(11) EP 1 895 496 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: **05.03.2008 Bulletin 2008/10**

(51) Int Cl.: **G09G** 3/32^(2006.01)

(21) Application number: 07111198.3

(22) Date of filing: 27.06.2007

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Designated Extension States:

AL BA HR MK YU

(30) Priority: 30.06.2006 EP 06300741

(71) Applicant: Thomson Licensing 92100 Boulogne-Billancourt (FR)

(72) Inventors:

- Weitbruch, Sébastien
 92648 Boulogne Cedex (FR)
- Schweer, Rainer
 92648 Boulogne Cedex (FR)
- Thiebaud, Sylvain
 92648 Boulogne Cedex (FR)
- (74) Representative: Le Dantec, Claude 46, Quai Alphonse Le Gallo 92100 Boulogne-Billancourt (FR)

(54) Method and apparatus for driving a display device with variable reference driving signals

(57) A method and an apparatus capable of increasing the video depths depending on the video content of each line in order to provide a maximum of color gradation for each given scene shall be proposed. For this purpose there is disclosed an apparatus for driving a display device (16) including input means (11) for receiving a digital value as video level for each pixel or cell of a line of the

display device (16), reference signalling means (19) for providing at least one reference driving signal and driving means (15) for generating a driving signal on the basis of the digital value and the at least one reference driving signal. The apparatus further includes adjusting means (18) for adjusting the at least one reference driving signal in dependence of the digital values of at least a part of the line.

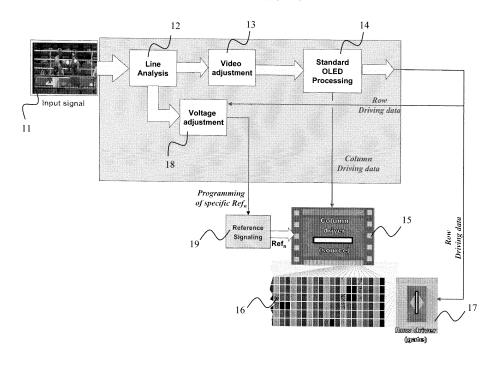


Fig. 7

Description

Field of the invention

5 [0001] The present invention relates to a method for driving a display device including the steps of providing a digital value as video level for each pixel or cell of a line of the display device, providing at least one reference driving signal and generating a driving signal on the basis of the digital value and the at least one reference driving signal. Furthermore, the present invention relates to a respective apparatus for driving a display device.

10 Background of the invention

15

20

25

30

35

40

45

[0002] The structure of an active matrix OLED (organic light emitting display) or AMOLED is well known. According to Fig. 1 it comprises:

- an active matrix 1 containing, for each cell (one pixel includes a red cell, a green cell and a blue cell), an association of several TFTs T1, T2 with a capacitor C connected to an OLED material. Above the TFTs the capacitor C acts as a memory component that stores a value during a part of the video frame, this value being representative of a video information to be displayed by the cell 2 during the next video frame or the next part of the video frame. The TFTs act as switches enabling the selection of the cell 2, the storage of a data in the capacitor C and the displaying by the cell 2 of a video information corresponding to the stored data;
 - a row or gate driver 3 that selects line by line the cells 2 of the matrix 1 in order to refresh their content;
 - a column or source driver 4 that delivers the data to be stored in each cell 2 of the current selected line; this component receives the video information for each cell 2; and
 - a digital processing unit 5 that applies required video and signal processing steps and that delivers the required control signals to the row and column drivers 3, 4.

[0003] Actually, there are two ways for driving the OLED cells 2. In a first way, each digital video information sent by the digital processing unit 5 is converted by the column drivers 4 into a current whose amplitude is directly proportional to the video level. This current is provided to the appropriate cell 2 of the matrix 1. In a second way, the digital video information sent by the digital processing unit 5 is converted by the column drivers 4 into a voltage whose amplitude is proportional to the square of the video level. This current or voltage is provided to the appropriate cell 2 of the matrix 1. [0004] However, in principle, an OLED is current driven so that each voltage based driven system is based on a voltage to current converter to achieve appropriate cell lighting.

[0005] From the above, it can be deduced that the row driver 3 has a quite simple function since it only has to apply a selection line by line. It is more or less a shift register. The column driver 4 represents the real active part and can be considered as a high level digital to analog converter.

[0006] The displaying of a video information with such a structure of AMOLED is symbolized in Fig. 2. The input signal is forwarded to the digital processing unit that delivers, after internal processing, a timing signal for row selection to the row driver synchronized with the data sent to the column driver 4. The data transmitted to the column driver 4 are either parallel or serial. Additionally, the column driver 4 disposes of a reference signalling delivered by a separate reference signalling device 6. This component 6 delivers a set of reference voltages in case of voltage driven circuitry or a set of reference currents in case of current driven circuitry. The highest reference is used for the white and the lowest for the smallest gray level. Then, the column driver 4 applies to the matrix cells 2 the voltage or current amplitude corresponding to the data to be displayed by the cells 2.

[0007] In order to illustrate this concept, the example of a voltage driven circuitry will be taken in the rest of this document. The driver of this example uses 8 reference voltages named V0 to V7 and the video levels are built as explained in the following table 1.

Table 1: Gray level table from voltage driver

į	5	0)	

Video level	Grayscale voltage level	
0	V7	
1	V7+(V6-V7)x9/1175	
2	V7+(V6-V7)x32/1175	
3	V7+(V6-V7)x76/1175	
4	V7+(V6-V7)×141/1175	

55

(continued)

	(,
Video level	Grayscale voltage level
5	V7+(V6-V7)x224/1175
6	V7+(V6-V7)x321/1175
7	V7+(V6-V7)x425/1175
8	V7+(V6-V7)x529/1175
9	V7+(V6-V7)x630/1175
10	V7+(V6-V7)x727/1175
11	V7+(V6-V7)x820/1175
12	V7+ (V6-V7)x910/1175
13	V7+(V6-V7)x998/1175
14	V7+(V6-V7)×1086/1175
15	V6
16	V6+ (V5-V6) x89/1097
17	V6+ (V5-V6) x173/1097
18	V6+ (V5-V6) x250/1097
19 20	V6+ (V5-V6) x320/1097 V6+ (V5-V6) x386/1097
21	V6+ (V5-V6) x451/1097
22	V6+ (V5-V6) x517/1097
	 V1+(V0-V1)x2278/3029
251	V1+(V0-V1)x2411/3029
252	V1+(V0-V1)×2549/3029
253	V1+(V0-V1)×2694/3029
254	V1+(V0-V1)2851/3029
255	V0
	L

[0008] Table 1 illustrates the obtained output voltages (gray scale voltage levels) from the voltage driver for various input video levels. For instance, the reference voltages of Table 2 are used.

Table 2: Example of voltage references

- as-io = i = itaipio oi	
Reference Vn	Voltage (V)
V0	3
V1	2.6
V2	2.2
V3	1.4
V4	0.6
V5	0.3
V6	0.16
V7	0

[0009] Then, the grayscale voltage levels of following Table 3 depending on video input levels according to Table 1

and Table 2 are obtained:

Table 3: Example of gray level voltages

Video level	Grayscale voltage level
0	0.00V
1	0.001V
2	0.005V
3	0.011V
4	0.02V
5	0.032V
6	0.045V
7	0.06V
8	0.074V
9	0.089V
10	0.102V
11	0.115V
12	0.128V
13	0.14V
14	0.153V
15	0.165V
16	0.176V
17	0.187V
18	0.196V
19	0.205V
20	0.213V
21	0.221V
22	0.229V
 250	 2.901V
	2.919V
251	
252	2.937V
253	2.956V
254	2.977V
255	3.00V

[0010] As can be seen in the previous paragraph current AMOLED concepts are capable of delivering 8-bit gradation per color. This can be further enhanced by using more advanced solutions like improvements on analog sub-fields.

[0011] In any case, there will be the need in the future of displays having more video-depth. This trend can be seen in the development of transmission standards based on 10-bit color channels. At the same time, various display manufacturers like PDP makers are claiming providing displays with more than 10-bit color-depth.

Summary of the invention

[0012] The object of the present invention is to provide a method and an apparatus capable of increasing the video

depth depending on the video content of each line in order to provide a maximum of color gradation for a given scene. I.e., a line content picture enhancement shall be provided.

[0013] According to the present invention this object is solved by a method for driving a display device including the steps of

5

20

30

- providing a digital value as video level for each pixel or cell of a line of said display device,
- providing at least one reference driving signal and
- generating a driving signal on the basis of said digital value and said at least one reference driving signal, as well as
 - adjusting said video level and said at least one reference driving signal in dependence of the digital values of at least a part of said line. Furthermore, there is provided an apparatus for driving a display device including
- 15 input means for receiving a digital value for each pixel or cell of a line of said display device,
 - reference signalling means for providing at least one reference driving signal and
 - driving means for generating a driving signal on the basis of said digital value and said at least one reference driving signal, as well as
 - adjusting means for adjusting said video level and said at least one reference driving signal in dependence of the digital values of at least a part of said line.
- [0014] Preferably, the display device is an AMOLED or a LCD. Especially, these display concepts can be improved by the above described method or apparatus.

[0015] The reference driving signal may be a reference voltage or a reference current. Each of these driving systems can profit from the present invention.

[0016] According to a further preferred embodiment, a maximum digital value of at least the part of a line is determined and when adjusting the reference driving signals, they are assigned to digital values between a minimum digital value, which is to be determined or is predetermined, and a maximum digital value. By this way, the whole range of gray scale levels is used for the video input of one line.

[0017] A further improvement can be obtained when determining a histogram of the digital values of at least the part of a line and adjusting the reference driving signals on the basis of this histogram. This results in an enhanced picture line-dependent gradation.

Brief description of the drawings

[0018] Exemplary embodiments of the invention are illustrated in the drawings showing in:

40

35

- Fig. 1 a circuit diagram of an AMOLED electronic according to the prior art;
- Fig. 2 a possible OLED display structure according to the prior art;
- Fig. 3 a sequence of the movie "Zorro" and a corresponding line analysis diagram;
 - Fig. 4 a sequence of a Colombia movie and a corresponding line analysis diagram;
 - Fig. 5 a histogram of line 303 from the sequence "Zorro";

50

- Fig. 6 a histogram of line 303 with optimised reference voltages and
- Fig. 7 a block diagram of a hardware embodiment of the present invention.

55 Detailed description of preferred embodiments

[0019] The main idea behind the inventive concept is based on the fact that in a video scene, the whole video dynamic range is not used on a large part of the scene. Figures 3 and 4 show typical examples for frames of different dynamics.

Figure 3 shows a dark picture of the movie "Zorro". The picture has the format 4:3 with 561 lines. On the right hand side of Figure 3 the maximum video level of each line is plotted.

[0020] Figure 4 shows a picture of a Colombia film. The picture has the format 16:9 with 267 lines. The right hand side diagram of Figure 4 illustrates that nearly each line is driven with a maximum video level.

[0021] Together, Figures 3 and 4 show that for some sequences there are strong differences in the vertical distribution of video levels. The most differences are located in dark scenes with some luminous content as illustrated by the sequence "Zorro".

[0022] On the other hand, it is important to notice that in dark scenes the eye is much more sensitive to picture gradation. Therefore, an optimization of picture gradation for dark scenes while keeping luminous scenes quite stable would have a positive effect on the global picture quality.

[0023] As already explained, the main idea is to perform a picture line-dependent gradation by optimizing the driver reference signalling (voltage or current) to the maximum of video levels available in a line. For instance, in the sequence "Zorro" of Figure 3, the maximum video level for line 303 is 128. Therefore, if nothing is done, from the 8-bit of available gradations (0 to 255), only 7 are used for this line (0 to 128). However, according to the present invention, the 8-bit gradation for video levels between 0 and 128 will be used. In order to do that, the reference signalling of the driver is adjusted to these 129 levels. In the present example of a voltage driven system the maximum voltage level will be adjusted to the 129/256 of the original one and all other voltages accordingly. This is illustrated in following Table 4:

Table 4: Example of adjusted voltage references for line 303

20

25

30

35

40

50

Reference Vn Line 303 Voltage (Vn) Original Voltage (Vrefn) V0 1.5 3 V1 1.3 2.6 V2 1.1 2.2 V3 0.7 1.4 V4 0.3 0.6 V5 0.15 0.3 V6 0.08 0.16 V7 0

[0024] More generally, a complex function can be applied to the reference signalling under the form S_n = $f(Sref_n; MAX(Line))$ where MAX(Line) represents the maximum video level used for a given line and Srefn the reference signaling (either voltage or current). This function can be implemented by means of LUT or embedded mathematical functions. **[0025]** In the example shown in Table 4, all voltages have been modified using the same transformation

$$V_n = (Vref_n - Vref_7) \times \frac{MAX(Line)}{255} + Vref_7$$
 where Vref0 represents the threshold voltage. This is the simplest

transformation that can be used for voltage driven system since the gamma function is applied inside the OLED according to the proportionality $L(x, y) \propto I(x; y) = k \times (V(x; y) - V_{th})^2$ where L(x; y) represents the luminance of the pixel located at (x; y) and I(x, y) the current provided to this pixel. Indeed in a first approach, it is intended to have $L(x, y) \propto k \times (Video(x; y))^2$ if one could afford to have a gamma of 2 instead of a gamma of 2.2. In this case it is easy to understand that if the Video level dynamic is modified by a factor p, then it is sufficient to modify the voltages by the same factor. In all other cases, like gamma different from 2 or current driven systems where no inherent gamma is existing a more complex transformation is mandatory for the voltage adjustment since the voltages are no more proportional to the video values. [0026] For instance, in a current driven system there is $L(x,y) = k \times (I-I_{th})$ but ideally it should be $L(x,y) \propto (Video(x; y))^{2.2}$. Then, a gamma transfer function of 2.2 is needed between the video level and the applied intensity. So if the video level is divided by 2, the provided intensity must be divided by 4.59 since

$$L(x,y) \propto \left(\frac{Video(x;y)}{2}\right)^{2.2} = \frac{(Video(x;y))^{2.2}}{2^{2.2}}.$$

[0027] The same is true for a voltage driven system and a real gamma of 2.2 is aimed. In this case, there is a transformation of 1.1 between video and voltages under the form $V(x,y) \propto Video(x,y)^{1.1}$ that is needed in order to have finally:

 $L(x, y) \propto (V(x; y) - V_{th})^2 \propto (Video(x; y)^{1.1})^2 = Video(x; y)^{2.2}$

10 [0028] In that case, if the maximum video is divided by 2, the voltages must be divided by 21.1=2.14.

5

20

25

30

35

40

45

50

55

[0029] Such a transformation is quite complex and it is often difficult to be computed on-chip. Therefore, the ideal solution is to use a LUT containing 255 inputs, each one dedicated to a maximum value. The output can be on 8-bit or more in order to define the adjusting factor. Ideally, 10-bit is mandatory.

[0030] Reverting to the example of the current driven system, if the maximum amplitude per line is 128, the output of the 256x10-bit LUT will be 225. Then the voltages will be multiplied by 225 and divided by 1024 to obtain the factor 4.59. Here, it is very difficult to perform a division in hardware excepted if a 2^m divider is used that is simply a shift register. Indeed, dividing by 1024 corresponds to a shift by 10. Therefore the multiplication coefficients are always based on a 2^p divider. Some further examples for such a LUT are given in Table 5 below.

Table 5: Example of LUT for reference signalling adjustment				
MAX (Line)	LUT (Voltage driven) power of 1.1	LUT (current driven) power of 2.2		
96	350	119		
97	354	122		
98	358	125		
99	362	128		
100	366	131		
101	370	133		
102	374	136		
103	378	139		
104	382	142		
105	386	145		
106	390	148		
107	394	152		
108	398	155		
109	402	158		
110	406	161		
111	410	164		
112	414	168		
113	418	171		
114	422	174		
115	426	178		
116	431	181		
117	435	184		
118	439	188		
119	443	191		
120	447	195		

(continued)

5

10

15

20

25

30

35

40

45

50

55

MAX (Line)	LUT (Voltage driven) power of 1.1	LUT (current driven) power of 2.2
121	451	199
122	455	202
123	459	206
124	463	210
125	467	213
126	472	217
127	476	221
128	480	225
129	484	229
130	488	233
131	492	237
132	496	241
133	500	245
134	505	249
135	509	253
136	513	257
137	517	261
138	521	265

[0031] In parallel to that the video levels must be modified accordingly to benefit of the enhanced gradation. In that

case $L_{out} = L_{in} \times \frac{255}{MAX(Line)}$ applies. Here also the transformation should be better implemented via a LUT with

256 inputs corresponding to the 256 possible values for MAX (Line) and an output corresponding to a coefficient on 10-bit or more.

[0032] In the previous paragraph, a simple solution is shown based on adjusting the reference signalling range to the maximal available video level in a line. A more advanced concept would lead in an optimization of the gradation between the more used video levels. Such enhanced concept of picture line-dependent gradation will be based on a histogram analysis performed on each line. The example of the sequence "Zorro" and the line 303 shall be taken from such histogram analysis with the previous approach for voltage adjustment.

[0033] Figure 5 shows in a histogram analysis the repartition of video levels for the line 303 of the sequence "Zorro" (Figure 3). The vertical lines represent the new adjusted voltages from the first embodiment presented in connection with Table 4. The reference voltages are represented according to the example from Table 1 and the video level is adjusted according to the equation

$$V_n = (Vref_n - Vref_0) \times \frac{MAX(Line)}{255} + Vref_0$$
.

[0034] Now, for all examples simply a gamma of 2 shall be used. For this case, the new correspondence between video levels and voltages is shown in Table 6.

Table 6: Adjusted gray level table from voltage driver

Video level	Grayscale voltage level
0	V7
0.5	V7+(V6-V7)x9/1175
1	V7+(V6-V7)x32/1175
1.5	V7+(V6-V7)x76/1175
2	V7+(V6-V7)x141/1175
2.5	V7+(V6-V7)x224/1175
3	V7+(V6-V7)x321/1175
3.5	V7+(V6-V7)x425/1175
4	V7+(V6-V7)x529/1175
4.5	V7+(V6-V7)x630/1175
5	V7+(V6-V7)x727/1175
5.5	V7+(V6-V7)x820/1175
6	V7+(V6-V7)x910/1175
6.5	V7+(V6-V7)x998/1175
7	V7+(V6-V7)x1086/1175
7.5	V6
8	V6+ (V5-V6) x89/1097
8.5	V6+ (V5-V6) x173/1097
9	V6+ (V5-V6)x250/1097
9.5	V6+ (V5-V6) x320/1097
10	V6+ (V5-V6) x386/1097
10.5	V6+(V5-V6)x451/1097
11	V6+(V5-V6)x517/1097
 125.5	 V1+(V0-V1)x2278/3029
126	V1+(V0-V1)x2411/3029
126.5	V1+(V0-V1)x2549/3029
127	
	V1+(V0-V1)x2694/3029
127.5	V1+(V0-V1)x2851/3029
128	V0

[0035] As it can be seen on Figure 5, the maximum of video levels are located between level 15 (V5) and level 95 (V2) but this is not the location where the finest gradation is obtained. However, the finest gradation is obtained when reference voltages are near together. This example shows that the gradation obtained with this driver with voltages computed according to the first embodiment is not optimized to this particular line structure.

[0036] Therefore, according to a further embodiment there is provided an adaptation of the video transformation and voltage levels to adjust finest gradation where the maximum of video levels are distributed. In order to implement this concept, a first table is needed representing the driver behavior, which means the number of levels represented by each voltage. This is illustrated in Table 7 for the example of Table 1. A full voltage reference table for the driver chosen as example is given in Annex 1.

Table 7: Example of voltage references video rendition

Reference Vn	Amount of levels
V7	0
V6	15
V5	16
V4	32
V3	64
V2	64
V1	32
V0	32

[0037] It is generally known that a histogram of a picture represents, for each video level, the number of times this level is used. Such a histogram table is computed for a given line and described as HISTO[n], where n represents the possible video levels used for the input picture (at least 8 bit or more). In order to simplify the exposition, an input signal limited to 8-bit (256 discrete levels) will be taken.

[0038] Now, the main idea is based on a computation of video level limits for each voltage. Such a limit represents the ideal number of pixels that should be coded inside each voltage. Ideally, this will be based on a percentage of the number of pixels per line. For example, for a display with 720 pixels per lines (720x3 cells) the voltage V5 should be used to encode at least 720x3x16/255 = 135 cells. Based on this assumption the following Table 8 is obtained.

Table 8: Example of voltage references limitation

Reference Vn	Amount of levels	Limit with 320 cells
V7	0	0
V6	15	127
V5	16	135
V4	32	271
V3	64	542
V2	64	542
V1	32	271
V0	32	271

[0039] The limits of this table are stored in an array LIMIT[k] with LIMIT[0]=0, LIMIT[1]=127, ..., LIMIT[7]=271. [0040] Now, for each line following exemplary computation is performed:

```
LevelCount = 0

Range = 1

For (1=0; 1<255; 1++)

{

    LevelCount = LevelCount + HISTO[1]

    If (LevelCount > LIMIT[Range])

    {

        LevelCount = 0

        LEVEL_SELECT[Range] = 1

        Range++

    }

}
```

5

10

15

20

25

30

35

40

55

[0041] From this computation a table of video levels LEVEL_SELECT[k] results that represents the video level at the transition between the voltage k-1 and k. The results for line 303 are given in Table 9 below, which is based on Annex 2.

Table 9: Results of analysis for line 303

Level	Occurrence	Accumulation	Decision
0	27	27	Range1
1	13	40	Range1
2	1	41	Range1
3	2	43	
			Range1
4	3	46	Range1
5	4	50	Range1
6	3	53	Range1
7	0	53	Range1
8	1	54	Range1
9	1	55	Range1
10	2	57	Range1
11	0	57	Range1
12	5	62	Range1
13	7	69	Range1
14	4	73	Range1
15	8	81	Range1
16	9	90	Range1
17	19	109	Range1
18	29	138	Range2
19	50	188	Range2
20	35	223	Range2
21	37	260	Range2
22	24	284	Range3
23	26	310	Range3
116	0	2149	Range7
117	2	2151	Range7
118	1	2152	Range7
119	0	2152	Range7
120	1	2153	Range7
121	0	2153	Range7
122	0	2153	Range7
123	2	2155	Range7
124	0	2155	Range7
125	1	2156	Range7
126	1	2157	Range7
127	2	2159	Range7
128	1	2160	Range7

[0042] Table 9 shows that:

5

10

20

25

30

40

45

- Levels [0 17] are used in Range 1 \rightarrow voltage V6 \rightarrow LEVEL_SELECT[1]=18
- Levels [18 21] are used in Range 2 → voltage V5 → LEVEL_SELECT[2]=22
- Levels [22 31] are used in Range 3 → voltage V4 → LEVEL_SELECT[3]=32
- Levels [32 40] are used in Range 4 → voltage V3 → LEVEL_SELECT[4]=41
- Levels [41 51] are used in Range 5 \rightarrow voltage V2 \rightarrow LEVEL_SELECT[5]=52
- Levels [52 60] are used in Range 6 \rightarrow voltage V1 \rightarrow LEVEL_SELECT[6]=61
- Levels [61 128] are used in Range 7 → voltage V0 → LEVEL_SELECT[7]=128

with LEVEL_SELECT[0]=0.

[0043] The result is illustrated in Figure 6 showing a possible optimization of the voltages repartition according to the video levels repartition. The example of algorithm used here for this optimization should be seen as an example since other computations with similar achievements are possible. Indeed, it could be better to reduce a bit more the gap V1 to V0 in the above example. This can be achieved by a more complicated system.

[0044] As soon as the optimal voltages repartition for a given line is defined, two types of adjustment should be performed to display a correct but improved picture:

• First the adaptation of the voltages themselves - this computation is similar to the computation done in the previous embodiment. In that case the following equation applies:

$$V_{n} = (Vref_{n} - Vrefr_{n-1}) \times \left(\frac{LEVEL_SELECT[n] - LEVEL_SELECT[n-1]}{LIMIT[n]}\right) + V_{n-1}$$

with n≥1

• Then, the modification of the video levels to suit the new voltages distribution. In that case for a level located in Range n the luminance value is:

$$L_{out} = (L_{in} - LEVEL_SELECT[n-1]) \times \left(\frac{LIMIT[n]}{LEVEL_SELECT[n] - LEVEL_SELECT[n-1]}\right) + TRANS[n-1]$$

[0045] With the table transition being an accumulation of the LIMIT [k] values so that

$$TRANS[k] = \sum_{p=0}^{p=k} LIMIT[k]$$
. Consequently, one gets TRANS[0]=0, TRANS[1]=16, TRANS[1]=32, TRANS [2]

=64, TRANS [3] =128, TRANS [4] =192, TRANS [5] =224 and TRANS [6] =256.

[0046] The results of the previous computations are given in Tables 10 and 11 below:

Table 10: Computed new voltages for line 303

	Vref	Vline 303
V7	0.00 V	0.00 V
V6	0.16 V	0.19 V
V5	0.30 V	0.23 V
V4 V3	0.60 V 1.40 V	0.32 V 0.43 V

(continued)

	Vref	Vline 303
V2	2.20 V	0.57 V
V1	2.60 V	0.68 V
V0	3.00 V	1.52 V

Table 11: Computed new video levels for line 303

Table 11: Computed new video levels for line 303			
Lin	Lout		
0	0		
1	0.833333		
2	1.666667		
3	2.5		
4	3.333333		
5	4.166667		
6	5		
7	5.833333		
8	6.666667		
9	7.5		
10	8.333333		
11	9.166667		
12	10		
13	10.83333		
14	11.66667		
15	12.5		
16	13.33333		
17	14.16667		
18	15		
116	249.2687		
117	249.7463		
118	250.2239		
119	250.7015		
120	251.1791		
121	251.6567		
122	252.1343		
123	252.6119		
124	253.0896		
125	253.5672		
126	254.0448		
127	254.5224		

(continued)

Lin	Lout
128	255

[0047] As already explained the complex computations are most of the cases replaced by LUTs. In the situation of the video level adjustment described as:

$$\begin{split} L_{out} &= \left(L_{in} - LEVEL_SELECT[n-1]\right) \times \left(\frac{LIMIT[n]}{LEVEL_SELECT[n] - LEVEL_SELECT[n-1]}\right) \\ &+ TRANS[n-1] \end{split}$$

[0048] A 8-bit LUT takes as input the value *LEVEL_SELECT[n]-LEVEL_SELECT[n-1]* and delivers a certain factor (more than 10-bit resolution is mandatory) to perform the division. The rest are only multiplications and additions that can be done in real time without any problem.

[0049] As already said, the example is related to a simple gamma of 2 in a voltage driven system to simplify the exposition. For a different gamma or for a current driven system, the computations must be adjusted accordingly by using adapted LUTs.

[0050] Figure 7 illustrates an implementation of the inventive solution. The input signal 11 is forwarded to a line analysis block 12 that performs for each input line the required parameters extraction like the highest video level per line or even histogram analysis. This block 12 requires a line memory to delay the whole process of a line. Indeed, the results of the line analysis are obtained only at the end of the line but the modifications to be done on this line must be performed on the whole line.

[0051] After the analysis and the delay of the line, the video levels are adjusted in a video adjustment block 13. Here the new video levels Lout are generated on the basis of the original video levels Lin. The video signal with the new video levels is input to a standard OLED processing unit 14. Column driving data are output from this unit 14 and transmitted to a column driver 15 of an AMOLED display 16. Furthermore, the standard OLED processing unit 14 produces row driving data for controlling the row driver 17 of the AMOLED display 16.

[0052] Analysis data of line analysis block 12 are further provided to a voltage adjustment block 18 for adjusting a reference voltages being provided by a reference signalling unit 19. This reference signalling unit 19 delivers reference voltages Vref_n to the column driver 15. For adjusting the reference voltages, the voltage adjustment block 18 is synchronized onto the row driving unit 17. The control data for programming the specific reference voltages are forwarded from voltage adjustment block 18 to the reference signalling unit 19. The adaptation of the voltages as well as that of the video levels is done on the basis of LUTs and computation.

[0053] In case of a current driven system, the reference signalling is performed with currents and block 18 takes care of a current adjustment.

[0054] The invention is not limited to the AMOLED screens but can also be applied to LCD displays or other displays using reference signalling means.

[0055] Annex 1 - Full driver voltage table

5

10

15

20

25

35

40

45

50

55

Level	Voltage
0	V7
1	V7+(V6-V7)×9/1175
2	V7+(V6-V7)×32/1175
3	V7+(V6-V7)×76/1175
4	V7+ (V6V7)×141/1175
5	V7+ (V6-V7)×224/1175
6	V7+ (V6-V7)×321/1175
7	V7 + (V6-V7)×425/1175
8	V7+(V6-V7)×529/1175

	Level	Voltage
5	9	V7+(V6-V7)×630/1175
•	10	V7+(V6-V7)×727/1175
	11	V7+(V6-V7)×820/1175
	12	V7+(V6-V7)×910/1175
10	13	V7+(V6-V7)×998/1175
	14	V7+(V6-V7)×1086/1175
	15	V6
15	16	V6+(V5-V6)×89/1097
	17	V6+(V5-V6)×173/1097
	18	V6+(V5-V6)×250/1097
	19	V6+(V5-V6)×320/1097
20	20	V6+(V5-V6)×386/1097
	21	V6+(V5-V6)×451/1097
	22	V6+(V5-V6)×517/1097
25	23	V6+(V5-V6)×585/1097
	24	V6+(V5-V6)×654/1097
	25	V6+(V5-V6)×723/1097
	26	V6+(V5-V6)×790/1097
30	27	V6+(V5-V6)×855/1097
	28	V6+(V5-V6)×917/1097
	29	V6+(V5-V6)×977/1097
35	30	V6+(V5-V6)×1037/1097
	31	V5
	32	V5+(V4-V5)×60/1501
	33	V5+(V4-V5)×119/1501
40	34	V5+(V4-V5)×176/1501
	35	V5+(V4-V5) ×231/1501
	36	V5+(V4-V5)×284/1501
45	37	V5+(V4-V5)×335/1501
	38	V5+(V4-V5)×385/1501
	39	V5+(V4-V5)×434/1501
	40	V5+(V4-V5)×483/1501
50	41	V5+(V4-V5)×532/1501
	42	V5+(V4-V5)×580/1501
	43	V5+(V4-V5)×628/1501
55	44	V5+(V4-V5)×676/1501
	45	V5+(V4-V5)×724/1501
	46	V5+(V4-V5)×772/1501

		(**************************************
	Level	Voltage
5	47	V5+(V4-V5)×819/1501
3	48	V5+(V4-V5)×866/1501
	49	V5+(V4-V5)×912/1501
	50	V5+(V4-V5)×957/1501
10	51	V5+(V4-V5)×1001/1501
	52	V5+(V4-V5)×1045/1501
	53	V5+(V4-V5)×1088/1501
15	54	V5+(V4-V5)×1131/1501
	55	V5+(V4-V5)×1173/1501
	56	V5+(V4-V5)×1215/1501
	57	V5+(V4-V5)×1257/1501
20	58	V5+(V4-V5)×1298/1501
	59	V5+(V4-V5)×1339/1501
	60	V5+(V4-V5)×1380/1501
25	61	V5+(V4-V5)×1421/1501
	62	V5+ (V4-V5)×1461/1501
	63	V4
	64	V4+(V3-V4)×40/2215
30	65	V4+(V3-V4)×80/2215
	66	V4+(V3-V4)×120/2215
	67	V4+(V3-V4)×160/2215
35	68	V4+(V3-V4)×200/2215
	69	V4+(V3-V4)×240/2215
	70	V4+(V3-V4)×280/2215
	71	V4+(V3-V4)×320/2215
40	72	V4+(V3-V4)×360/2215
	73	V4+(V3-V4)×400/2215
	74	V4+(V3-V4)×440/2215
45	75	V4+(V3-V4)×480/2215
	76	V4+(V3-V4)×520/2215
	77	V4+(V3-V4)×560/2215
	78	V4+(V3-V4)×600/2215
50	79	V4+(V3-V4)×640/2215
	80	V4+(V3-V4)×680/2215
	81	V4+(V3-V4)×719/2215
55	82	V4+(V3-V4)×758/2215
	83	V4+(V3-V4)×796/2215
	84	V4+(V3-V4)×834/2215

		·
	Level	Voltage
5	85	V4+(V3-V4)×871/2215
	86	V4+(V3-V4)×908/2215
	87	V4+(V3-V4)×944/2215
	88	V4+(V3-V4)×980/2215
10	89	V4+(V3-V4)×1016/2215
	90	V4+(V3-V4) ×1052/2215
	91	V4+(V3-V4)×1087/2215
15	92	V4+(V3-V4)×1122/2215
	93	V4+(V3-V4)×1157/2215
	94	V4+(V3-V4)×1192/2215
	95	V4+(V3-V4)×1226/2215
20	96	V4+(V3-V4)×1260/2215
	97	V4+(V3-V4)×1294/2215
	98	V4+(V3-V4)×1328/2215
25	99	V4+(V3-V4)×1362/2215
	100	V4+(V3-V4)×1396/2215
	101	V4+(V3-V4)×1429/2215
	102	V4+(V3-V4)×1462/2215
30	103	V4+(V3-V4)×1495/2215
	104	V4+(V3-V4)×1528/2215
	105	V4+(V3-V4)×1561/2215
35	106	V4+(V3-V4)×1593/2215
	107	V4+(V3-V4)×1625/2215
	108	V4+(V3-V4)×1657/2215
	109	V4+(V3-V4)×1688/2215
40	110	V4+(V3-V4)×1719/2215
	111	V4+(V3-v4) ×1750/2215
	112	V4+(V3-V4)×1781/2215
45	113	V4+(V3-V4) ×1811/2215
	114	V4+(V3-V4)×1841/2215
	115	V4+(V3-V4)×1871/2215
	116	V4+(V3-V4)×1901/2215
50	117	V4+(V3-V4)×1930/2215
	118	V4+(V3-V4)×1959/2215
	119	V4+(V3-V4)×1988/2215
55	120	V4+(V3-V4)×2016/2215
	121	V4+(V3-V4)×2044/2215
	122	V4+(V3-V4)×2072/2215

	Level	Voltage
5	123	V4+(V3-V4)×2100/2215
	124	V4+(V3-V4)×2128/2215
	125	V4+(V3-V4)×2156/2215
	126	V4+(V3-V4)×2185/2215
10	127	V3
	128	V3+(V2-V3)×31/2343
	129	V3+(V2-V3)×64/2343
15	130	V3+(V2-V3)×97/2343
	131	V3+(V2-V3)×130/2343
	132	V3+(V2-V3)×163/2343
	133	V3+(V2-V3)×196/2343
20	134	V3+(V2-V3)×229/2343
	135	V3+(V2-V3)×262/2343
	136	V3+(V2-V3)×295/2343
25	137	V3+(V2-V3)×328/2343
	138	V3+(V2-V3)×361/2343
	139	V3+(V2-V3)×395/2343
	140	V3+(V2-V3)×429/2343
30	141	V3+(V2-V3)×463/2343
	142	V3+(V2-V3)×497/2343
	143	V3+(V2-V3)×531/2343
35	144	V3+(V2-V3)×566/2343
	145	V3+(V2-V3)×601/2343
	146	V3+(V2-V3)×636/2343
	147	V3+(V2-V3)×671/2343
40	148	V3+(V2-V3)×706/2343
	149	V3+(V2-V3)×741/2343
	150	V3+(V2-V3)×777/2343
45	151	V3+(V2-V3)×813/2343
	152	V3+(V2-V3)×849/2343
	153	V3+(V2-V3)×885/2343
	154	V3+(V2-V3)×921/2343
50	155	V3+(V2-V3)×958/2343
	156	V3+(V2-V3)×995/2343
	157	V3+(V2-V3)×1032/2343
55	158	V3+(V2-V3)×1069/2343
	159	V3+(V2-V3)×1106/2343
	160	V3+(V2-V3)×1143/2343

		(
	Level	Voltage
5	161	V3+(V2-V3)×1180/2343
9	162	V3+(V2-V3)×1217/2343
	163	V3+(V2-V3)×1255/2343
	164	V3+(V2-V3)×1293/2343
10	165	V3+(V2-V3)×1331/2343
	166	V3+(V2-V3)×1369/2343
	167	V3+(V2-V3)×1407/2343
15	168	V3+(V2-V3)×145/2343
70	169	V3+ (V2-V3) ×1483/2343
	170	V3+ (V2-V3) ×1521/2343
	171	V3+(V2-V3) ×1559/2343
20	172	V3+(V2-V3) ×1597/2343
	173	V3+ (V2-V3) ×1635/2343
	174	V3+ (V2-V3) ×1673/2343
25	175	V3+ (V2-V3)×1712/2343
	176	V3+ (V2-V3)×1751/2343
	177	V3+ (V2-V3)×1790/2343
	178	V3+ (V2-V3) ×1829/2343
30	179	V3+(V2-V3)×1868/2343
	180	V3+(V2-V3)×1907/2343
	181	V3+(V2-V3)×1946/2343
35	182	V3+(V2-V3)×1985/2343
	183	V3+(V2-V3)×2024/2343
	184	V3+(V2-V3)×2064/2343
	185	V3+(V2-V3)×2103/2343
40	186	V3+(V2-V3)×2143/2343
	187	V3+(V2-V3)×2183/2343
	188	V3+(V2-V3)×2223/2343
45	189	V3+(V2-V3)×2263/2343
	190	V3+(V2-V3)×2303/2343
	191	V2
	192	V2+ (V1-V2) ×40/1638
50	193	V2+(V1-V2) ×81/1638
	194	V2+(V1-V2)×124/1638
	195	V2+(V1-V2)×168/1638
55	196	V2+(V1-V2)×213/1638
	197	V2+(V1-V2)×259/1638
	198	V2+(V1-V2)×306/1638

		•
	Level	Voltage
5	199	V2+(V1-V2)×353/1638
	200	V2+(V1-V2)×401/1638
	201	V2+(V1-V2)×450/1638
	202	V2+(V1-V2)×499/1638
10	203	V2+(V1-V2)×548/1638
	204	V2+(V1-V2)×597/1638
	205	V2+(V1-V2)×646/1638
15	206	V2+(V1-V2)×695/1638
	207	V2+(V1-V2)×745/1638
	208	V2+(V1-V2)×795/1638
	209	V2+(V1-V2)×846/1638
20	210	V2+(V1-V2)×897/1638
	211	V2+(V1-V2)×949/1638
	212	V2+(V1-V2)×1002/1638
25	213	V2+(V1-V2)×1056/1638
	214	V2+(V1-V2)×1111/1638
	215	V2+(V1-V2)×1167/1638
	216	V2+(V1-V2)×1224/1638
30	217	V2+(V1-V2)×1281/1638
	218	V2+(V1-V2)×1339/1638
	219	V2+(V1-V2)×1398/1638
35	220	V2+(V1-V2)×1458/1638
	221	V2+(V1-V2)×1518/1638
	222	V2+(V1-V2)×1578/1638
	223	V1
40	224	V1+(V0-V1)×60/3029
	225	V1+(V0-V1)×120/3029
	226	V1+(V0-V1)×180/3029
45	227	V1+(V0-V1)×241/3029
	228	V1+(V0-V1)×304/3029
	229	V1+(V0-V1)×369/3029
	230	V1+(V0-V1)×437/3029
50	231	V1+(V0-V1)×507/3029
	232	V1+(V0-V1)×580/3029
	233	V1+(V0-V1)×655/3029
55	234	V1+(VO-V1)×732/3029
	235	V1+(V0-V1)×810/3029
	236	V1+(V0-V1)×889/3029

(continued)

	Level	Voltage
5	237	V1+(V0-V1)×969/3029
3	238	V1+(V0-V1)×1050/3029
	239	V1+(V0-V1)×1133/3029
	240	V1+(V0-V1)×1218/3029
10	241	V1+(V0-V1)×1304/3029
	242	V1+(V0-V1)×1393/3029
	243	V1+(V0-V1)×1486/3029
15	244	V1+(VO-V1)×1583/3029
	245	V1+(V0-V1)×1686/3029
	246	V1+(V0-V1)×1794/3029
	247	V1+(V0-V1)×1907/3029
20	248	V1+(V0-V1)×2026/3029
	249	V1+(V0-V1)×2150/3029
	250	V1+(V0-V1)×2278/3029
25	251	V1+(V0-V1)×2411/3029
20	252	V1+(V0-V1)×2549/3029
	253	V1+(V0-V1)×2694/3029
	254	V1+(V0-V1)×2851/3029
30	255	V0

Annex 2 - Histogram of line 303 from sequence "Zorro"

₃₅ [0056]

40			
45			
50			
55			

Level Occurrence 0 27 1 13 2 1 3 2 4 3 5 4 6 3 7 0 8 1 9 1 10 2 11 0 12 5 13 7		
1 13 2 1 3 2 4 3 5 4 6 3 7 0 8 1 9 1 10 2 11 0 12 5	Level	Occurrence
2 1 3 2 4 3 5 4 6 3 7 0 8 1 9 1 10 2 11 0 12 5	0	27
3 2 4 3 5 4 6 3 7 0 8 1 9 1 10 2 11 0 12 5	1	13
4 3 5 4 6 3 7 0 8 1 9 1 10 2 11 0 12 5	2	1
5 4 6 3 7 0 8 1 9 1 10 2 11 0 12 5	3	2
6 3 7 0 8 1 9 1 10 2 11 0 12 5	4	3
7 0 8 1 9 1 10 2 11 0 12 5	5	4
8 1 9 1 1 10 2 11 0 12 5	6	3
9 1 10 2 11 0 12 5	7	0
10 2 11 0 12 5	8	1
11 0 12 5	9	1
12 5	10	2
	11	0
13 7	12	5
	13	7

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

(continued)				
Level	Occurrence			
14	4			
15	8			
16	9			
17	19			
18	29			
19	50			
20	35			
21	37			
22	24			
23	26			
24	19			
25	23			
26	12			
27	24			
28	26			
29	23			
30	25			
31	31			
32	56			
33	54			
34	64			
35	61			
36	78			
37	42			
38	59			
39	61			
40	75			
41	78			
42	61			
43	41			
44	55			
45	52			
46	43			
47	48			
48	42			
49	42			
50	46			
51	45			

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

(continued)				
Level	Occurrence			
52	28			
53	29			
54	27			
55	26			
56	28			
57	25			
58	25			
59	33			
60	39			
61	38			
62	38			
63	25			
64	23			
65	12			
66	11			
67	22			
68	13			
69	5			
70	4			
71	5			
72	6			
73	13			
74	8			
75	3			
76	7			
77	6			
78	4			
79	2			
80	2			
81	2			
82	4			
83	5			
84	3			
85	3			
86	6			
87	2			
88	1			
89	3			
	1			

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

(continued)				
Level	Occurrence			
90	2			
91	0			
92	3			
93	0			
94	1			
95	1			
96	0			
97	1			
98	0			
99	1			
100	0			
101	0			
102	0			
103	1			
104	1			
105	1			
106	0			
107	2			
108	0			
109	0			
110	1			
111	1			
112	0			
113	1			
114	0			
115	0			
116	0			
117	2			
118	1			
119	0			
120	1			
121	0			
122	0			
123	2			
124	0			
125	1			
126	1			
127	2			

5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		

(continued)				
Level	Occurrence			
128	1			
129	0			
130	0			
131	0			
132	0			
133	0			
134	0			
135	0			
136	0			
137	0			
138	0			
139	0			
140	0			
141	0			
142	0			
143	0			
144	0			
145	0			
146	0			
147	0			
148	0			
149	0			
150	0			
151	0			
152	0			
153	0			
154	0			
155	0			
156	0			
157	0			
158	0			
159	0			
160	0			
161	0			
162	0			
163	0			
164	0			
165	0			

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

(continued)				
Level	Occurrence			
166	0			
167	0			
168	0			
169	0			
170	0			
171	0			
172	0			
173	0			
174	0			
175	0			
176	0			
177	0			
178	0			
179	0			
180	0			
181	0			
182	0			
183	0			
184	0			
185	0			
186	0			
187	0			
188	0			
189	0			
190	0			
191	0			
192	0			
193	0			
194	0			
195	0			
196	0			
197	0			
198	0			
199	0			
200	0			
201	0			
202	0			
203	0			

5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		

(00	Jillilaca)
Level	Occurrence
204	0
205	0
206	0
207	0
208	0
209	0
210	0
211	0
212	0
213	0
214	0
215	0
216	0
217	0
218	0
219	0
220	0
221	0
222	0
223	0
224	0
225	0
226	0
227	0
228	0
229	0
230	0
231	0
232	0
233	0
234	0
235	0
236	0
237	0
238	0
239	0
240	0
241	0

(continued)

Level	Occurrence
242	0
243	0
244	0
245	0
246	0
247	0
248	0
249	0
250	0
251	0
252	0
253	0
254	0
255	0

25

5

10

15

20

Claims

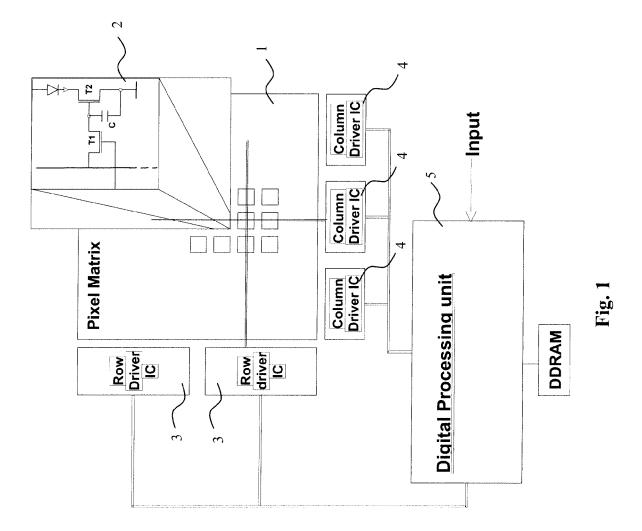
- 1. Method for driving a display device (16) including the steps of
 - providing a digital value as video level for each pixel or cell of a line of said display device (16),
 - providing at least one reference driving signal and
 - generating a driving signal on the basis of said digital value and said at least one reference driving signal, characterized by

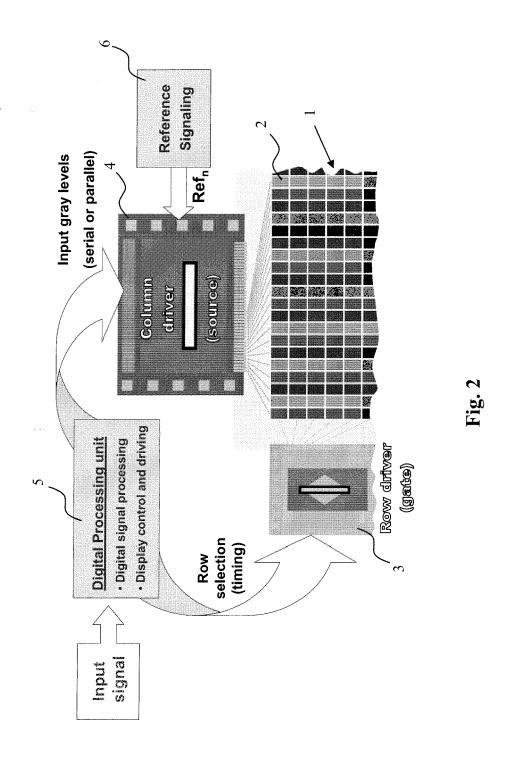
35

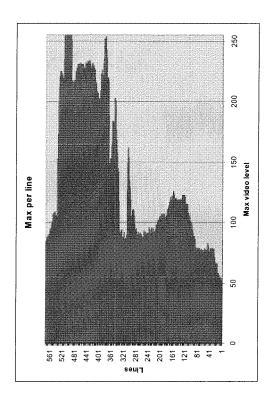
45

55

30


- adjusting said video level and said at least one reference driving signal in dependence of the digital values of at least a part of said line.
- 2. Method according to claim 1, wherein said display device (16) is an AMOLED or a LCD.
- 3. Method according to claim 1 or 2, wherein said reference driving signal is a reference voltage or a reference current.
 - **4.** Method according to one of the preceding claims, wherein a maximum digital value of said at least part of a line is determined and when adjusting said at least reference driving signal, said at least one reference driving signal is assigned to digital values between a minimum digital value which is to be determined or is predetermined, and said maximum digital value.
 - **5.** Method according to one of the claims 1 to 3, wherein a histogram of the digital values of said at least part of a line is determined and said at least one reference driving signals is adjusted on the basis of said histogram.
- 50 **6.** Apparatus for driving a display device (16) including
 - input means for receiving a digital value for each pixel or cell of a line of said display device (16),
 - reference signalling means (19) for providing at least one reference driving signal and
 - driving means (15) for generating a driving signal on the basis of said digital value and said at least one reference driving signal,


characterized by


- adjusting means (18) for adjusting said video level and said at least one reference driving signal in dependence

of the digital values of at least a part of said line.

- 7. Apparatus according to claim 6, wherein said display device (16) is an AMOLED or a LCD.
- **8.** Apparatus according to claim 6 or 7, wherein said reference signalling means (19) provides reference voltages or reference currents as reference driving signals.
 - 9. Apparatus according to one of the claims 6 to 8, further including analysing means (12) for determining a maximum digital value of said at least part of a line and for providing said maximum digital value to said adjusting means, so that said adjusting means (18) is capable of assigning said at least one reference driving signal to digital values between a minimum digital value, which is to be determined or is predetermined, and said maximum digital value.
 - **10.** Apparatus according to one of the claims 6 to 8, further including analysing means (12) for determining a histogram of the digital values of said at least part of a line and for controlling said adjusting means (18) so that said at least one reference driving signal is adjusted on the basis of said histogram.

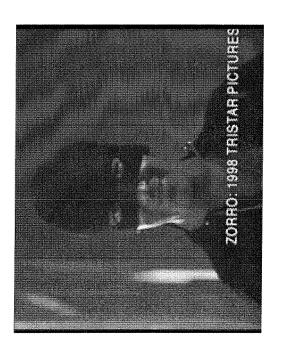
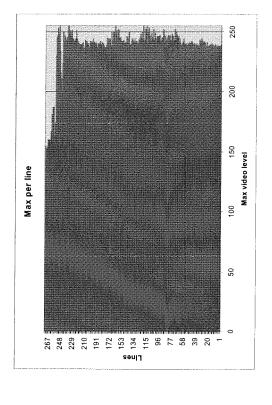



Fig. 3

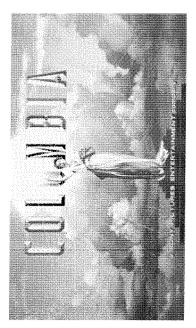


Fig. 4

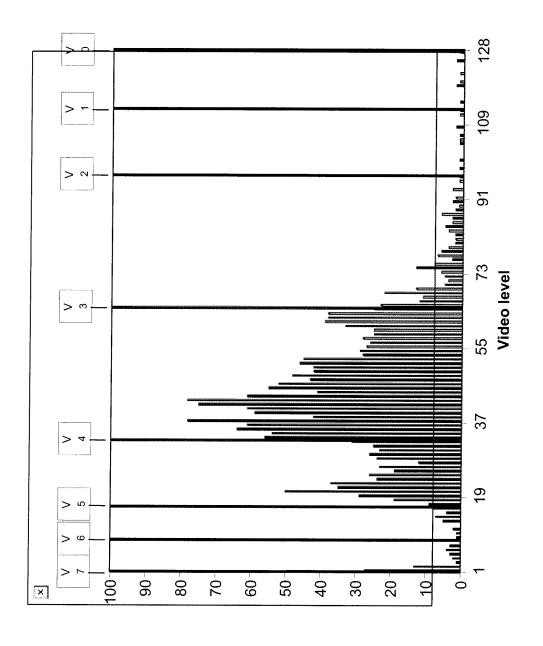


Fig. 5

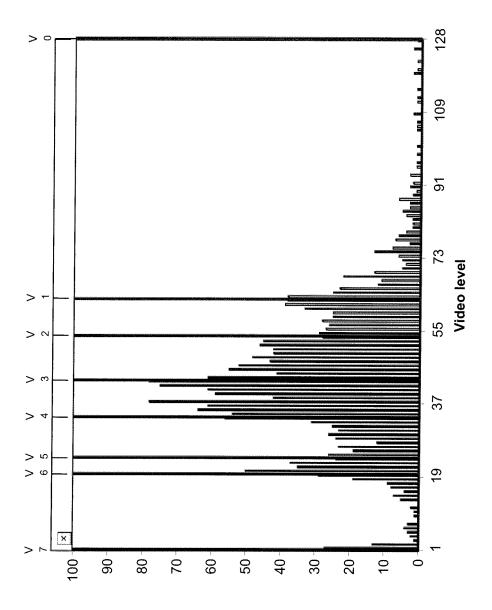


Fig. 6

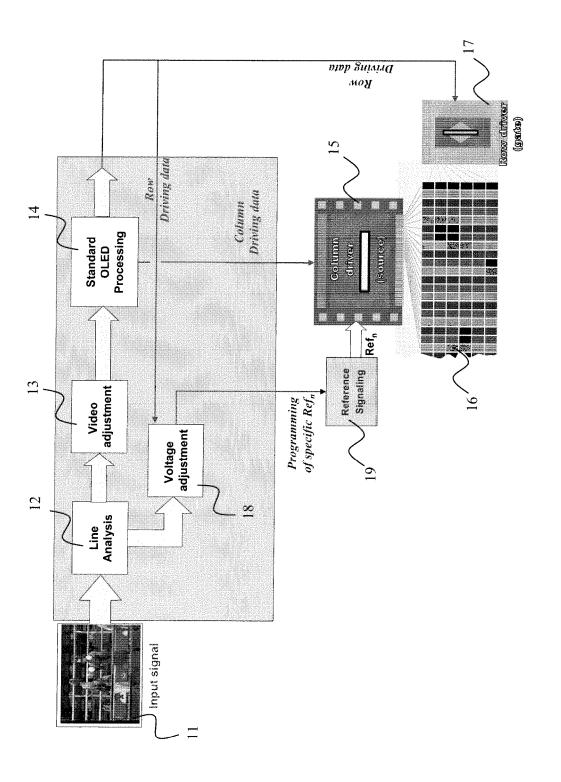


Fig. 7