BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The present invention relates to a heat-sensitive recording material widely used
in the fields of printers such as output of computers, calculators, and the like,
medical measurement recorders, low-speed and high-speed facsimile machines, automatic
ticket vending machines, thermal copiers, handy terminals, and POS system labels,
and particularly, to a heat-sensitive recording material improved in acid resistance
and water resistance to edible vinegar and the like.
Description of the Related Art
[0002] Conventionally, there have been various proposals for recording materials, for which
provided on a substrate such as a sheet of paper or synthetic paper or a plastic film
is a heat-sensitive color developing layer mainly composed of a colorless or light-colored
leuco dye and a color developer that develops color of the leuco dye upon contact
therewith, utilizing a color developing reaction by heat, pressure, and the like between
the leuco dye and the color developer. Advantages of heat-sensitive recording materials
of this type, including capability of short-time recording with a relatively simple
apparatus without the necessity for applying such complicated processes as development
and fixing, low noise level, and low costs, have allowed them to be used as recording
materials not only for copying of books, documents, and the like, but also for electronic
computers, facsimile machines, ticket vending machines, label printers, recorders,
handy terminals, and the like.
[0003] As heat-sensitive recording materials, there has been a demand for materials that
are capable of quick color development with high density and of imparting high rigidity
to color-developed images and backgrounds. Furthermore, in recent years, heat-sensitive
recording materials have come to be used in large quantities in the fields of labels,
receipts, and the like where reliability of recorded images is regarded as important.
Accordingly, there has been a demand for ones that offer high storage stability against
water and acidic component substances contained in food and plasticizers, oils and
fats, and the like contained in organic polymeric materials used for packages..
[0004] Conventionally, in order to remove such drawbacks, attempts have been made for improvement
by providing a protective layer composed mainly of a water-soluble resin and a crosslinking
agent on the heat-sensitive color developing layer. However, in the application of
a POS label or the like, because of exposure to various opportunities for water adhesion,
the heat-sensitive recording material has had a drawback that the protective layer
is dissolved, image deletion and density reduction occur, and applied prints drop
by water, and water resistance has had of yet been insufficient despite a slight improvement
[0005] To overcome this problem, protective layers composed of diacetone-modified polyvinyl
alcohol as the water-soluble resin and a hydrazine compound as the crosslinking agent
have been proposed in Japanese Patent Application Laid-Open (JP-A) Nos.
08-151421 and
11-314457, but each has the following drawbacks: waterproofing reaction progresses in the state
of a coating solution and thus its viscosity increases with time; poor water resistance
is provided; increased viscosity of a coating solution for heat-sensitive color developing
layer; and inhibition of color development in the heat-sensitive color developing
layer by a hydrazide compound. Moreover, protective layers composed of these materials
have suffered from a problem that they undesirably dissolved particularly by impregnation
with such an acidic substance as edible vinegar, whereby image disappearance and print
peeling occur
[0006] EP-A-12434439 relates to a thermosensitive recording material comprising a support, a thermosensitive
coloring layer containing a leuco dye and a developer, and a protective layer comprising
polyvinyl alcohol having diacetone groups, a hydrazide comopound such as hydrazide
polyacrylate, and a basic filler such as aluminum hydroxide or calcium carbonate.
[0007] JP-A-2002127601 relates to a thermal recording material comprising a heat-sensitive recording layer
containing an electron donative compound and an electron accepting compound, and a
protective layer containing diacetone modified polyvinyl alcohol, and a pigment which
may be aluminum hydroxide or calcium carbonate.
[0008] EP-A-1637339 describes a thermal recording material comprising a substrate; a thermal coloring
layer and a protective layer comprising polyvinyl alcohol which may have a diacetone
group, a crosslinker such as dihydrazide polyacrylate, a filler such as aluminum hydroxide
or calcium carbonate, and a release agent.
[0009] EP-A-1674543 describes a heat-sensitive adhesive material comprising a support, an adhesive layer,
and a heat-sensitive adhesive layer which may contain on the opposite side of the
support a heat-sensitive recording layer comprising a coloring layer such as a fluorane
compound and a developer, and a protective layer comprising a resin such as polyvinyl
alcohol having a diacetone group, a crosslinker such as dihydrazide polyacrylate,
and a filler such as aluminum hydroxide or calcium carbonate.
[0010] JP-A-11012424 relates to a PVA resin composition obtained by blending a polyvinyl alcohol modified
with a diacetone acrylamide copolymer and containing 0.1-15 mol-% diacetone acrylamide
units, a hydrazine such as N-amino polyacrylamide and an aminocarboxylic acid. The
PVA resin composition is useful as a coating agent for thermal paper.
[0011] EP-A-1683816 describes a resin composition comprising a acrylic resin having at least one carbonyl
group such as a diacetone group, and a crosslinking agent, the crosslinking agent
containing a polyacrylic hydrazide having an average molecular weight of 10,000 to
150,000, a hydrazide conversion ratio of at least 30% or at least 65% and 85 or more
hydrazide groups in one molecule and a polyacrylic hydrazide having an average molecular
weight of 20,000 to 30,000 and 50,000 to 150,000, wherein the resin composition can
be used to coat paper.
BRIEF SUMMARY OF THE INVENTION
[0012] It is an object of the present invention to overcome the problems pertinent in the
art and to provide a heat-sensitive recording material that can impart excellent acid
resistance and water resistance to an image part, and can offer excellent protective
layer solution stability and color development ability. Here, since the protective
layer solution contains a resin and a crosslinking agent, crosslinking reactions progress
to facilitate viscosity increase and aggregation when the solution is stored over
time. Therefore, that the protective layer solution stability is high means that the
protective layer solution is in a stable state where no viscosity increase or aggregation
occurred even after storage over time.
[0013] The present invention is based on the findings by the inventors of the present invention,
and means for solving the foregoing problems are as follows:
- <1> A heat-sensitive recording material including:
a substrate;
a heat-sensitive color developing layer over the substrate, the heat-sensitive color
developing layer composed mainly of a leuco dye and a color developer that develops
color of the leuco dye upon heating; and
a protective layer over the heat-sensitive color developing layer, the protective
layer composed mainly of a water-soluble resin and a crosslinking agent,
wherein the protective layer contains diacetone-modified polyvinyl alcohol as the
water-soluble resin, and N-aminopolyacrylamide as the crosslinking agent,
wherein the N-aminopolyacrylamide has a molecular weight of 10,000 to 100,000 and
a hydrazidation ratio of 50% or more, and
wherein the protective layer contains at least one of aluminum hydroxide and calcium
carbonate as a basic filler.
- <2> The heat-sensitive recording material according to <1> , wherein the protective
layer contains a diaminostilbene compound as a fluorescent whitening agent.
- <3> The heat-sensitive recording material according to any one of <1> to <2>, wherein
the heat-sensitive color developing layer contains a binder, and the binder contains
diacetone-modified polyvinyl alcohol.
- <4> The heat-sensitive recording material according to any one of <1> to <4>, wherein
the heat-sensitive color developing layer contains an acidic filler.
- <5> The heat-sensitive recording material according to any one of <1> to <4>, wherein
the leuco dye in the heat-sensitive color developing layer is 2-anilino-3-methyl-6-(di-n-butylamino)fluoran
or 2-anilino-3-methyl-6-(di-n-pentylamino)fluoran.
- <6> The heat-sensitive recording material according to any one of <1> to <5>, wherein
the color developer in the heat-sensitive color developing layer is a diphenylsulfone
compound contained in an amount of' 2 parts by mass to 4 parts by mass per 1 part
by mass of the leuco dye.
- <7>. The heat-sensitive recording material according to any one of <1> to <6>, wherein
between the substrate and the heat-sensitive color developing layer, an undercoat
layer is provided which is composed of non-foaming plastic minute hollow particles
having an average particle diameter of 0.2µm to 20µm and a hollow ratio of 30% to
95% and of a water-soluble resin.
- <8> The heat-sensitive recording material according to any one of <1> to <7>, wherein
on a back surface of the heat-sensitive recording material, a back layer is provided
which is composed mainly of a pigment, a water soluble resin, and a crosslinking agent.
- <9> The heat-sensitive recording material according to any one of <1> to <9>, wherein
an adhesive layer and a peeling liner are sequentially provided on a back layer surface
side of the heat-sensitive recording material.
- <10> The heat-sensitive recording material according to any one of <1> to <10>, wherein
a magnetic recording layer is provided on a back layer surface side of the heat-sensitive
recording material.
DETAILED DESCRIPTION OF THE INVENTION
[0014] Hereinafter, the present invention will be described in detail..
[0015] Diacetone-modified polyvinyl alcohol used for the water-soluble resin of a protective
layer of' the present invention is obtained by saponifying a resin that has been prepared
by copolymerizing a diacetone group-containing monomer with vinyl ester. Often, a
hydrazide compound is used as a crosslinking agent from the standpoint of reactivity.
A crosslinking reaction mechanism of these materials proceeds in two stages: (1) an
addition reaction of the diacetone-modified polyvinyl alcohol to a carbonyl group;
and (2) a dehydrating reaction. In this way the materials are crosslinked to form
film, providing water resistanc. In this reaction, however, since a reverse reaction
in which a dehydration reaction product having water resistance returns to an addition
reaction product having no water resistance is facilitated under acidic conditions,
exposure of the protective layer to acid results in dissolution of the formed film.
In this case, if the crosslinking agent is a mono- or di-hydrazide compound, dissolution
occurs as the dehydration reaction product returns to the addition reaction product
immediately after a reactive crosslinking point is dissociated by acid; however, since
N-aminopolyacrylamide used as the crosslinking agent in the present invention has
a polymeric molecular structure and therefore contains a large number of hydrazide
groups that can be crosslinking points in the molecule, multidimensionalization of
the crosslinking points allows maintaining a film structure composed of dehydration
reaction products even when some crosslinking points have been dissociated. Thus dissolution
hardly occurs. As a matter of course, based on the same principle, water resistance
of the obtained formed film also improves.
[0016] At this time, although it is possible to allow only the protective layer or both
the heat-sensitive color developing layer and protective layer to contain N-aminopolyacrylamide,
when only the heat-sensitive color developing layer contains N-aminopolyacrylamide,
its crosslinking reactivity with the protective layer is weak, and dissolution easily
occurs under the influence of external acidic compoments or water, resulting in insufficient
effects.
[0017] The N-aminopolyacrylamide has a molecular weight of 10,000 to 100,000 and a hydrazidation
degree of 50% or more. A molecular weight of less than 10,000 results in easy dissociation
and dissolution of crosslinking points since their polymeric molecular structure become
weak. On the other hand, a molecular weight of more than 100,000 will lower its solubility
to water, so that a coating solution in which it is contained become unstable. Furthermore,
at a hydrazidation ratio of' less than 50%, since there are a small number of hydrazide
groups that can be crosslinking points in the molecule, the N-aminopolyacxylamide
is inferior in crosslinking reactivity with diacetone-modified polyvinyl alcohol and
thus insufficient effects result, but sufficient effects are obtained at a hydrazidation
ratio of 50% or more. More preferably, the hydrazidation ratio is 80% or more.
[0018] However, the added amount of N-aminopolyacrylamide is preferably 0.05 parts by mass
to 0.6 parts by mass to 1 part by mass of diacetone-modified polyvinyl alcohol contained
in the protective layer. When less than 0.05 parts by mass is used, crosslinking reactivity
is inferior and waterproofing reactions become insufficient, while when more than
0.6 parts by mass is used, crosslinking reactivity is raised to cause a pot life problem
of the solution, and water resistance reduces owing to water solubility of the N-aminopolyacrylamide
itself, far from being enhanced. A more preferable added amount of N-aminopolyacrylamide
is 0.1 parts by mass to 0.4 parts by mass in light of cost and usability when used.
[0019] Moreover, it is also possible to simultaneously use, as the crosslinking agent, a
hydrazine compound having hydrazide groups within a range not impairing its function,
and examples thereof include, but not limited to, carbohydrazide, hydrazide oxalate,
hydrazide formate, hydrazide acetate, dihydrazide malonate, dihydrazide succinate,
dihydrazide adipate, hydrazide azelate, dihydrazide sebacate, dihydrazide dodecanedioate,
dihydrazide maleate, dihydrazide fumarate, dihydrazide itaconate, hydrazide benzoate,
dihydrazide glutarate, hydrazide diglycolate, dihydrazide tartrate, dihydrazide malate,
hydrazide isophthalate, and dihydrazide terephthalate. In addition, the crosslinking
agent may be combined with another known crosslinking agent.
[0020] Furthermore, it is preferable to make the heat-sensitive color developing layer contain
diacetone-modified polyvinyl alcohol, as this makes a crosslinking reaction with N-aminopolyacrylamide
contained in only the protective layer or the heat-sensitive color developing layer
and the protective layer more likely to occur, which allows improving water resistance
without adding another crosslinking agent that inhibits color development.
[0021] In addition, a filler that is contained in a back layer if used in the present invention
is preferably basic, and examples thereof include aluminum hydroxide, calcium carbonate,
talc, and alkaline silicates. The protective layer contains at least one of aluminium
hydroxide and calcium carbonate as a basic filler. Aluminum hydroxide and calcium
carbonate are preferable in terms of matching with a thermal head (residue adhesion
and wear) and the like, and aluminum hydroxide is particularly preferable in consideration
of pH control due to a moderate water solubility.
[0022] In addition, as a filler contained in the heat-sensitive color developing layer,
any known filler can be used. Examples thereof include, but not limited to, inorganic
pigments such as calcium carbonate, aluminum oxide, zinc oxide, titanium dioxide,
silica, aluminum hydroxide, barium sulfate, talc, kaolin, alumina, and clay and known
organic pigments. Among these, silica, alumina, and kaolin being acidic pigments (pigments
that exhibit acidity in an aqueous solution) are preferable in consideration of water
resistance (water peeling resistance), and silica is particularly preferable from
the standpoint of color development density.
[0023] Furthermore, for an improvement in coating ability and binding ability of the layer,
a binder may be simultaneously used according to necessity. Examples thereof include,
without being limited to, starches, hydroxyethyl cellulose, methyl cellulose, carboxymethyl
cellulose, gelatin, casein, gum arable, polyvinyl alcohol, diisobutylene-maleic anhydride
copolymer salt, styrene-maleic anhydride copolymer salt, ethylene-acrylic acid copolymer
salt, styrene-acrylic acid copolymer salt, and styrene-butadiene copolymer emulsion.
[0024] In addition, it is also possible to add a surfactant, a heat-fusible substance, a
fluorescent whitening agent, and other auxiliaries according to necessity, and among
these, a fluorescent whitening agent has been contained in recent years in view of
whitening of the background part and excellence in appearance From the standpoint
of an effect to improve the degree of background whiteness and stability of a protective
layer solution, a diaminostilbene compound is preferable. Examples thereof include
4,4'-diaminostilbene-2,2'-disulfonic acid derivatives, 4,4'-bistriazinylaminostilbene-2,2'-disulfonic
acid derivatives, and the like.
[0025] The amount of addition of the fluorescent whitening agent is preferably 0.01 parts
to 0.1 parts by mass to 1 part by mass of diacetone-modified polyvinyl alcohol..
[0026] A leuco dye used in the present invention is a compound exhibiting an electron-donating
ability, and such compounds are used alone or in combination. For example, conventionally
known leuco compounds which are per se colorless or light-colored dye precursors can
be used, such as triphenylmethane phthalide leuco compounds, triallylmethane leuco
compounds, fluoran leuco compounds, phenothiazine leuco compounds, thiofluoran leuco
compounds, xanthene leuco compounds, indophthalyl leuco compounds, spiropyran leuco
compounds, azaphthalide leuco compounds, chromenopyrazole leuco compounds, methine
leuco compounds, rhodamineanilinolactam leuco compounds, rhodaminelactam leuco compounds,
quinazoline leuco compounds, diaza xanthene leuco compounds, and bislactone leuco
compounds.
[0027] Among these, in view of color developing properties, color fading in the image part
due to humidity, heat and/or light, and the degree of background fogging of'the background
part, the following compounds can be cited:
2-anilino-3-methyl-6-diethylaminofluoran,
2-anilino-3-methyl-6-(di-n-butylamino)fluoi-an,
2-anilino-3-methyl-6-(di-n-pentylamino)fluoran,
2-anilino-3-methyl-6-(N-n-propyl-N-methylamino)fluoran,
2-anilino-3-methyl-6-(N-isopropyl-N-methylamino)fluoran,
2-anilino-3-methyl-6-(N-isobutyl-N-methylamino)fluoran,
2-anilino-3-methyl-6-(N-n-amyl-N-mothylamino)fluoran,
2-anilino-3-methyl-6-(N-sec-butyl-N-ethylamino)fluoran,
2-anilino-3-methyl-6-(N-mamyl-N-ethylamino)fluoran,
2-anilino-3-methyl-6-(N-iso-amyl-N-ethylamino)fluoran,
2-anilino-3-methyl-6-(N-eyelohexyl-N-methylamino)fluoran,
2-anilino-3-methyl-6-(N-ethyl-p-toluidino)fluoran,
2-anilino-3-methyl-6-(N-methyl-p-toluidino)fluoran,
2-((m-trichloiomethylanilino)-3-methyl-6-diethylaminofluoran,
2-((m-trifluoromethylanilino)-3-methyl-6-diethylaminofluoran,
2-((m-trifluoromethylanilino)-3-methyl-6-(N-cyclohexyl-N-methylamino)fluoran, 2-(2,4-dimethylanilino)-3-methyl-6-diethylaminofluoran,
2-((N-ethyl-p-toluidino)-3-methyl-6-(N-ethylanilino)fluoran,
2-((N-methyl-p-toluldino)-3-methyl-6-(N-propyl-p-toluidino)fluoran,
2-anilino-6-(N-n-hexyl-N-ethylamino)fluoran,
2-((o-chloranilino)-6-diethylaminofluoran,
2-((o-bromoanilino)-6-diethylaminofluoran,
2-((o-chloranilino)-6-dibutylaminofluoran,
2-((o-fluoroanilino)-dibutylaminofluoan,
2-((m-trifluoromethylanilino)-6-diethylaminofluoran,
2-((p-acetylanilino)-6-(N-n-amyl-N-n-butylamino)fluoran,
2-benzilamino-6-(N-ethyl-p-toluidino)fluoran,
2-benzilamino-6-(N-methyl-2,4-dimethylanilino)fluoran,
2-benzilamino-6-(N-ethyl-2,4-dimethylanilino)fluoran,
2-dibenzilamino-6-(N-methyl-p-toluidino)fluoran,
2-dibenzilamino-6-(N-ethyl-p-toluidino)fluoran,
2-((di-p-methylbenzilamino)-6-(N-ethyl-p-toluidino)fluoran,
2-((α-phenylethylamino)-6-(N-ethylop-toluidino)fluoran,
2-methylamino-6-(N-ethylanilino)fluoran,
2-methylamino-6-(N-ethylanilino)fluoran,
2-methylamino-6-(N-propylanilino)fluoran,
2-ethylamino-6-(N-methyl-p-toluidino)fluoran,
2-methylamino-6-(N-methyl-2,4-dimethylanilino)fluoran,
2-ethylamino-6-(N-methyl-2,4-dimethylanilino)fluoran,
2-dimethylamino-6-(N-methylanilino)fluoran,
2-dimethylamino-6-(N-methylanilino)fluoran
2-diethylamino-6-(N-methyl-p-toluidino)fluoran, benzoleuco methylene blue, 2-[3,6-bis(diethylamino)]-6-(o-chloranilino)xanthyl
benzoic acid lactam, 2- [3,6-bis(diethylamino)]-9-(o-chloranilino)xanthyl benzoic
acid lactam, 3,3-bis(p-dimethylaminophenyl)phthalide,
3,3-bis(p-dimethylaminophenyl)-6-dimethylaminophthalide,
3,3-bis(p-dimethylaminophenyl)-6-diethylaminophthalide,
3,3-bis(p-dimethylaminophenyl)-6-chlorphthalide,
3,3-bis(p-dibutylaminophenyl)phthalide,
3-((2-methoxy-4-dimethylaminophenyl)-3-(2-hydroxy-4,5-dichlorphenyl)phthalide,
3-((2-hydroxy-4-dimethylaminophenyl)-3-(2-methoxy-5-chlorphenyl)phthalide,
3-((2-hydroxy-4-dimethoxyaminophenyl)-3-(2-methoxy-5-chlorphenyl)phthalide,
3-((2-hydroxy-4-dimethylaminophenyl)-3-(2-methoxy-5-nitrophenyl)phthalide,
3-((2-hydroxy-4-diethylaminophenyl)-3-(2-methoxy-5-methylphenyl)phthalide,
3,6-bis(dimethylamino)fluorenespiro(9,3')-6'-dimethylaminophthalide, 6'-chloro-8'-methoxy-benzoindolino-spiropyran,
6'-bromo-2'-methoxy-benzoindolino-spiropyran, and the like.
[0028] Among these, in view of color developing properties, color fading in the image part
due to humidity, heat and/or light, and the degree of background fogging of the background
part, preferred compounds are 2-anilino-3-methyl-6-(di-n-butylamino)fluoian and 2-anilino-3-methyl-6-(di-n-pentylamino)fluoran.
[0029] The content of the leuco dye in the heat-sensitive color developing layer is preferably
5% by mass to 20% by mass, and more preferably, 10% by mass to 15% by mass..
[0030] In addition, as color developers used in the present invention, various electron-accepting
substances are used that develop color by reaction with leuco dye upon heated. Examples
thereof include the following phenolic compounds, organic or inorganic acidic compounds,
and esters or salts thereof:
[0031] Specific examples include bisphenol A, tetrabromobisphenol A, gallic acid, salicylic
acid, 3-isopropylsalicylic acid, 3-cyclohexylsalicylic acid, 3,5-di-tert-butylsalicylic
acid, 3,5-di-α-methylbenzylsalicylic acid, 4,4'-isopropylidenediphenol, 1,1'-isopropylidenebis(2-chlorophenol),
4,4'-isopropylidenbis(2,6-dibromophenol),
4,4'-isopropylidenebis(2,6-dichlorophenol),
4,4'-isopropylidenebis(2-methylphenol),
4,4'-isopropylidenebis(2,6-dimethylphenol),
4,4-isopropylidenebis(2-tert-butylphenol), 4,4'-sec-butylidenediphenol,
4,4'-cyclohexylidenebisphenol, 4,4'-cyclohexylidenebis(2-methylphenol),
4-tert-butylphenol, 4-phenylphenol, 4-hydroxyphenoxide, α -naphthol,
β -naphthol, 3,5-xylenol, thymol, methyl-4-hydxoxybenzoate,
4-hydroxyacetophenone, novolac-type phenol resin,
2,2'-thiobis(4,6-dichlorophenol), catechol, resorcin, hydroquinone, pyrogallol, phloroglycine,
phloroglycine carboxylic acid,
4-tert-octylcatechol, 2,2'-methylenebis(4-chlorophenol),
2,2'-methylenebis(4-methyl-6-tert-butylphenol),
2,2'-dihydroxydiphenyl, ethyl p-hydroxybenzoate, propyl p-hydxoxybenzoate, butyl p-hydroxybenzoate,
benzyl p-hydroxybenzoate, p-chlorobenzyl p-hydroxybenzoate, o-chlorobenzyl p-hydroxybenzoate,
p-methylbenzyl p-hydroxybenzoate, n-octyl
p-hydroxybenzoate, benzoic acid, zinc salicylate,
1-hydroxy-2-naphthoic acid, 2-hydroxy-6- naphthoic acid, zinc 2-hydroxy-6-naphthoate,
4-hydroxydiphenylsulfone,
4-hydroxy-4'-chlorodiphenylsulfone, bis(4-hydroxyphenyl)sulfide,
2-hydroxy-p-toluic acid, zinc 3,5-di-tert-butylsalicylate, tin 3,5-di-tert-butylsalicylate,
tartaric acid, oxalic acid, maleic acid, citric acid, succinic acid, stearic acid,
4-hydroxy phthalic acid, boric acid, thiourea derivative, 4-hydroxythiophenol derivative,
bis(4-hydroxyphenyl)acetic acid, bis(4-hydroxyphenyl)ethyl acetate,
bis(4-hydroxyphenyl)n-propyl acetate, bis(4-hydraxyphenyl)n-butyl acetate, bis(4-hydroxyphenyl)
phenyl acetate,
bis(4-hydroxyphenyl)benzyl acetate, bis(4-hydroxyphenyl)phenethyl acetate, bis(3-methyl-4-hydroxyphenyl)acetic
acid,
bis(3-methyl-4-hydi-oxyphonyl)methyl acetate,
bis(3-methyl-4-hydroxyphenyl)n-propyl acetate,
1,7-bis(4-hydroxyphenylthio)3,5-dioxaheptane,
1,5-bis(4-hydroxyphenylthio)-3-oxapentane, dimethyl 4-hydroxyphthalate, 4-hydroxy-4'-methoxydiphenylsulfone,
4-hydroxy-4'-ethoxydiphenylsulfone,
4-hydroxy-4'-isopropoxydiphenylsulfone,
4-hydroxy-4'-propoxydiphenylsulfone,
4-hydroxy-4'-butoxydiphenylsulfone,
4-hydi-oxy-4'-isopropoxydiphenylsulfone,
4-hydroxy-4'-sec-butoxydiphenylsulfone,
4-hydroxy-4'-tert-butoxydiphenylsulfone,
4-hydraxy-4`-benzylaxydiphenylsulfone,
4-hydroxy-4'-phenoxydiphenylsulfone,
4-hydroxy-4-(m-methylbenzyloxy)diphenylsulfone,
4-hydroxy-4'-(p-methylbenzyloxy)diphenylsulfone,
4-hydroxy-4'-(o-methylbenzyloxy)diphenylsulfone,
4-hydroxy-4'-(p-chlorobenzyloxy)diphenylsulfone,
4-hydroxy-4'-oxyallyldiphenylsulfone, 2,4'-dihydroxydiphenylsulfone, and the like.
[0032] Among these, in view of high-sensitive color developing properties, color fading
in the image part due to humidity, heat and/or light, and the degree of background
fogging of the background part, preferred compounds are diphenylsulfone compounds
such as 4-hydroxy-4'-isopropoxydiphenylsulfone, 4-hydroxy-4'-oxyallyldiphenylsulfone,
and
2,4'-dihydroxydiphenylsulfone, and the most preferable added amount thereof is 2 pants
by mass to 4 parts by mass per 1 part by mass of the leuco dye.
[0033] It is preferable that the heat-sensitive color developing layer further contain a
heat-fusible substance. Examples thereof include: fatty acids such as stearic acid
and behenic acid; fatty acid amides such as stearic acid amide, erucic acid amide,
palmitic acid amide, behenic acid amide, and palmitic acid amide; N-substituted amides
such as N-lauryl lauric acid amide, N-stearyl stearic acid amide, and N-oleyl stearic
acid amide; bis fatty acid amides such as methylenebisstearic acid amide, ethylenebisstearic
acid amide, ethylenebislauric acid amide, ethylenebiscapric acid amide, and ethylenebisbehenic
acid amide; hydroxy fatty acid amides such as hydroxystearic acid amide, methylenebishydroxystearic
acid amide, ethylenebishydroxystearic acid amide, and hexamethylenebishydroxystearic
acid amide; fatty acid metallic salts such as zinc stearate, aluminum stearate, calcium
stearate, zinc palmitate, zinc behenate; p-benzylbiphenyl, terphenyl, triphenylmethane,
benzyl p-benzyloxy benzoate, β -benzyloxynaphthalene, phenyl β -naphthoate, phenyl-1-hydroxy-2-naphthoate,
methyl 1-hydroxy-2-naphthoate, diphenylcarbonate, benzyl terephthalate, 1,4-dimethoxynaphthalene,
1,4-diethoxynaphthalene, 1,4-dibenzyloxynaphthalene, 1,2-diphenoxyethane, 1,2-bis(4-methylphenoxyethane),
1,4-diphenoxy-2-butene, 1,2-bis(4-methoxyphenylthio)ethane, dibenzoylmethane, 1,4-diphenylthiobutane,
1,4-diphenylthio-2-butene, 1,3-bis(2-vinyloxyethoxy)benzene, 1,4-bis(2-vinyloxyethoxy)benzene,
p-(2-vinyloxyethoxy)biphenyl, p-aryloxybiphenyl, dibenzoyloxymethane, dibenzoyloxypropane,
dibenzyldisulfide, 1,1-diphenylethanol, 1,1-diphenylpropanol, p-benzyloxybenzyl alcohol,
1,3-phenoxy-2- propanol, N-octadecylcai-bamoyl-p-methoxycarbonylbenzene, N-octadecylcarbamoylbenzene,
1,2-bis(4-methoxyphenoxy)propane, 1,5-bis(4-methoxyphenoxy)-3-oxapentane, dibenzyl
oxalate, bis(4-methylbenzyl) oxalate, bis(4-chlorobenzyl) oxalate, and the like. These
may be used alone or in combination.
[0034] Furthermore, for the heat-sensitive color developing layer, besides foregoing the
color developer, leuco dye, and heat-fusible substance, various materials that are
commonly used to constitute heat-sensitive recording materials can be appropriately
used; for example, a binder, a crosslinking agent, a pigment, a surfactant, a lubricant,
and the like can be used in combination.
[0035] The method for forming the heat-sensitive color developing layer is not particularly
limited, and the heat-sensitive color developing layer can be formed with a generally
known method, e..g., by separately pulverizing and dispersing a leuco dye and a color
developer with a binder and other ingredients using a dispersing machine such as a
ball mill, ATTRITOR, or a sand mill until the diameter of dispersed particles reaches
1µm to 3µm and, where necessary, mixing the resultant dispersion with a filler, a
heat-fusible substance (sensitizer) dispersion, and the like in certain proportions
to prepare a coating solution for heat-sensitive color developing layer, followed
by coating of a substrate with the coating solution.
[0036] Although the thickness of the heat-sensitive color developing layer differs depending
on the composition of the heat-sensitive color developing layer, the usage of the
heat-sensitive recording layer, etc., and cannot be uniquely determined, but the thickness
is preferably 1µm to 50µm, and more preferably, 3µm to 20µm.
[0037] The substrate used in the present invention is not particularly limited in shape,
structure, size, and the like, and can be appropriately selected according to the
purpose. The shape can be, for example, a flat-plate shape and the like, the structure
can be either a monolayer structure or a layered structure, and the size can be appropriately
selected according to the size etc.., of the heat-sensitive recording material
[0038] The material of the substrate is not particularly limited and can be appropriately
selected according to the purpose and for this, various inorganic materials and organic
materials can be used.. Examples of the inorganic materials include glass, quarts,
silicon, silicon oxide, aluminum oxide, SiO
2, and metals. Examples of'the organic materials include papers such as high-quality
paper, art paper, coated paper, and synthesized paper; cellulose derivatives such
as cellulose triacetate; and polymer films such as polyester resins such as polyethylene
terephthalate (PET) and polybutylene terephthalate, polycarbonate, polystyrene, polymethylmethacrylate,
polyethylene, and polypropylene. Among these, high-quality paper, art paper, coated
paper, and polymer films are particularly preferable. These may be used alone or in
combination.
[0039] It is preferable that, for the purpose of improving adhesion of a coating layer,
the substrate be subjected to surface modification by means of corona discharge, oxidation
reaction treatment (by use of chromic acid, for example), etching, easy-adhesion treatment,
antistatic treatment, or the like. Moreover, it is preferable that a white pigment
such as titanium oxide be added to the substrate for whitening..
[0040] Although the thickness of the substrate is not particularly limited and can be appropriately
selected, this is preferably 50µm to 2,000µm, and more preferably, 100µm to 1,000µm.
[0041] An undercoat layer used in the present invention can be provided between the substrate
and heat-sensitive color developing layer. Since the undercoat layer can prevent penetration
of oxygen that participates in photo-oxidation reactions of leuco dye, discoloration
of the background part (unprinted part) by light can be significantly suppressed.
[0042] The undercoat layer contains a binder resin and hollow particles and further contains
other components according to necessity. Examples of the hollow particles include
minute hollow particles having a hollow ratio of approximately 30% to 95% with a shell
formed of thermoplastic resin, and porous pigments. Here, the hollow particles mean
ones having a shell formed of'thermoplastic resin, internally containing air and other
gases, and already being in a foaming state. In addition, the hollow ratio means a
ratio between the inside diameter-based volume and the outside diameter-based volume.
[0043] The minute hollow particles having a hollow ratio of approximately 30% to 95% with
a shell formed of thermoplastic resin are ones internally containing air and other
gases and already being in a foaming state. The average particle diameter of these
minute hollow particles is preferably 0.2µm to 20µm, and more preferably, 0.5µm to
10µm. When the average particle diameter (particle outside diameter) is less than
0.2µm, it is technically difficult to fabricate hollow particles, degrading the performance
of the undercoat layer. On the other hand, when the average particle diameter is more
than 20µm, since the coated surface after dried becomes rough, resulting in non-uniform
coating of the heat-sensitive color developing layer, and hence, the heat-sensitive
color developing layer must be coated with an additional amount of coating solution
to obtain uniformity. Therefore, it is preferable that such minute hollow particles
be distributed in the particle diameter within the range as set forth the above and
have a uniform distribution spectrum with little fluctuation. Furthermore, in the
present invention, plastic spherical hollow particles having a hollow ratio of 30%
or more can be used, however, ones having a hollow ratio of 70% or more are more preferable.
Those having a hollow ratio of less than 30% are not preferable since their thermal
insulating properties are insufficient and the thermal energy is therefore released
outside through the substrate, thereby reducing thermal efficiency.
[0044] As described above, the minute hollow particle has a shell formed of thermoplastic
resin, and for this thermoplastic resin, a vinylidene chloride- and acrylonitrile-based
copolymer resins are particularly preferable.
[0045] In addition, examples of the porous pigments used in the undercoat layer include,
but not limited to, organic pigments such as urea formaldehyde resins and inorganic
pigments such as Shirasu soil (volcanic ash).
[0046] The method for forming the undercoat layer is not particularly limited and can be
appropriately selected according to the purpose, and a method for forming the undercoat
layer by applying a coating solution for undercoat layer on the heat-sensitive color
developing layer is suitable.
[0047] The coating method is not particularly limited and can be appropriately selected
according to the purpose, and examples thereof include spin coating, dip coating,
kneader coating, curtain coating, and blade coating.
[0048] The undercoat layer may be dried after coating according to necessity.. In this case,
although the drying temperature is not particularly limited and can be appropriately
selected according to the purpose, this is preferably 100°C to 250°C.
[0049] The deposited amount of the undercoat layer after dried is preferably 1.0g/m
2 to 5.0g/m
2, and more preferably, 2.0g/m
2 to 4.0g/m
2.
[0050] It is preferable that the heat-sensitive recording material of the present invention
have a back layer on a surface of' the substrate opposite to the surface on which
a heat-sensitive color developing layer is provided. The back layer contains other
components such as a binder resin, a filler, a lubricant, a pigment, and a crosslinking
agent.
[0051] As the binder resin, either one of' a water-dispersible resin and a water-soluble
resin is used, and specific examples thereof include conventionally known water-soluble
polymers and aqueous polymer emulsions.
[0052] Examples of the water-soluble polymers include polyvinyl alcohol, starch and deliveries
thereof, cellulose derivatives such as methoxycellulose, hydroxyethylcellulose, carboxymethylcellulose,
methylcellulose, methylcellulose, and ethylcellulose, sodium polyacrylate, polyvinylpyrrolidone,
an acrylamide/acrylic ester copolymer, an acrylamide/acrylic ester/methacrylate terpolymer,
an alkali salt of styrene/maleic anhydride copolymer, an alkali salt of isobutylene/maleic
anhydride copolymer, polyacrylamide, sodium alginate, gelatin, and casein. These may
be used alone or in combination.
[0053] Examples of the aqueous polymer emulsions include emulsions of latexes such as acrylic
ester copolymers, styrene/butadiene copolymers, and styrene/butadiene/acrylic copolymers,
and emulsions of vinyl acetate resins, vinyl acetate/acrylic acid copolymers, styrene/acrylic
ester copolymers, acrylic ester resins, polyurethane resins and the like. These may
be used alone or in combination.
[0054] As the filler, either one of an inorganic filler and an organic filler can be used.
[0055] Examples of the inorganic filler include carbonates, silicates, metal oxides, and
sulfated compounds. Examples of'the organic filler include silicone resins, cellulose
resins, epoxy resins, nylon resins, phenolic resins, polyurethane resins, urea resins,
melamine resins, polyester resins, polycarbonate resins, styrene resins, acrylic resins,
polyethylene resins, formaldehyde resins, and polymethyl methacrylate resins
[0056] The method for forming the back layer is not particularly limited and can be appropriately
selected according to the purpose, and a method for forming the back layer by coating
a back layer coating solution on the substrate is suitable.
[0057] The coating method is not particularly limited and can be appropriately selected
according to the purpose, and examples thereof include spin coating, dip coating,
kneader coating, curtain coating, and blade coating.
[0058] The thickness of the back layer is not particularly limited and can be appropriately
selected according to the purpose, and this is preferably 0.1µm to 10µm, and more
preferably, 0.5µm to 5µm.
[0059] In a first embodiment where the heat-sensitive recording material is a heat-sensitive
recording label, the heat-sensitive recording label has, on a surface (rear surface,
back layer surface if with a back layer) of the substrate opposite to the side on
which a heat-sensitive color developing layer is provided, an adhesive layer and a
peeling liner and further has other layers according to necessity.
[0060] The material of the adhesive layer is not particularly limited and can be appropriately
selected according to the purpose, and examples thereof include urea resins, melamine
resins, phenolic resins, epoxy resins, vinyl acetate resins, vinyl acetate-acrylic
copolymers, ethylene-vinyl acetate copolymers, acrylic resins, polyvinyl-ether resins,
vinyl chloride-vinyl acetate copolymers, polystyrene resins, polyester resins, polyurethane
resins, polyamide resins, chlorinated polyolefin resins, polyvinyl butyral resins,
acrylic ester copolymers, methacrylic ester copolymers, natural rubbers, cyanoacrylate
resins, and silicone resins. These compounds may be used alone or in combination..
[0061] Moreover, in a second embodiment, the heat-sensitive recording material has, on a
surface (rear surface, back layer surface if with a back layer) of the substrate opposite
to the side on which a heat-sensitive color developing layer is provided, a heat-sensitive
adhesive layer that exhibits tackiness upon heated and further has other layers according
to necessity..
[0062] The heat-sensitive adhesive layer contains a thermoplastic resin and a heat-fusing
substance and further contains a tackifying agent according to necessity.. The thermoplastic
resin imparts tackiness and adhesion. The heat-fusing substance is solid at a normal
temperature and therefore does not give plasticity to the resin, but fuses upon heated,
swelling or softening the resin so as to exhibit tackiness. In addition, the tackifying
agent functions to improve tackiness.
[0063] In a case where the heat-sensitive recording material is a heat-sensitive recording
magnetic sheet, the heat-sensitive recording magnetic sheet has, on a surface (rear
surface, back layer surface if with a back layer) of'the substrate opposite to the
side on which a heat-sensitive color developing layer is provided, a magnetic recording
layer and further has other layers according to necessity.
[0064] The magnetic recording layer is formed for instance by coating of the substrate with
an iron oxide, barium ferrite or the like, and with vinyl chloride, urethane resin,
nylon resin or the like, or is formed by vapor deposition or sputtering without using
any resin.
[0065] Although it is preferable to provide the magnetic recording layer on a surface of
the substrate opposite to the side on which a heat-sensitive color developing layer
is provided, this may be provided between the substrate and heat-sensitive color developing
layer or on a part of the heat-sensitive color developing layer.
[0066] The shape of the heat-sensitive recording material of the present invention is not
particularly limited and can be appropriately selected according to the purpose, and
examples thereof include a label shape, a sheet shape, and a roll shape.
[0067] Recording using the heat-sensitive recording material of the present invention can
be performed with a thermal pen or a thermal head or by laser heating depending to
the purpose of use, and is not particularly limited..
[0068] The heat-sensitive recording material of the present invention can be suitably used
in various fields such as POS systems for fresh foods, boxed meals, prepared foods,
and the like; copying of books, documents, and the like; communications such as facsimile
machines; ticket vending of ticket vending machines, receipts, and the like; and baggage
tags in the airline industry.
[0069] According to the present invention, it is possible to provide a heat-sensitive recording
material that can impart particularly excellent acid resistance and water resistance
to an image part and further offers excellent protective layer solution stability
and color development ability.
[0070] In addition, since the heat-sensitive recording material of the present invention
imparts excellent storage stability to the image part and background part against
water and an acidic substance such as edible vinegar and is also excellent in color
development properties and print transferability by a low-torque printer in a high-temperature
and high-humidity environment, this allows a heat-sensitive recording apparatus to
have a simple mechanism so as to be easily reduced in size and to be produced at low
cost with high handling ability of the recording material. Therefore, the heat-sensitive
recording material of the present invention can be used in wide-ranging fields of
information processing (output of desktop calculators, computers, and the like) medical
measurement recorders, low-speed to high-speed facsimile machines, automatic ticket
vending machines (train tickets and admission tickets), thermal copiers, POS system
labels, and tags.
EXAMPLES
[0071] Hereinafter, the present invention will be described in greater detail with reference
to Examples and Comparative Examples, however, the present invention is by no means
limited in scope to these Examples.. In addition, unless otherwise specified, "part(s)"
and "%" mean part(s) by mass and % by mass, respectively.
(Example 1)
[0072] A heat-sensitive recording material was fabricated by the following procedures
<Preparation of Coating Solution for Heat-sensitive Color developing layer>
[0073] [Solution A] and [Solution B] having the following ingredients were each dispersed
so that the average particle diameter becomes 1.0µm or less by use of a sand mill,
whereby a dye dispersion [Solution A] and a color developer dispersion [Solution B]
were prepared.
[Solution A]
[0074]
- 2-aniline-3-methyl-6-(di-n-butylamino)fluoran 10 parts
- 10% aqueous solution of itaconic acid-modified polyvinyl alcohol 10 parts
- Water 30 parts
[Solution B]
[0075]
- 4-hydroxy-4'-isopropoxydiphenylsulfone 30 parts
- Tetrabromobisphenol A 10 parts
- 10% aqueous solution of itaconic acid-modified polyvinyl alcohol 50 parts
- Silica 15 parts
- Water 197 parts
[0076] Next, the dye dispersion [Solution A] and color developer dispersion [Solution B]
were mixed in the following proportions and stirred, whereby a heat-sensitive color
developing layer coating solution [Solution C] was prepared.
[Solution C]
[0077]
- Dye dispersion [Solution A] 50 parts
- Color developer dispersion [Solution B] 292 parts
<Preparation of Coating Solution for Protective Layer>
[0078] The following ingredients were dispersed for 24 hours by use of a sand mill, whereby
[Solution D] was prepared.
[Solution D]
[0079]
- Aluminum hydroxide (average particle diameter: 0.6µm, HIGILITE® H-43M manufactured by Showa Denko K.K.) 20 parts
- 10% aqueous solution of itaconic acid-modified polyvinyl alcohol 20 parts
- Water 60 parts
[0080] Next, the following ingredients were mixed and stirred, whereby a coating solution
for protective layer [Solution E] was prepared.
[Solution E]
[0081]
- [Solution D] 75 parts
- 10% aqueous solution of diacetone-modified polyvinyl alcohol 100 parts
- 10% aqueous solution of N-aminopolyacrylamide (molecular weight: 10,000, hydrazidation
ratio: 50%) 15 parts
- 45% aqueous solution of a room-temperature curable silicone rubber 0.5 parts
- 1% aqueous solution of ammonium 5 parts
- Water 90 parts
[0082] Next, on the surface of a paper (coating paper) substrate, [Solution C] and [Solution
E] were applied and dried so that the deposited amounts of the resultant heat-sensitive
color developing layer and the protective layer, after dried, become 5.0g/m
2 and 3.0g/m
2, respectively, followed by calender treatment so that the surface has an Oken type
smoothness of about 2,000 seconds, whereby a heat-sensitive recording material of
Example 1 was fabricated.
(Example 2)
[0083] A heat-sensitive recording material of Example 2 was fabricated in the same manner
as in Example 1 except that N-aminopolyacrylamide in [Solution E] of Example 1 was
changed to N-aminopolyacrylamide having a molecular weight of 20,000 and a hydrazidation
ratio of 50%.
(Example 3)
[0084] A heat-sensitive recording material of Example 3 was fabricated in the same manner
as in Example 1 except that N-aminopolyacrylamide in [Solution E] of Example 1 was
changed to N-aminopolyacrylamide having a molecular weight of 90,000 and a hydrazidation
ratio of 50%.
(Example 4)
[0085] A heat-sensitive recording material of Example 4 was fabricated in the same manner
as in Example 1 except that N-aminopolyacrylamide in [Solution E] of Example 1 was
changed to N-aminopolyacrylamide having a molecular weight of 10,000 and a hydrazidation
ratio of 85%.
(Example 5)
[0086] A heat-sensitive recording material of Example 5 was fabricated in the same manner
as in Example 1 except that the N-aminopolyacrylamide in [Solution E] of Example 1
was changed to N-aminopolyacrylamide having a molecular weight of 20,000 and a hydrazidation
ratio of 85%.
(Example 6)
[0087] A heat-sensitive recording material of Example 6 was fabricated in the same manner
as in Example 1 except that N-aminopolyacxylamide in [Solution E] of Example 1 was
changed to N-aminopolyacrylamide having a molecular weight of 90,000 and a hydrazidation
ratio of 85%.
(Example 7)
[0088] A heat-sensitive recording material of Example 7 was fabricated in the same manner
as in Example 1 except that the added amount of'the 10% aqueous solution of N-aminopolyacrylamide
in [Solution E] of' Example 1 was changed to 40 parts and the added amount of water
was changed to 65 parts.
(Example 8)
[0089] A heat-sensitive recording material of Example 8 was fabricated in the same manner
as in Example 1 except that aluminum hydroxide in [Solution D] of Example 1 was changed
to calcium carbonate (average particle diameter: 0.5µm, CALSHITEC
® Brilliant-15, manufactured by Shiraishi Kogyo Kaisha, Ltd.).
(Example 9)
[0090] A heat-sensitive recording material of Example 9 was fabricated in the same manner
as in Example 1 except that 2-anilino-3-methyl-6-(di-n-butylamino)fluoran in [Solution
A] of Example 1 was changed to 2-anilino-3-methyl-6-(di-n-pentylamino)fluoran.
(Example 10)
[0091] A heat-sensitive recording material of Example 10 was fabricated in the same manner
as in Example 1 except that 2-anilino-3-methyl-6-(di-n-butylamino)fluoran in [Solution
A] of Example 1 was changed to 2-anilino-3-methyl-6-(N-cyclohexyl-N-methylamino)fluoran.
(Example 11)
[0092] A heat-sensitive recording material of Example 11 was fabricated in the same manner
as in Example 1 except that 4-hyd-r-oxy-4'-isopi-opoxydiphenylsulfbne in [Solution
B] of Example 1 was changed to bisphenol A.
(Example 12)
[0093] A heat-sensitive recording material of Example 12 was fabricated in the same manner
as in Example 1 except that a coating solution for undercoat layer containing the
following ingredients was prepared and applied on a substrate so that the deposited
amount after dried becomes 3.0g/m
2.
<Coating Solution for Undercoat Layer>
[0094]
- Spherical plastic hollow fine particles (styrene-acryl-based copolymer resin, solid
content concentration: 27.5%, average particle diameter: 1µm, hollow ratio: 50%) 36
parts
- Styrene-butadiene copolymer latex (solid content: 47.5%) 10 parts
- Water 54 parts
(Example 13)
[0095] A heat-sensitive recording material of Example 13 was fabricated in the same manner
as in Example 1 except that, as a fluorescent bleaching agent, 1.5 parts of a 20%
aqueous solution of a 4,4'-diaminostilbene-2,2'-disulfonic-acid-derivative was added
to [Solution E] of Example 1.
(Example 14)
[0096] A heat-sensitive recording material of Example 14 was fabricated in the same manner
as in Example 1 except that a coating solution for back layer containing the following
ingredients was prepared and applied on the side of a substrate opposite to the heat-sensitive
color developing layer so that the deposited amount after dried becomes 1.5g/m
2.
<Coating Solution for Back Layer>
[0097]
- [Solution D] 50 parts
- 10% aqueous solution of polyvinyl alcohol 100 parts
- 10% aqueous solution of polyamideepichlorohydrin 30 parts
- Water 100 parts
(Comparative Example 1)
[0098] A heat-sensitive recording material of Comparative Example 1 was fabricated in the
same manner as in Example 1 except that the 10% aqueous solution of N-aminopolyacrylamide
in [Solution E] of Example 1 was changed to a 10% aqueous solution of dihydrazide
adipate.
(Comparative Example 2)
[0099] A heat-sensitive recording material of Comparative Example 2 was fabricated in the
same manner as in Example 1 except that diacetone-modified polyvinyl alcohol in [Solution
E] of Example 1 was changed to itaconic acid-modified polyvinyl alcohol.
(Comparative Example 3)
[0100] A heat-sensitive recording material of Comparative Example 3 was fabricated in the
same manner as in Example 1 except that the N-aminopolyacrylamide in [Solution E]
of' Example 1 was changed to polyamideepichlorohydrin.
[0101] The obtained heat-sensitive recording materials were evaluated for various properties
in the manner described below. The results are shown in Table 1.
<Sensitivity Ratio>
[0102] Each heat-sensitive recording material was printed by use of a thermal printing tester
with a thin-film head manufactured by Matsushita Electronic Components Co., Ltd. under
conditions of a head power of 0.45W/dot, a one-line recording time of 20msec./L, and
a scanning density of 8×385 dots/mm at a pulse width of 0.2 msec. to 1.2 msec. every
1 msec.., and the print density was measured by a Macbeth densitometer RD-914 to calculate
a pulse width where the density becomes 1.0.
[0103] Using the pulse width measured in Comparative Example 1 as a standard, sensitivity
ratio was calculated using the following equation:

[0104] The greater the value, the more sensitive (heat responsive) the heat-sensitive recording
material is.
<Edible Vinegar Resistance>
[0105] After each heat-sensitive recording material was made to contact with a 150°C-hot
stamper for 1 second for color development, the heat-sensitive recording material
was immersed in a grain vinegar (manufactured by Mizukan Co., Ltd.) for 30 minutes,
and image density after immersion was measured by a Macbeth densitometer (Model R.D-914,
manufactured by Gretag Macbeth AG) to observe a surface state of the protective layer.
<Water Resistance>
[0106] After each heat-sensitive recording material was made to contact with a 150°C-hot
stamper for 1 second for color development, the heat-sensitive recording material
was immersed in water for 15 hours, and image density after immersion was measured
by a Macbeth densitometer (Model RD-914, manufactured by Gretag Macbeth AG) to observe
a surface state of' the protective layer.
<Whiteness>
[0107] Whiteness of the background part of each heat-sensitive recording material was measured
by a whiteness meter (%) in accordance with JIS P-8149.
<Back Surface Density Evaluation>
[0108] After each heat-sensitive recording material was made to contact with a 150°C-hot
stamper for 1 second for color development, the heat-sensitive recording material
was laminated with three sheets of vinyl chloride wrap on the back surface side and
stored in a dry environment of 50°C under a load of 5kg/100cm
2 for 15 hours, and image density after storage was measured by a Macbeth densitometer
(Model RD-914, manufactured by GretagMacbeth AG).
<High-Temperature High-Humidity Transferability>
[0109] Under a condition of 40°C and 95%RH, printing was performed by use of a TM-T88II
printer manufactured by SEIKO EPSON CORPORATION, and the print length (mm) was measured.
<Heat Resistance>
[0110] After each heat-sensitive recording material was made to contact with a 150°C-hot
stamper for 1 second for color development, the density of the background part of
the heat-sensitive recording material after standing under a dry environmental condition
of 80°C for 24 hours was measured by a Macbeth densitometer (Model RD-914, manufactured
by GretagMacbeth AG).
Table 1
|
Sensitivity Ratio |
Edible Vinegar Resistance (image density) |
Edible Vinegar Resistance (protective layer surface state) |
Water Resistance (image density) |
Water Resistance (protective layer surface state) |
Whiteness |
Back Surface density |
High-Temperature High-Humidity Conveyance |
Ex 1 |
1.00 |
1.35 |
Not Dissolve |
1.26 |
Not Dissolve |
82.5 |
1.20 |
103 |
Ex. 2 |
1.00 |
1.35 |
Not Dissolve |
1.25 |
Not Dissolve |
82.3 |
1.20 |
103 |
Ex. 3 |
1.00 |
1.35 |
Not Dissolve |
1.25 |
Not Dissolve |
83.0 |
1.21 |
103 |
Ex. 4 |
1.01 |
1.38 |
Not Dissolve |
1.27 |
Not Dissolve |
82.2 |
1.20 |
103 |
Ex. 5 |
1.00 |
1.37 |
Not Dissolve |
1.26 |
Not Dissolve |
82.8 |
1.22 |
103 |
Ex. 6 |
1.01 |
1.38 |
Not Dissolve |
1.28 |
Not Dissolve |
82.5 |
1.20 |
103 |
Ex. 7 |
0.99 |
1.40 |
Not Dissolve |
1.32 |
Not Dissolve |
82.4 |
1.21 |
103 |
Ex. 8 |
0.99 |
1.33 |
Not Dissolve |
1.24 |
Not Dissolve |
83.2 |
1.20 |
103 |
Ex. 9 |
1.04 |
1.37 |
Not Dissolve |
1.26 |
Not Dissolve |
83.0 |
1.23 |
103 |
Ex.10 |
0.98 |
1.36 |
Not Dissolve |
1.23 |
Not Dissolve |
82.4 |
1.19 |
103 |
Ex.11 |
0.97 |
1.28 |
Not Dissolve |
1.22 |
Not Dissolve |
82.0 |
1.18 |
103 |
Ex.12 |
1.15 |
1.35 |
Not Dissolve |
1.26 |
Not Dissolve |
82.8 |
1.28 |
103 |
Ex. 13 |
1.02 |
1.36 |
Not Dissolve |
1.27 |
Not Dissolve |
88.5 |
1.21 |
103 |
Ex.14 |
1.00 |
1.35 |
Not Dissolve |
1.26 |
Not Dissolve |
82.6 |
1.30 |
103 |
Comp. Ex. 1 |
1.00 |
1.05 |
Dissolve |
1.22 |
Not Dissolve |
82.4 |
1.20 |
103 |
Comp. Ex. 2 |
0.99 |
1.27 |
Not Dissolve |
0.93 |
Dissolve |
82.6 |
1.21 |
25 |
Comp. Ex. 3 |
0.98 |
0.94 |
Dissolve |
1.02 |
Dissolve |
81.6 |
1.18 |
98 |