(11) **EP 1 884 654 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

06.02.2008 Bulletin 2008/06

(51) Int Cl.:

F02M 51/06 (2006.01)

(21) Application number: 06015489.5

(22) Date of filing: 25.07.2006

(84) Designated Contracting States:

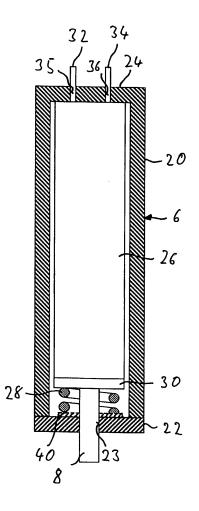
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Designated Extension States:

AL BA HR MK YU

(71) Applicant: SIEMENS AKTIENGESELLSCHAFT 80333 München (DE)

(72) Inventor: Zanoboni, Cristiano 57016 Rosignano Solvay (IT)


Remarks:

Amended claims in accordance with Rule 137(2) EPC.

(54) Piezo-actuator-unit for an injector

(57) A piezo-actuator-unit (6) for an injector comprises a piezo-element (26) and a tube-shaped housing (20) which takes in the piezo-element (26) A top portion (24) of the tube-shaped housing (20) is coupled to a first axial end of the piezo-element (26). A bottom portion (22) of the tube-shaped housing (20) has a needle recess (23) and is coupled to a second axial end of the piezo-element (26). A needle body (8) protrudes from the needle recess (23) and is axially coupled to the piezo-element (26). An actuator spring (28) is axially coupled to the piezo-element (26) and the bottom portion (22) of the tube-shaped housing (20) for forcing the piezo-element (26) away from the bottom portion (22) of the tube-shaped housing (20).

FIG 2

EP 1 884 654 A1

25

[0001] The invention relates to a piezo-actuator-unit for an injector. The piezo-actuator-unit comprises a piezo-element and a housing.

1

[0002] US 6,969,009 B2 discloses an injector with a piezo-actuator-unit. A jacket surface of the piezo-actuator-unit is surrounded by an injector housing. The injector housing maintains an intermediate space to the piezo-actuator-unit. The injector housing is cooled by direct contact with an inert fluid which does not conduct electricity. A fluid space in the injector housing is filled with fluid except for an air reservoir. A volume of the air reservoir is at least large enough to allow the thermal expansion of the heat coupling fluid which occurs at the highest operating temperature of the piezo-actuator-unit. A piezo-element of the piezo-actuator-unit is incorporated into a tubular spring which is the housing of the piezo-actuator-unit.

[0003] The producing of such a tubular spring is time intensive, complicated, and very expensive.

[0004] The object of the invention is to create a piezo-actuator-unit which may be produced and/or assembled in a very simple way.

[0005] The object of the invention is achieved by the independent claim 1. Advantageous embodiments of the invention are given in the sub-claims.

[0006] The invention is distinguished by a piezo-actuator-unit for an injector. The piezo-actuator-unit comprises a piezo-element and a tube-shaped housing. The tube-shaped housing takes in the piezo-element. A top portion of the tube-shaped housing is coupled to a first axial end of the piezo-element. A bottom portion of the tube shaped housing has a needle recess and is coupled to a second axial end of the piezo-element. A needle body protrudes from the needle recess and is axially coupled to the piezo-element. An actor spring is axially coupled to the piezo-element and the bottom portion of the tube-shaped housing for forcing the piezo-element away from the bottom portion of the tube-shaped housing.

[0007] Preferably, the tube-shaped housing is a simple tube. This contributes to a very easy and cheap production of the piezo-actuator-unit. The actor spring contributes to a proper coupling of the piezo-element to the tube-shaped housing independent from the axial expansion of the piezo-element. This contributes to a proper function of the piezo-actuator-unit. Preferably, in a closing position of the needle body, the needle body prevents a fluid flow through an injection nozzle of an injector at an axial end of the needle body facing away from the piezo-element. Alternatively, the needle body is coupled to a needle which prevents the fluid flow through the injection nozzle in the closing position of the needle.

[0008] In an advantageous embodiment of the piezo-actuator-unit, the piezo-actuator-unit comprises a spring washer. The spring washer couples the actor spring with the piezo-element. This contributes to a proper coupling of the actor spring to the piezo-element and to a low abra-

sion of the piezo-element.

[0009] In a further advantageous embodiment of the piezo-actuator-unit, the piezo-element has at least a first wire. The top portion of the tube-shaped housing has a first wire recess for guiding the first wire of the piezo-element to the outside of the tube-shaped housing. This enables in a very simple way an electrical contact to the piezo-element.

[0010] In a further advantageous embodiment of the piezo-actuator-unit, the top portion and/or the bottom portion comprises plastic. This may contribute to a very cheap production of the piezo-actuator-unit.

[0011] In a further advantageous embodiment of the piezo-actuator-unit, the piezo-actuator-unit comprises a metallic washer which is axially arranged between the actor spring and the bottom portion and/or between the piezo-element and the top portion of the tube-shaped housing. This contributes to a low abrasion of the bottom portion and, respectively, of the top portion. This is especially advantageous, if the bottom portion and, respectively, the top portion comprise plastic.

[0012] The invention is explained in the following with the help of schematic drawings.

[0013] These are as follows:

figure 1 an injector,

figure 2 a piezo-actuator-unit.

[0014] Elements with the same design and function that appear in the different illustrations are identified by the same reference characters.

[0015] An injector (Figure 1) comprises an injector body 2 with an injector body recess 4 and an injector head 7. A piezo-actuator-unit 6 is arranged in the injector body recess 4. The piezo-actuator-unit 6 is coupled to a needle body 8 which is arranged in the injector body recess 4 movable in axial direction. The injector may be used to inject fluid into a combustion chamber of an internal combustion engine.

[0016] A spring 12 is arranged in the injector body recess 4 in such a way that the spring 12 forces the needle body 8 away from an injection nozzle 10 via a needle plate 14. A fluid may flow through a fluid path 16 into the injector body recess 4 towards the injection nozzle 10. Bellows 18 prevent the fluid from leaking into that area of the injector body recess 4 in which the piezo-actuator-unit 6 and the spring 12 are arranged.

[0017] The needle body 8 prevents in a closing position of the needle body 8 a fluid flow through an injection nozzle 10 of the injector body 2. Outside of the closing position of the needle body 8 the needle body 8 enables the fluid flow through the injection nozzle 10. The needle body 8 may be made of one or more pieces. For example, the needle body 8 may comprise a pressure transferring element which is coupled to the piezo-element 26 and a needle element which forms the injection nozzle 10.

[0018] Whether the needle body 8 is in its closing po-

15

20

sition or not depends on a force balance of the forces which are acting on the needle body 8. A first force acts on the needle body 8 in the closing direction of the needle body 8 because of the spring 12. A second force may act on the needle body 8 against the closing direction of the needle body 8 because of the piezo-actuator-unit 6, for example, if a piezo-element 26 (figure 2) of the piezoactuator-unit 6 gets energized and increases its axial length. A third force acts on the needle body 8 because of the pressure of the fluid in the injector body recess 4. If the sum of the forces in the opening direction of the needle body 8 is bigger than the sum of the forces in the closing direction of the needle body 8, the needle body 8 is not in its closing position. If the needle body 8 is not in its closing position, there is a gap between the needle body 8 and the injector body 2 at an axial end of the injector body 2 facing away from the injector head 7. The gap forms the injection nozzle 10.

[0019] In this embodiment the injector is of an outward opening type. In an alternative embodiment of the invention the injector may be an injector of an inward opening type. Then, the injection nozzle 10 preferably is at least one injection hole in the injector body 2.

[0020] The piezo-actuator-unit 6 comprises a tube-shaped housing 20 and a piezo-element 26. The piezo-element 26 is arranged in the tube-shaped housing 20. Preferably, the tube-shaped housing 20 is made of a simple tube. Simple means in this context that the tube is not elastic like a spring. Using the simple tube for the tube-shaped housing 20 contributes to a very simple and cheap production of the piezo-actuator-unit 6.

[0021] The tube-shaped housing 20 has a top portion 24 which closes the tube-shaped housing 20 in a first axial direction. The top portion 24 of the tube-shaped housing 20 may be made of one or of two pieces with the tube-shaped housing 20. If the piezo-element 26 comprises a first wire 32 for connecting the piezo-element 26 to a first terminal 39 of the injector, the top portion 24 of the tube-shaped housing 20 comprises a first wire recess 35 through which the first wire 32 of the piezoelement 26 may protrude. If the piezo-element 26 comprises a second wire 34 for connecting the piezo-element 26 to a second terminal 37 of the injector, the top portion 24 of the tube-shaped housing 20 comprises a second wire recess 36. Alternatively, if the wires of the piezoelement 26 are arranged at different positions of the piezo-element 26, the wire recesses may be arranged at different positions of the tube-shaped housing 20.

[0022] Preferably, the first and the second terminal 39, 37 are connected to an electric circuit for controlling the axial expansion of the piezo-element 26. The axial expansion of the piezo-element 26 may be controlled by energizing the piezo-element. The piezo-element may be energized by applying a voltage on the first and, respectively, the second wire 32, 34 of the piezo-element 26. If the piezo-element 26 gets energized, it increases its axial length in some microseconds. If the piezo-element 26 gets de-energized, it decreases its axial length

in some microseconds. The piezo-element 26 mainly comprises stacked piezoelectric crystals.

[0023] The tube-shaped housing 20 is closed towards a second direction through a bottom portion 22 of the tube-shaped housing 20. The bottom portion 22 of the tube-shaped housing 20 may be made of one or two pieces with the tube-shaped housing 20. The bottom portion 22 has a needle recess 23. The needle body 8 protrudes through the needle recess 23 into the tube-shaped housing 20. Preferably, the needle body 8 is not rigidly coupled to the piezo-element 26. In contrast, a spring washer 30 may be rigidly coupled to the piezo-element 26 and the needle body 8 just has a loose coupling to the piezoelement and, in case, to the spring washer 30. The actor spring 28 forces the spring washer 30 and the piezoelement 26 away from the bottom portion 22. So, the piezo-element 26 has a proper coupling to the tubeshaped housing 20, in particular to the bottom portion 22 and the top portion 24 of the tube-shaped housing 20 independent from the axial expansion of the piezo-element 26.

[0024] The bottom portion 22 and/or the top portion 24 of the tube-shaped housing 20 may comprise plastic. This may contribute to a very cheap assembling of the piezo-actuator-unit 6. In this context it is very advantageous, if there is a metallic washer arranged between the actor spring 28 and the bottom portion 22 which comprises the plastic. Additionally, there may be arranged a further metallic washer between the piezo-element 26 and the top portion 24 of the tube-shaped housing 20.

[0025] The invention is not restricted on the explained embodiment. For example, the actor spring 28 may be directly coupled to the piezo-element 26.

Claims

35

40

45

50

- 1. Piezo-actuator-unit (6) for an injector comprising
 - a piezo-element (26),
 - a tube-shaped housing (20) which takes in the piezo-element (26),
 - a top portion (24) of the tube-shaped housing (20) which is coupled to a first axial end of the piezo-element (26),
 - a bottom portion (22) of the tube-shaped housing (20) which has a needle recess (23) and which is coupled to a second axial end of the piezo-element (26),
 - a needle body (8) protruding from the needle recess (23) and being axially coupled to the piezo-element (26),
 - an actor spring (28) which is axially coupled to the piezo-element (26) and the bottom portion (22) of the tube-shaped housing (20) for forcing the piezo-element (26) away from the bottom portion (22) of the tube-shaped housing (20).

15

20

25

30

- 2. Piezo-actuator-unit (6) in accordance with claim 1 comprising a spring washer (30) which couples the actor spring (28) with the piezo-element (26).
- 3. Piezo-actuator-unit (6) in accordance with one of the preceding claims with the piezo-element (26) having at least a first wire (32) and with the top portion (24) of tube-shaped housing (20) having a first wire recess (35) for guiding the first wire (32) of the piezo-element (26) to the outside of the tube-shaped housing (20).
- **4.** Piezo-actuator-unit (6) in accordance with one of the preceding claims with the top portion (24) and/or the bottom portion (22) comprising plastic.
- 5. Piezo-actuator-unit (6) in accordance with one of the preceding claims comprising a metallic washer which is axially arranged between the actor spring (28) and the bottom portion (22) and/or between the piezo-element (26) and the top portion (24).

Amended claims in accordance with Rule 137(2) EPC.

- 1. Piezo-actuator-unit (6) for an injector comprising
 - a piezo-element (26),
 - a tube-shaped housing (20) which takes in the piezo-element (26), $\,$
 - a top portion (24) of the tube-shaped housing (20) which is coupled to a first axial end of the piezo-element (26),
 - a bottom portion (22) of the tube-shaped housing (20) which has a needle recess (23) and which is coupled to a second axial end of the piezo-element (26),
 - a needle body (8) protruding from the needle recess (23) and being axially coupled to the piezo-element (26),
 - an actor spring (28) which is axially coupled to the piezo-element (26) and the bottom portion (22) of the tube-shaped housing (20) for forcing the piezo-element (26) away from the bottom portion (22) of the tube-shaped housing (20), **characterized in that** the top portion (24) and/or the bottom portion (22) comprise plastic.
- 2. Piezo-actuator-unit (6) in accordance with claim 1 comprising a spring washer (30) which couples the actor spring (28) with the piezo-element (26).
- 3. Piezo-actuator-unit (6) in accordance with one of the preceding claims with the piezo-element (26) having at least a first wire (32) and with the top portion (24) of tube-shaped housing (20) having a first wire recess (35) for guiding the first wire (32) of the piezo-

- element (26) to the outside of the tube-shaped housing (20).
- **4.** Piezo-actuator-unit (6) in accordance with one of the preceding claims comprising a metallic washer which is axially arranged between the actor spring (28) and the bottom portion (22) and/or between the piezo-element (26) and the top portion (24).

FIG 1

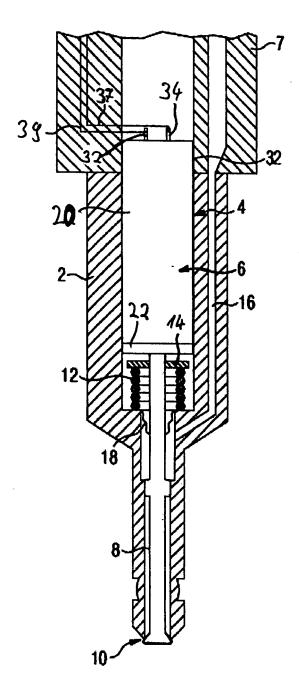
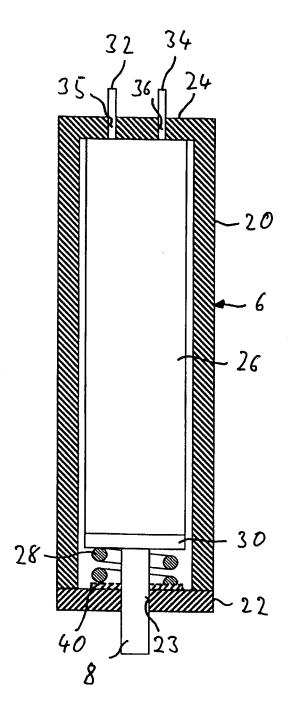



FIG 2

EUROPEAN SEARCH REPORT

Application Number EP 06 01 5489

	DOCUMENTS CONSIDERED	IO RE KELEVANT		
Category	Citation of document with indicatio of relevant passages	n, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
D,X	US 6 969 009 B2 (BACHMA AL) 29 November 2005 (2 * figure 4 *	IER GEORG [DE] ET 005-11-29)	1	INV. F02M51/06
x	WO 03/040545 A (BOSCH G STIER HUBERT [DE]; OKRE	NT ELMAR [DE];	1,2	
Y	DOEBLER) 15 May 2003 (2 * figure 1 *		3	
x	US 6 474 565 B1 (RUEHLE AL) 5 November 2002 (20		1,2	
Y	* figure 1 *		3	
Y	US 6 467 460 B1 (STIER 22 October 2002 (2002-1 * figure 1 *		3	
				TECHNICAL FIELDS
				SEARCHED (IPC) F02M
	The present search report has been dr	awn up for all claims		
	Place of search	Date of completion of the search		Examiner
Munich		31 October 2006	LA	NDRISCINA, V
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone y: particularly relevant if combined with anothe document of the same category A: technological background O: non-written disclosure P: intermediate document		after the filing o D : document cite L : document cited	locument, but pub late d in the applicatior I for other reasons	lished on, or 1
		& : member of the	& : member of the same patent family, document	

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 06 01 5489

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

31-10-2006

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 6969009 B2	29-11-2005	DE 10245109 A1 US 2005072863 A1	08-04-2004 07-04-2005
WO 03040545 A	15-05-2003	DE 10153630 A1 EP 1442210 A1 JP 2005508476 T US 2004094640 A1	10-07-2003 04-08-2004 31-03-2005 20-05-2004
US 6474565 B1	05-11-2002	WO 0106115 A1 DE 19932760 A1 EP 1114251 A1 JP 2003504560 T	25-01-2001 18-01-2001 11-07-2001 04-02-2003
US 6467460 B1	22-10-2002	CN 1297513 A WO 0057050 A1 DE 19912665 A1 EP 1080304 A1 JP 2002540342 T RU 2244151 C2	30-05-2001 28-09-2000 21-09-2000 07-03-2001 26-11-2002 10-01-2005

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 1 884 654 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 6969009 B2 [0002]