrifuge defining a centrifuge chamber; the method further comprising, at said step of decomposing:

- imparting rotation on biomass distributed in gas volume in the centrifuge chamber, whereby the biomass is forced towards an outer wall of the centrifuge chamber;

- maintaining said outer wall at a temperature of 350 - 700 degrees Celsius to effect a pyrolysis process at or near the outer wall of the centrifuge chamber, whereby the biomass decomposes into said pyrolysis liquid, pyrolysis gas and char, the pyrolysis gas and char being on gaseous form.


 
12. The method of any of the preceding claims, wherein the pyrolysis vapours are partially condensed in a primary condenser, the method further comprising:

- drying the gas originating from the partial condensation and utilizing at least a portion thereof as fuel for a furnace and/or for an engine for propelling the mobile unit;

- mixing the resulting liquid phase consisting largely of water with the char to obtain a slurry;

- distributing the slurry over the growth site and/or collecting it for further processing or combustion;

- leading the vapours formed in the process of contacting hot char with liquid to a tertiary condenser in order to condense components having a lower boiling point than water;

- admixing the condensed vapour from the tertiary condenser with liquid product produced by the primary condenser.


 
13. A mobile unit for collecting biomass and for producing pyrolysis liquid from the biomass, the unit comprising:

- a pyrolysis apparatus the decomposing the biomass into pyrolysis liquid, char and pyrolysis gas;

- a biomass collector for collecting the biomass from a growth site;

- a biomass conveyor for continuously feeding the biomass into the pyrolysis apparatus;

- a separation system for separating the pyrolysis liquid from the char and pyrolysis gas,

characterised in that
the biomass collector, the biomass conveyor and the pyrolysis apparatus are operable such that the pyrolysis apparatus can decompose the biomass, while further biomass is simultaneously collected from the growth site by means of the biomass collector.
 
14. The mobile unit of claim 13, further comprising a wheeled support structure and a coupling system for coupling the unit to a power-driven vehicle.
 
15. The mobile unit of claim 13, further comprising a wheeled support structure and an engine in order for the mobile unit to be self-propelled.
 
16. The mobile unit of claim 14 or 15, further comprising an engine utilizing said pyrolysis gas, pyrolysis liquid or char as fuel.
 
17. The mobile unit of any of claims 13-16, further comprising an apparatus for mixing pyrolysis liquid with char to form a slurry.
 
18. The mobile unit of any of claims 13-17, further comprising:

- a dirt collector for collecting dirt from the growth site and mixing said dirt with the char to thereby cool the char;

- a dirt and char ejector for ejecting the mix of char and dirt from the mobile unit.


 
19. The mobile unit of any of claims 13-18, further comprising a tine for forming a furrow in the growth field, the tine being arranged such with respect to said dirt and char ejector that the mix of char and dirt or char and water slurry can be fed into the furrow during use of the mobile unit.
 
20. The mobile unit of any of claims 13-19, wherein the pyrolysis apparatus comprises a furnace for combusting at least a portion of said pyrolysis gas and/or at least a portion of said char, the furnace comprising an exhaust fume outlet for expelling exhaust fume from the furnace.
 
21. The mobile unit of claim 20, wherein the centrifuge is arranged coaxially within a furnace whereby heat for the pyrolysis process may be transported across the outer wall of the centrifuge by conduction.
 
22. The mobile unit of claim 20 or 21, further comprising:

- a pre-heating device for preheating the biomass, the pre-heating device being arranged upstream of the pyrolysis apparatus;

- an exhaust fume conduit for guiding said exhaust fume from said exhaust fume outlet of the furnace to the pre-heating device.


 
23. The mobile unit of claim 22, wherein said exhaust fume conduit is further arranged to guide the exhaust fume to a first heat exchanger, which is arranged to heat intake air for the furnace.
 
24. The mobile unit of any of claims 13-23, further comprising a separator for separating the pyrolysis liquid from the pyrolysis gas as the pyrolysis liquid and gas exit the pyrolysis apparatus, the mobile unit further comprising:

- a first gas conduit for guiding the separated gas back to the furnace.


 
25. The mobile unit of any of claims 13-24, wherein the pyrolysis apparatus produces vaporized pyrolysis liquid, the mobile unit further comprising a condenser for condensing vapours into liquefied pyrolysis liquid, the condenser being arranged as a separate unit outside the pyrolysis apparatus or as an integrated unit of the pyrolysis apparatus.
 
26. The mobile unit of claim 24 and 25, further comprising a fluid conduit for guiding at least a portion of the separated liquid back to the pyrolysis apparatus as a cooling source for the condenser.
 
27. The mobile unit of claims 23 and 26, further comprising:

- a second heat exchanger arranged in said fluid conduit upstream of the pyrolysis apparatus to cool down said portion of the separated liquid;

- a first air conduit for guiding air to the second heat exchanger as a cooling source;

- a second air conduit for guiding the air, which exits the second heat exchanger, to an inlet conduit for said intake air for the furnace, so as to mix the air in the second air conduit into said intake air.


 
28. The mobile unit of claim 23 in combination with any of claims 14-16, further comprising a conduit which is connectable to an exhaust outlet of the power-driven vehicle or an exhaust outlet of said engine to allow exhaust gas of the vehicle or of the engine as a heat source in the first heat exchanger.
 
29. The mobile unit of any of claims 13-28 further comprising a shredder for shredding the collected biomass upstream of the pyrolysis apparatus.
 
30. The mobile unit of any of claims 13-29, wherein the condenser is integrated in the pyrolysis apparatus, and wherein the pyrolysis apparatus comprises:

- a centrifuge chamber delimited by an inner wall and an outer wall;

- an inlet through which the biomass can be fed into the centrifuge chamber;

- a rotor arranged to impart rotation on biomass distributed in gas volume in the centrifuge chamber to force the biomass towards the outer wall under the action of centrifugal forces;

- a heating system for maintaining said outer wall at a temperature of 350 - 700 degrees Celsius to effect the pyrolysis process at or near the outer wall of the centrifuge chamber and to thereby decompose the biomass into char, pyrolysis gas and pyrolysis vapors, which can be condensed into pyrolysis liquid in said condenser;

- a char conveyor for conveying the char away from the centrifuge chamber;
wherein:

- the inner wall of the centrifuge chamber is permeable to said pyrolysis vapors and gas.


 


Ansprüche

1. Verfahren zum Sammeln von Biomasse und zum Herstellen einer Pyrolyseflüssigkeit und/oder Holzkohle aus der Biomasse, welches folgende Schritte umfasst:

- Sammeln der Biomasse von einem Anbauort mittels einer mobilen Einheit;

- kontinuierliches Zuführen der Biomasse in eine Pyrolysevorrichtung, die in der mobilen Einheit untergebracht ist, wenn sich die mobile Einheit durch den Anbauort bewegt;

- Zersetzen der Biomasse in Pyrolyseflüssigkeit, Holzkohle und Pyrolysegas, wobei der Schritt des Zersetzens in der Pyrolysevorrichtung ausgeführt wird;

- Trennen der Pyrolyseflüssigkeit von der Holzkohle und dem Pyrolysegas und Sammeln der Pyrolyseflüssigkeit und/oder der Holzkohle,

dadurch gekennzeichnet, dass
der Schritt des Zersetzens der Biomasse ausgeführt wird, während gleichzeitig mittels der mobilen Einheit weitere Biomasse von dem Anbauort gesammelt wird.
 
2. Verfahren nach Anspruch 1, welches ferner folgende Schritte umfasst:

- Sammeln von Erde vom Anbauort und Mischen der Erde mit der Holzkohle, um dadurch die Holzkohle zu kühlen;

- Auswerfen der Mischung aus Holzkohle und Erde aus der mobilen Einheit.


 
3. Verfahren nach Anspruch 2, welches ferner den Schritt des Bildens einer Furche in dem Anbaufeld mittels einer Zinke der mobilen Einheit umfasst, und wobei bei dem Schritt des Auswerfens die Mischung aus Holzkohle und Erde in die Furche zugeführt wird.
 
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Pyrolysevorrichtung mindestens einen Teil des Pyrolysegases in einem Ofen verbrennt, wodurch Wärme und Abgas erzeugt werden.
 
5. Verfahren nach Anspruch 4, wobei die Pyrolysevorrichtung ferner mindestens einen Teil der Holzkohle verbrennt.
 
6. Verfahren nach Anspruch 4 oder 5, welches ferner vor dem Schritt des kontinuierlichen Zuführens der Biomasse in die Pyrolysevorrichtung Folgendes umfasst:

- kontinuierliches Zuführen der Biomasse zu einer Vorwärmeinrichtung, in welcher die Biomasse vorgewärmt wird, bevor sie in die Pyrolysevorrichtung gelangt;

- Leiten des Abgases durch die Vorwärmeinrichtung, wodurch das Abgas als eine Wärmequelle für die Biomasse dient.


 
7. Verfahren nach einem der Ansprüche 4-6, welches das Leiten des Abgases aus dem Ofen zu einem ersten Wärmetauscher umfasst, in dem das Abgas Ansaugluft für den Ofen erwärmt.
 
8. Verfahren nach einem der Ansprüche 4-7, wobei beim Schritt des Trennens Pyrolyseflüssigkeit und mindestens ein Teil des Pyrolysegases zu einem Separator geleitet werden, um die Pyrolyseflüssigkeit von dem Pyrolysegas zu trennen, wobei das Verfahren ferner Folgendes umfasst:

- Leiten von mindestens einem Teil des getrennten Pyrolysegases zurück zu dem Ofen.


 
9. Verfahren nach Anspruch 8, wobei die Pyrolysevorrichtung verdampfte Pyrolyseflüssigkeit erzeugt, wobei die mobile Einheit ferner einen Kondensator zum Kondensieren von Dämpfen in verflüssigte Pyrolyseflüssigkeit umfasst, wobei der Kondensator als eine separate Einheit außerhalb der Pyrolysevorrichtung oder als eine integrierte Einheit der Pyrolysevorrichtung angeordnet ist, wobei das Verfahren ferner den Schritt des Leitens von mindestens einem Teil der getrennten Flüssigkeit zurück zu der Pyrolysevorrichtung als Kühlquelle im Kondensator umfasst.
 
10. Verfahren nach Anspruch 9, wobei der Kondensator in die Pyrolysevorrichtung integriert ist, wobei das Verfahren ferner Folgendes umfasst:

- Kühlen des Teils der getrennten Flüssigkeit in einem zweiten Wärmetauscher, bevor die Flüssigkeit in die Pyrolysevorrichtung gelangt, wobei der zweite Wärmetauscher Luft als Kühlquelle verwendet;

- Mischen der Luft, die aus dem zweiten Wärmetauscher austritt, mit der Ansaugluft für den Ofen stromaufwärts oder stromabwärts des ersten Wärmetauschers.


 
11. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Pyrolysevorrichtung eine Zentrifuge umfasst, die eine Zentrifugenkammer definiert, wobei das Verfahren ferner beim Schritt des Zersetzens Folgendes umfasst:

- Versetzen der Biomasse, die im Gasvolumen in der Zentrifugenkammer verteilt ist, in Rotation, wodurch die Biomasse in Richtung der Außenwand der Zentrifugenkammer gedrückt wird;

- Halten der Außenwand bei einer Temperatur von 350-700 Grad Celsius zum Bewirken eines Pyrolyseprozesses an oder nahe der Außenwand der Zentrifugenkammer, wodurch sich die Biomasse in die Pyrolyseflüssigkeit, Pyrolysegas und Holzkohle zersetzt, wobei das Pyrolysegas und die Holzkohle in gasförmiger Form vorliegen.


 
12. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Pyrolysedämpfe in einem primären Kondensator teilweise kondensiert werden, wobei das Verfahren ferner Folgendes umfasst:

- Trocknen des Gases, das aus der teilweisen Kondensation stammt, und Einsetzen von mindestens einem Teil davon als Brennstoff für einen Ofen und/oder für einen Motor zum Antreiben der mobilen Einheit;

- Mischen der resultierenden Flüssigphase, die größtenteils aus Wasser besteht, mit der Holzkohle zum Erhalten eines Schlammes;

- Verteilen des Schlammes über den Anbauort und/oder Sammeln dessen zur Weiterverarbeitung oder Verbrennung;

- Führen der Dämpfe, die im Prozess des Kontaktierens der heißen Holzkohle mit Flüssigkeit gebildet wurden, zu einem tertiären Kondensator, um Komponenten mit einem niedrigeren Siedepunkt als Wasser zu kondensieren;

- Vermischen des kondensierten Dampfes aus dem tertiären Kondensator mit flüssigem Produkt, das durch den primären Kondensator erzeugt wird.


 
13. Mobile Einheit zum Sammeln von Biomasse und zum Herstellen von Pyrolyseflüssigkeit aus der Biomasse, wobei die Einheit Folgendes umfasst:

- eine Pyrolysevorrichtung zum Zersetzen der Biomasse in Pyrolyseflüssigkeit, Holzkohle und Pyrolysegas;

- einen Biomassekollektor zum Sammeln der Biomasse von einem Anbauort;

- einen Biomasseförderer zum kontinuierlichen Zuführen der Biomasse in die Pyrolysevorrichtung;

- ein Trennsystem zum Trennen der Pyrolyseflüssigkeit von Holzkohle und Pyrolysegas,

dadurch gekennzeichnet, dass
der Biomassekollektor, der Biomasseförderer und die Pyrolysevorrichtung derart betrieben werden können, dass die Pyrolysevorrichtung die Biomasse zersetzen kann, während gleichzeitig mittels des Biomassekollektors weitere Biomasse vom Anbauort gesammelt wird.
 
14. Mobile Einheit nach Anspruch 13, welche ferner eine Stützstruktur auf Rädern und ein Kopplungssystem zum Koppeln der Einheit an ein Fahrzeug mit Motorantrieb umfasst.
 
15. Mobile Einheit nach Anspruch 13, welche ferner eine Stützstruktur auf Rädern und einen Motor umfasst, damit die mobile Einheit selbstfahrend ist.
 
16. Mobile Einheit nach Anspruch 14 oder 15, welche ferner einen Motor umfasst, der das Pyrolysegas, die Pyrolyseflüssigkeit oder die Holzkohle als Kraftstoff nutzt.
 
17. Mobile Einheit nach einem der Ansprüche 13-16, welche ferner eine Vorrichtung zum Mischen der Pyrolyseflüssigkeit mit Holzkohle zum Bilden eines Schlammes umfasst.
 
18. Mobile Einheit nach einem der Ansprüche 13-17, welche ferner Folgendes umfasst:

- einen Erdkollektor zum Sammeln von Erde vom Anbauort und Mischen der Erde mit der Holzkohle, um dadurch die Holzkohle zu kühlen;

- einen Erd- und Holzkohleauswerfer zum Auswerfen der Mischung aus Holzkohle und Erde aus der mobilen Einheit.


 
19. Mobile Einheit nach einem der Ansprüche 13-18, welche ferner eine Zinke zum Bilden einer Furche im Anbaufeld umfasst, wobei die Zinke derart in Bezug auf den Erd- und Holzkohleauswerfer angeordnet ist, dass die Mischung aus Holzkohle und Erde oder Holzkohle und Wasserschlamm während der Verwendung der mobilen Einheit in die Furche zugeführt werden kann.
 
20. Mobile Einheit nach einem der Ansprüche 13-19, wobei die Pyrolysevorrichtung einen Ofen zum Verbrennen von mindestens einem Teil des Pyrolysegases und/oder mindestens einem Teil der Holzkohle umfasst, wobei der Ofen einen Abgasausgang zum Ausstoßen von Abgas aus dem Ofen umfasst.
 
21. Mobile Einheit nach Anspruch 20, wobei die Zentrifuge koaxial innerhalb eines Ofens angeordnet ist, wodurch Wärme für den Pyrolyseprozess durch Leitung über die Außenwand der Zentrifuge hinweg transportiert werden kann.
 
22. Mobile Einheit nach Anspruch 20 oder 21, welche ferner Folgendes umfasst:

- eine Vorwärmeinrichtung zum Vorwärmen der Biomasse, wobei die Vorwärmeinrichtung stromaufwärts von der Pyrolysevorrichtung angeordnet ist;

- einen Abgaskanal zum Führen des Abgases aus dem Abgasausgang des Ofens zur Vorwärmeinrichtung.


 
23. Mobile Einheit nach Anspruch 22, wobei der Abgaskanal ferner geeignet ist, das Abgas zu einem ersten Wärmetauscher zu führen, der zum Erwärmen von Ansaugluft für den Ofen geeignet ist.
 
24. Mobile Einheit nach einem der Ansprüche 13-23, welche ferner einen Separator zum Trennen der Pyrolyseflüssigkeit von dem Pyrolysegas umfasst, wenn Pyrolyseflüssigkeit und -gas aus der Pyrolysevorrichtung austreten, wobei die mobile Einheit ferner Folgendes umfasst:

- einen ersten Gaskanal zum Führen des getrennten Gases zurück zum Ofen.


 
25. Mobile Einheit nach einem der Ansprüche 13-24, wobei die Pyrolysevorrichtung verdampfte Pyrolyseflüssigkeit erzeugt, wobei die mobile Einheit ferner einen Kondensator zum Kondensieren von Dämpfen in verflüssigte Pyrolyseflüssigkeit umfasst, wobei der Kondensator als eine separate Einheit außerhalb der Pyrolysevorrichtung oder als eine integrierte Einheit der Pyrolysevorrichtung angeordnet ist.
 
26. Mobile Einheit nach Anspruch 24 oder 25, welche ferner einen Fluidkanal zum Führen von mindestens einem Teil der getrennten Flüssigkeit zurück zur Pyrolysevorrichtung als eine Kühlquelle für den Kondensator umfasst.
 
27. Mobile Einheit nach Anspruch 23 und 26, welche ferner Folgendes umfasst:

- einen zweiten Wärmetauscher, der in dem Fluidkanal stromaufwärts von der Pyrolysevorrichtung angeordnet ist, zum Abkühlen des Teils der getrennten Flüssigkeit;

- einen ersten Luftkanal zum Führen von Luft zu dem zweiten Wärmetauscher als eine Kühlquelle;

- einen zweiten Luftkanal zum Führen der Luft, die aus dem zweiten Wärmetauscher austritt, zu einem Einlasskanal für die Ansaugluft für den Ofen, um die Luft in dem zweiten Luftkanal in die Ansaugluft zu mischen.


 
28. Mobile Einheit nach Anspruch 23 in Kombination mit einem der Ansprüche 14-16, welche ferner einen Kanal umfasst, der mit einem Abgasausgang des Fahrzeuges mit Motorantrieb oder einem Abgasausgang des Motors verbunden werden kann, um das Abgas des Fahrzeuges oder des Motors als eine Wärmequelle im ersten Wärmetauscher zu gestatten.
 
29. Mobile Einheit nach einem der Ansprüche 13-28, welche ferner einen Shredder zum Zerkleinern der gesammelten Biomasse stromaufwärts von der Pyrolysevorrichtung umfasst.
 
30. Mobile Einheit nach einem der Ansprüche 13-29, wobei der Kondensator in die Pyrolysevorrichtung integriert ist, und wobei die Pyrolysevorrichtung Folgendes umfasst:

- eine Zentrifugenkammer, die durch eine Innenwand und eine Außenwand begrenzt ist;

- einen Einlass, durch welchen die Biomasse in die Zentrifugenkammer zugeführt werden kann;

- einen Rotor, der dazu geeignet ist, die Biomasse, welche im Gasvolumen in der Zentrifugenkammer verteilt ist, in Rotation zu versetzen, um die Biomasse unter der Wirkung von Zentrifugalkräften in Richtung der Außenwand zu drücken;

- ein Heizsystem, um die Außenwand bei einer Temperatur von 350-700 Grad Celsius zu halten, um den Pyrolyseprozess an oder nahe der Außenwand der Zentrifugenkammer zu bewirken und dadurch die Biomasse in Holzkohle, Pyrolysegas und Pyrolysedämpfe zu zersetzen, die in dem Kondensator in Pyrolyseflüssigkeit kondensiert werden können;

- einen Holzkohleförderer, um die Holzkohle von der Zentrifugenkammer weg zu befördern;
wobei

- die Innenwand der Zentrifugenkammer durchlässig für Pyrolysedämpfe und -gas ist.


 


Revendications

1. Procédé pour collecter de la biomasse et pour produire un liquide de pyrolyse et/ou un produit de carbonisation provenant de la biomasse, comprenant les étapes de :

- collecte de la biomasse à partir d'un site de développement au moyen d'une unité mobile ;

- alimentation continue de la biomasse dans un appareil à pyrolyse logé par l'unité mobile, tandis que l'unité mobile traverse le site de développement ;

- décomposition de la biomasse en liquide de pyrolyse, produit de carbonisation et gaz de pyrolyse, l'étape de décomposition étant effectuée dans ledit appareil à pyrolyse ;

- séparation du liquide de pyrolyse du produit de carbonisation et du gaz de pyrolyse et collecte du liquide de pyrolyse et/ou produit de carbonisation,

caractérisé en ce que
ladite étape de décomposition de la biomasse est réalisée, tandis qu'une autre biomasse est collectée de manière simultanée depuis le site de développement au moyen de l'unité mobile.
 
2. Procédé de la revendication 1 comprenant en outre les étapes de :

- collecte de saletés du site de développement et mélange de ladite saleté au produit de carbonisation pour refroidir ainsi le produit de carbonisation ;

- éjection du mélange de produit de carbonisation et de saleté de l'unité mobile.


 
3. Procédé de la revendication 2, comprenant en outre l'étape de formation d'un sillon au moyen d'une dent de l'unité mobile, et où, lors de ladite étape d'éjection, le mélange de produit de carbonisation et de saleté est alimenté vers le sillon.
 
4. Procédé selon l'une quelconque des revendications précédentes, où l'appareil à pyrolyse brûle au moins une partie dudit gaz de pyrolyse dans un four, d'où sont produits la chaleur et les fumées d'échappement.
 
5. Procédé de la revendication 4, où l'appareil à pyrolyse brûle en outre au moins une partie dudit produit de carbonisation.
 
6. Procédé de la revendication 4 ou 5, comprenant en outre, avant l'étape d'alimentation continue de la biomasse dans l'appareil à pyrolyse :

- l'alimentation continue de la biomasse vers un dispositif de préchauffe, dans lequel la biomasse est préchauffée avant d'entrer dans l'appareil à pyrolyse ;

- le transport desdites fumées d'échappement par le dispositif de préchauffage, où les fumées d'échappement servent de source de chaleur pour la biomasse.


 
7. Procédé de l'une quelconque des revendications 4-6, comprenant le transport des fumées d'échappement du four vers un premier échangeur thermique, dans lequel les fumées d'échappement chauffent l'air d'admission pour le four.
 
8. Procédé de l'une quelconque des revendications 4-7, où, à l'étape de séparation, le liquide de pyrolyse et au moins une partie dudit gaz de pyrolyse est transporté vers un séparateur pour séparer le liquide de pyrolyse du gaz de pyrolyse, le procédé comprenant en outre :

- le transport d'au moins une partie du gaz de pyrolyse séparé vers le four.


 
9. Procédé de la revendication 8, où l'appareil à pyrolyse produit du liquide de pyrolyse vaporisé, l'unité mobile comprenant en outre un condensateur pour condenser des vapeurs dans le liquide de pyrolyse liquéfié, le condensateur étant disposé comme une unité séparée hors de l'appareil à pyrolyse ou comme une unité intégrée de l'appareil à pyrolyse, le procédé comprenant en outre l'étape de transport d'au moins une partie du liquide séparé vers l'appareil à pyrolyse comme source de refroidissement dans le condensateur.
 
10. Procédé de la revendication 9, où le condensateur est intégré dans l'appareil à pyrolyse, le procédé comprenant en outre :

- le refroidissement de ladite partie du liquide séparé dans un deuxième échangeur thermique avant que ledit liquide n'entre dans l'appareil à pyrolyse, où le deuxième échangeur thermique utilise de l'air comme source de refroidissement :

- le mélange de l'air, qui sort du deuxième échangeur de chaleur, avec ledit air d'admission pour l'aval ou l'amont du four du premier échangeur thermique.


 
11. Procédé selon l'une quelconque des revendications précédentes, où l'appareil à pyrolyse comprend une centrifugeuse définissant une chambre centrifugeuse, le procédé comprenant en outre à ladite étape de décomposition :

- la transmission de la rotation sur la biomasse répartie sur le volume de gaz dans la chambre centrifugeuse, où la biomasse est poussée vers une paroi extérieure de la chambre centrifugeuse ;

- le maintien de ladite paroi extérieure à une température de 350-700 degrés Celsius pour effectuer un processus de pyrolyse sur ou près de la paroi extérieure de la chambre centrifugeuse, où la biomasse se décompose en ledit liquide de pyrolyse, gaz de pyrolyse et produit de carbonisation sous forme gazeuse.


 
12. Procédé selon l'une quelconque des revendications précédentes, où les vapeurs de pyrolyse sont partiellement condensées dans un premier condensateur, le procédé comprenant en outre :

- le séchage du gaz provenant de la condensation partielle et utilisant au moins une partie de celui-ci comme combustible pour un four et/ou pour un moteur servant à propulser l'unité mobile ;

- le mélange de la phase liquide résultante consistant principalement en eau avec le produit de carbonisation pour obtenir une suspension ;

- la répartition de la suspension sur le site de développement et/ou la collecte de celle-ci pour un traitement ou une combustion ultérieurs ;

- le fait d'amener les vapeurs formées dans le processus de contact avec le produit de carbonisation avec le liquide vers un troisième condensateur afin de condenser des composants ayant un point d'ébullition inférieur à l'eau ;

- le mélange de la vapeur condensée du condensateur tertiaire avec le produit liquide produit par le premier condensateur.


 
13. Unité mobile pour collecter de la biomasse et pour produire un liquide de pyrolyse provenant de la biomasse, l'unité comprenant :

- un appareil à pyrolyse pour décomposer la biomasse en liquide de pyrolyse, produit de carbonisation et gaz de pyrolyse ;

- un collecteur de biomasse pour collecter la biomasse à partir d'un site de développement ;

- un transporteur de biomasse pour alimenter en continu la biomasse dans l'appareil à pyrolyse ;

- un système de séparation pour séparer le liquide de pyrolyse du produit de carbonisation et du gaz de pyrolyse,

caractérisé en ce que
le collecteur de biomasse, le transporteur de biomasse et l'appareil à pyrolyse sont utilisables de sorte que l'appareil à pyrolyse puisse décomposer la biomasse, tandis qu'une autre biomasse est collectée de manière simultanée depuis le site de développement au moyen du collecteur de biomasse.
 
14. Unité mobile de la revendication 13, comprenant en outre une structure de support à roues et un système de couplage pour coupler l'unité à un véhicule électrique.
 
15. Unité mobile de la revendication 13, comprenant en outre une structure de support à roues et un moteur pour que l'unité mobile soit autopropulsée.
 
16. Unité mobile de la revendication 14 ou 15, comprenant un moteur utilisant ledit gaz de pyrolyse, liquide de pyrolyse ou produit de carbonisation comme combustible.
 
17. Unité mobile de l'une quelconque des revendications 13-16, comprenant en outre un appareil pour mélanger le liquide de pyrolyse afin de former une suspension.
 
18. Unité mobile de l'une quelconque des revendications 13-17, comprenant en outre

- un collecteur de saletés provenant du site de développement et le mélange de ladite saleté au produit de carbonisation pour refroidir ainsi le produit de carbonisation ;

- un éjecteur de saleté et de produit de carbonisation pour éjecter le mélange de produit de carbonisation et de saleté de l'unité mobile.


 
19. Unité mobile de l'une quelconque des revendications 13-18, comprenant en outre une dent pour former un sillon dans le site de développement, la dent étant disposée par rapport audit éjecteur de saleté et de produit de carbonisation, de sorte que le mélange de produit de carbonisation et de saleté ou de produit de carbonisation et de suspension aqueuse soit alimenté dans le sillon au cours de l'utilisation de l'unité mobile.
 
20. Unité mobile de l'une quelconque des revendications 13-19, où l'appareil à pyrolyse comprend un four pour brûler au moins une partie dudit gaz de pyrolyse et/ou au moins une partie dudit produit de carbonisation, le four comprenant une sortie de fumées d'échappement pour expulser les fumées d'échappement du four.
 
21. Unité mobile de la revendication 20, où la centrifugeuse est disposée coaxialement dans un four où la chaleur pour le processus de pyrolyse peut être transportée de l'autre côté de la paroi extérieure de la centrifugeuse par conduction.
 
22. Unité mobile de la revendication 20 ou 21, comprenant en outre

- un dispositif de préchauffe pour préchauffer la biomasse, le dispositif de préchauffe étant disposé en aval de l'appareil à pyrolyse ;

- un conduit des fumées d'échappement pour guider lesdites fumées d'échappement de ladite sortie des fumées d'échappement du four vers le dispositif de préchauffe.


 
23. Unité mobile de la revendication 22, où ledit conduit des fumées d'échappement est en outre disposé pour guider les fumées d'échappement vers un premier échangeur thermique, qui est disposé pour chauffer l'eau d'admission pour le four.
 
24. Unité mobile de l'une quelconque des revendications 13-23, comprenant en outre un séparateur pour séparer le liquide de pyrolyse du gaz de pyrolyse quand le liquide de pyrolyse sort de l'appareil à pyrolyse, l'unité mobile comprenant en outre :

- un premier conduit de gaz pour guider le gaz séparé vers le four.


 
25. Unité mobile selon l'une quelconque des revendications 13-24, où l'appareil à pyrolyse produit du liquide de pyrolyse vaporisé, l'unité mobile comprenant en outre un condensateur pour condenser des vapeurs dans le liquide de pyrolyse liquéfié, le condensateur étant disposé comme une unité séparée hors de l'appareil à pyrolyse ou comme une unité intégrée de l'appareil à pyrolyse.
 
26. Unité mobile de la revendication 24 et 25, comprenant en outre un conduite de liquide pour guider au moins une partie du liquide séparé vers l'appareil à pyrolyse comme source de refroidissement pour le condensateur.
 
27. Unité mobile des revendications 23 et 26, comprenant en outre :

- un deuxième échangeur thermique disposé dans ledit conduit de liquide en amont de l'appareil à pyrolyse pour refroidir ladite partie du liquide séparé ;

- un premier conduit d'air pour guider l'air vers le deuxième échangeur de chaleur comme source de refroidissement ;

- un deuxième conduit d'air pour guider l'air, qui sort du deuxième échangeur thermique, vers un conduit d'entrée pour ledit air d'admission pour le four de manière à mélanger l'air du deuxième conduit d'air dans ledit air d'admission.


 
28. Unité mobile de la revendication 23 en combinaison avec l'une quelconque de revendications 14-16, comprenant en outre un conduit qui peut être raccordé à une sortie d'échappement du véhiculé électrique ou une sortie d'échappement dudit moteur pour permettre l'échappement des gaz du véhicule ou du moteur comme source de chaleur dans premier échangeur thermique.
 
29. Unité mobile selon l'une quelconque des revendications 13-28, comprenant en outre un broyeur pour broyer la biomasse collecté en amont de l'appareil à pyrolyse.
 
30. Unité mobile selon l'une quelconque des revendications 13-29, où le condensateur est intégré à l'appareil à pyrolyse et où l'appareil à pyrolyse comprend :

- une chambre centrifugeuse délimitée par une paroi intérieure et une paroi extérieure ;

- une entrée par laquelle la biomasse peut être alimentée dans la chambre centrifugeuse ;

- un rotor disposé de manière à transmettre la rotation sur la biomasse répartie en volume de gaz dans la chambre centrifugeuse pour pousser la biomasse vers la paroi extérieure sous l'action des forces centrifuges ;

- un système de chauffage pour maintenir ladite paroi extérieure à une température de 350-700 degrés Celsius pour effectuer un processus de pyrolyse sur ou près de la paroi extérieure de la chambre centrifugeuse, et pour décomposer ainsi la biomasse en produit de carbonisation, gaz de pyrolyse et vapeurs de pyrolyse, qui peuvent être condensés dans le liquide de pyrolyse dans ledit condensateur ;

- un transporteur de produit de carbonisation pour transporter le produit de carbonisation hors de la chambre centrifugeuse ;
où :

- la paroi intérieure de la chambre centrifugeuse est perméable auxdites vapeurs et gaz de pyrolyse.


 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description