(11) EP 1 914 327 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

23.04.2008 Bulletin 2008/17

(51) Int Cl.:

C22C 19/05 (2006.01)

F01D 5/28 (2006.01)

(21) Application number: 06021724.7

(22) Date of filing: 17.10.2006

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Designated Extension States:

AL BA HR MK RS

(71) Applicant: SIEMENS AKTIENGESELLSCHAFT 80333 München (DE)

(72) Inventors:

- Hasselqvist, Magnus 61243 Finspong (SE)
- McColvin, Gordon Lincoln LN6 8DP North Hykeham (GB)

(54) Nickel-base superalloy

(57) The invention relates to nickel-base superalloy comprising in wt%, especially consisting of: Co + Fe + Mn 0 - 20, Al 4 - 6, Cr > 12 - 20, Ta > 7.5 - 15, Ti 0 - < 0.45, V 0 - 1, Nb 0 - < 0.28, Mo 0 - 2.5, Mo + W + Re + Rh 2 - 8, Ru + Os + Ir + Pt + Pd 0 - 4, Hf 0 - 1.5, C + B + Zr 0 -

0.5, Ca + Mg + Cu 0 - 0.5, Y + La + Sc + Ce + Actinides + Lanthanides 0 - 0.5 Si 0 - 0.5 Ni balance and unavoidable impurities.

Description

[0001] The invention relates to nickel-base superalloys and to components containing these alloys.

[0002] Nickel-base superalloys are used in applications where a combination of high strength and a strong resistance to chemical attacks at high temperatures is needed. They are employed for the production of components of gas turbines such as blades and vanes. These parts are arranged in the hot section of a turbine and thus have to withstand high temperatures and an aggressive atmosphere.

[0003] Nickel-base superalloys and components of the above mentioned kind are disclosed for example in US 6,818,077, US 6,419,763, US 6,177,046, EP 0 789 087 and EP 0 637 474.

[0004] It is an object of the present invention to provide a nickel-base superalloy, which combines high strength, high oxidation resistance, high corrosion resistance, microstructural stability and a large heat treatment window. It is a further object of the present invention to provide components, which comprise such a superalloy.

[0005] These objects are solved by the superalloy of claim 1 and the components of claims 7, 8, 9 and 10.

[0006] The nickel-base superalloy of the invention comprises in wt%:

0 - 20
4 - 6
>12 - 20
>7.5 - 15
0-<0.45
0 - 1
0-<0.28
0 - 2.5
2 - 8
0 - 4
0 - 1.5
0 - 0.5
0 - 0.5
0 - 0.5
0 - 0.5
balance

35

40

45

50

55

15

20

25

30

[0007] Especially the superalloy consists of these elements.

[0008] It contains significant levels of Al, Cr and Ta to provide a combination of high strength, high oxidation resistance, high corrosion resistance.

[0009] Along Ta with other partical strengtheners like Ti, Nb and V can be added to the superalloy, but since they are detrimental to the oxidation resistance, they should at most be added in limited quantities. The amount of Ti should not exceed 0.45 and the amount of V should not exceed 1 wt% respectively.

[0010] The amount of matrix strengthening elements Mo, W, Re and Rh is between 2 and 8 wt%.

[0011] Other elements like Hf, C, B, Zr, Ca, Mg, Cu, Y, La, Sc, Ce, actinites and lanthanides, and Si can be present in the superalloy in order to adapt its properties to special needs such as grain boundary strengtheners, oxide scale fortification, and compatibility with specific coating systems.

[0012] The content of Ti can be in the range (in wt%) of 0-0.40. Preferably it can be 0-0.35, more preferably 0-0.30 and most preferably 0-0.20.

[0013] It was also found that the content of Nb (in wt%) can be in the range of 0-0.25, preferably 0-0.20, more preferably 0-0.15 and most preferably 0-0.10.

[0014] According to another embodiment of the invention the content of C (in wt%) can be in the range of 0-0.15, preferably 0-0.08, more preferably 0.01-0.06 and most preferably 0.02-0.04.

[0015] The superalloy of the invention can also contain B in the range (in wt%) of 0-0.02, preferably 0-0.01, more preferably 0.001-0.008 and most preferably 0.003-0.007.

[0016] According to one aspect of the invention a conventional cast component, directionally solified component and a single crystal component, which comprise the super alloy are provided.

[0017] According to another aspect of the invention, a conventional cast or a single crystal component consisting of a superalloy, which comprises in wt%:

Co + Fe + Mn	0 - 20
Al	4 - 6
Cr	>12 - 20
Та	>7.5 - 15
Ti	0 - 1.5
V	0 - 1
Ti + Nb + V	0 - 2
Мо	0 - 2.5
Mo + W + Re + Rh	2 - 8
Ru + Os + Ir + Pt + Pd	0 - 4
Hf	0 - 1.5
C + B + Zr	0 - 0.5
Ca + Mg + Cu	0 - 0.5
Y + La + Sc + Ce + Actinides + Lanthanides	0 - 0.5
Si	0 - 0.5
Ni	balance

20

5

10

15

is provided.

[0018] Especially the superalloy consists of these elements.

[0019] The components of the invention can especially be part of a gas turbine, for example a turbine blade or vane.

[0020] In the following one preferred embodiment of the invention is described. A superalloy was cast which had the composition given in table 1.

Table 1

30	

35

40

45

50

Element	wt%
Со	4.12
Cr	14.2
Мо	0.96
W	2.51
Al	5.47
Та	10.1
Hf	0.41
С	0.04
В	0.005

[0021] In order to characterize the properties of the cast superalloy different experiments were conducted.

[0022] Solutioning experiments for 4h at 1220, 1250, 1260, 1270 and 1300°C followed by water quenching were done. At 1220°C residual particles were seen and at 1250, 1260, 1270 and 1300°C full solutioning without incipient melting was observed.

[0023] Further a heat treatment at 1250°C for 8h, 1100°C for 4h and 850°C for 24h was applied. SEM and TEM analysis showed a very regular microstructure with primary particles of \sim 0.35 μ m side length and a significant amount of secondary particles (see figures 1 and 2).

[0024] No trace of TCP phases were found. The particle content was measured to be \sim 60 vol%.

[0025] Accordingly it was shown that the superalloy posses a large heat treatment window and a good microstructural stability.

55

Claims

1. A nickel-base superalloy comprising in wt%, especially consisting of:

	Co + Fe + Mn	0 - 20
	Al	4 - 6
	Cr	>12 - 20
5	Та	>7.5 - 15
	Ti	0-<0.45
	V	0 - 1
	Nb	0-<0.28
10	Мо	0 - 2.5
	Mo + W + Re + Rh	2 - 8
	Ru + Os + Ir + Pt + Pd	0 - 4
	Hf	0 - 1.5
	C + B + Zr	0 - 0.5
15	Ca + Mg + Cu	0 - 0.5
	Y + La + Sc + Ce + Actinides + Lanthanides	0 - 0.5
	Si	0 - 0.5
	Ni	balance

20

25

30

and unavoidable impurities.

- 2. The nickel-base superalloy as claimed in claim 1, wherein Ti is in the range (in wt%) of 0 0.40, preferably 0 0.35, more preferably 0 0.30 and most preferably 0 0.20.
- 3. The nickel-base superalloy as claimed in any of the preceding claims, wherein Nb is in the range (in wt%) of 0 0.25, preferably 0 0.20, more preferably 0 0.15 and most preferably 0 0.10.
- 4. The nickel-base superalloy as claimed in any of the preceding claims, wherein C is in the range (in wt%) of 0 0.15, preferably 0 0.08, more preferably 0.01 0.06 and most preferably 0.02 0.04.
 - 5. The nickel-base superalloy as claimed in any of the preceding claims, wherein B is in the range (in wt%) of 0 0.02, preferably 0 0.01, more preferably 0.001 0.008 and most preferably 0.003 0.007.

40

35

- **6.** A conventional cast component comprising a superalloy according to any of the claims 1 to 5.
- 7. A directionally solified component comprising a superalloy according to any of the claims 1 to 5.
- **8.** A single crystal component comprising a superalloy according to any of the claims 1 to 5.
 - **9.** A conventional cast or a single crystal component consisting of a superalloy which comprises in wt%, especially consisting of:

50	Co + Fe + Mn	0 - 20
	Al	4 - 6
	Cr	>12 - 20
	Та	>7.5 - 15
	Ti	0 - 1.5
55	V	0 - 1
	Ti + Nb + V	0 - 2
	Мо	0 - 2.5

(continued)

	Mo + W + Re + Rh	2 - 8
	Ru + Os + Ir + Pt + Pd	0 - 4
5	Hf	0 - 1.5
	C + B + Zr	0 - 0.5
	Ca + Mg + Cu	0 - 0.5
	Y + La + Sc + Ce + Actinides + Lanthanides	0 - 0.5
	Si	0 - 0.5
10	Ni	balance

and unavoidable impurities.

10. The component according to any of the claims 6 to 9, wherein the component is a part of a gas turbine.

EUROPEAN SEARCH REPORT

Application Number EP 06 02 1724

	DOCUMENTS CONSID	ERED TO BE RELEVANT		
Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
Y	US 2005/194068 A1 (AL) 8 September 200 * paragraphs [0012]	(CARON PIERRE [FR] ET 05 (2005-09-08) - [0029] *	1-10	INV. C22C19/05 F01D5/28
Y	EP 0 560 296 A1 (HI HITACHI LTD [JP]) 15 September 1993 (* page 3, line 27 -		1-10	
A	US 2003/041930 A1 (AL) 6 March 2003 (2 * paragraph [0007] * paragraph [0018] * claim 1 *	*	1-10	
4	EP 1 054 072 A1 (AE [CH] ALSTOM SWITZER 22 November 2000 (2 * paragraphs [0014] * claim 1 *	2000-11-22)	1-10	
4	JP 11 256258 A (TOP CO) 21 September 19 * abstract *	CYO SHIBAURA ELECTRIC 099 (1999-09-21)	1-10	TECHNICAL FIELDS SEARCHED (IPC) C22C F01D
A	JP 10 317080 A (TOM CO) 2 December 1998 * abstract *	YO SHIBAURA ELECTRIC (1998-12-02)	1-10	
А	OGLE: "Materials industrial gas turk ADVANCED MATERIALS	AND PROCESSES FOR GAS 2002 (2002-09), pages	1-10	
	The present search report has	been drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	Munich	19 February 2007	Zin	mermann, Frank
X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot unent of the same category inological background written disclosure rmediate document	T: theory or principle E: earlier patent door after the filing date her D: document cited in L: document oited for &: member of the sar document	the application other reasons	shed on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 06 02 1724

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19-02-2007

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
US 2005194068	A1	08-09-2005	NONE	•
EP 0560296	A1	15-09-1993	DE 69316251 D1 DE 69316251 T2	19-02-1998 20-05-1998
US 2003041930	A1	06-03-2003	US 2005016641 A1	27-01-2005
EP 1054072	A1	22-11-2000	DE 59904846 D1 US 6419763 B1	08-05-2003 16-07-2002
JP 11256258	Α	21-09-1999	NONE	
JP 10317080	 А	02-12-1998	NONE	

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6818077 B [0003]
- US 6419763 B [0003]
- US 6177046 B [0003]

- EP 0789087 A [0003]
- EP 0637474 A [0003]