

(11) **EP 1 921 177 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

14.05.2008 Patentblatt 2008/20

(51) Int Cl.:

C23C 8/10 (2006.01)

C23C 28/04 (2006.01)

(21) Anmeldenummer: 07019137.4

(22) Anmeldetag: 28.09.2007

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK RS

(30) Priorität: 30.10.2006 DE 102006051709

(71) Anmelder: AHC-Oberflächentechnik GmbH 50171 Kerpen (DE)

(72) Erfinder:

- Kurze, Peter, Prof. Dr. rer. nat. habil.
 52385 Nideggen (DE)
- Urlberger, Hermann H., Dr. 40885 Ratingen (DE)
- Koch, Jürgen
 92224 Amberg (DE)
- (74) Vertreter: Gesthuysen, von Rohr & Eggert Patentanwälte
 Postfach 10 13 54
 45013 Essen (DE)

(54) Erzeugung von Verschleissschutzschichten auf Werkstoffen aus sperrschichtbildenden Metallen oder deren Legierungen mittels Laserbehandlung

(57) Die Erfindung betrifft ein Verfahren zur Erzeugung von Verschleißschutzschichten auf Werkstoffen von sperrschichtbildenden Metallen, wie insbesondere Aluminium, Magnesium und Titan sowie deren Legierungen und Mischungen, bevorzugt Aluminium oder dessen Legierungen, mittels Laserbehandlung, wobei die Werkstoffoberfläche in Gegenwart einer sauerstoffhaltigen Atmosphäre einer Laserbestrahlung ausgesetzt wird derart, daß die obere bzw. äußere Schicht der Werkstoffoberfläche mit dem Sauerstoff zu einem Oxid des Werkstoffoberfläche mit dem Sauerstoffoberfläche mit dem Sauerstoffoberfläche mit dem Sauerstoffoberfläc

stoffmetalls, vorzugsweise Aluminiumoxid, reagiert und die darunterliegende Schicht des Werkstoffs ohne mit der sauerstoffhaltigen Atmosphäre zu reagieren umgeschmolzen wird. Es resultiert ein mehrschichtiges Gefüge mit ausgezeichneten Verschleißschutzeigenschaften, insbesondere exzellenter Korrosionsbeständigkeit sowie ausgezeichneter Abriebfestigkeit und extremer Härte, welches infolge eines Härtegradienten innerhalb des Schichtengefüges keine Sprödigkeit aufweist.

EP 1 921 177 A2

40

45

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Erzeugung von Verschleißschutzschichten auf Werkstoffen von sperrschichtbildenden Metallen, wie insbesondere Aluminium, Magnesium und Titan sowie deren Legierungen und Mischungen, mittels Laserbehandlung und die Anwendung dieses Verfahrens sowie die auf diese Weise erzeugten, mit Verschleißschutzschichten versehenen Werkstoffe.

[0002] Die Erzeugung von Verschleißschutzschichten auf Werkstoffen von sperrschichtbildenden Metallen, wie Aluminium, Magnesium und Titan sowie deren Legierungen, unter elektrolytischen Bedingungen ist bekannt: So lassen sich mit der sogenannten anodischen Oxidation unter Funken- bzw. Lichtbogenentladung (sogenanntes ANOF-Verfahren) in geeigneten, üblicherweise wäßrigen oder wäßrig-organischen Elektrolytlösungen Verschleißschutzschichten mit exzellenten Eigenschaften erhalten. Ein solches Verfahren ist beispielsweise in der EP 0 545 230 B 1 beschrieben. Nachteil dieser Verfahren ist, daß diese elektrolytisch arbeiten und daher Elektrolytbäder verwenden, welche anschließend entsorgt werden müssen. Auch müssen die erzeugten Schichten nach ihrer Herstellung von unerwünschten Bestandteilen des Elektrolytbades gesäubert werden. Daher besteht zunehmend ein Bestreben dahingehend, derartige Verschleißschutzschichten auf andere Weise zu erzeugen. [0003] Allein die Vielzahl der Applikationen des Oberflächenveredelns im Automobilbau und anderen Bereichen, insbesondere im Bereich des Maschinenbaus, zeigt den Bedarf an Technologien, welche die gesteigerten Anforderungen an die Funktionalität der Bauteile erfüllen. Laserverfahren bieten hier neue Ansätze zur Verbesserung der Qualität der Bauteile. Verschleißschutzschichten haben aber eine vorrangige Rolle zu erfüllen. Grundsätzlich eröffnet der Einsatz von Lasern für die Oberflächenbehandlung neue umweltfreundliche Technologien, insbesondere da diese ohne Elektrolytbäder auskommen.

[0004] In der DE 102 02 184 C1 und der Zeitschrift HTM 52 (1997) 2, Seiten 91 bis 93 (J. Barnikel et al. "Nitrieren von Aluminiumlegierungen mit UV-Laserstrahlung") werden Ausführungen zum Lasernitrieren von Aluminiumoberflächen gemacht.

[0005] So beschreibt die DE 102 02 184 C1 ein Verfahren zur Erzeugung von Verschleißschutzschichten in oberflächennahen Bereichen von Bauteilen, insbesondere Kolben für Verbrennungskraftmaschinen, aus einem Aluminiumbasisverbundwerkstoff, wobei zumindest Teile der Oberfläche der Bauteile eine Härtung erfahren haben und die Verschleißschutzschicht aus Aluminiumnitriden in einer Aluminiummatrix gebildet wird, wobei die Verschleißschutzschicht mittels einer Lasernitrierbehandlung erzeugt wird, wobei Energie impulsförmig in die Oberfläche eingebracht wird, so daß sich in den oberflächennahen Bereichen eine Umschmelzschicht bildet und es dabei zu einer Umsetzung von Stickstoff aus einer

Stickstoffatmosphäre oder aus der Luft mit Aluminium aus dem Verbundwerkstoff kommt derart, daß die Aluminiumnitride in der Umschmelzschicht feindispers und gradiert vorliegen.

[0006] Das auf diese Weise gebildete Aluminiumnitrid (AIN) ist zwar sehr hart (ca. 1.230 HV = Vickers-Härte), ist aber auch sehr spröde. Es neigt daher zur Rißbildung und ist somit für viele Anwendungen, insbesondere im Automobilbau, nicht brauchbar. Insbesondere Sicherheitsbauteile, die Schwingungen ausgesetzt sind, wie z. B. Aluminiumbauteile für Verbrennungsmotoren, wie insbesondere Kolben, Zylinderlaufflächen, Ventile und dergleichen, sind stark gefährdet, wenn sie mit einer derartigen Aluminiumnitridschicht versehen sind. Der Einsatz solcher mit Aluminiumnitridschichten versehenen Bauteile kann im Betriebszustand den gesamten Motor zum Ausfall bringen. Auch ist die Schichtdicke der hergestellten Aluminiumnitridschicht relativ gering. Zudem tritt bei einer punktuellen Belastung der Oberfläche ein sogenannter "Eierschaleneffekt" auf: Es kommt zu einer plastischen Verformung des Grundmaterials, was die Ursache für die nachfolgende Rißbildung ist.

[0007] Auch die technische Lehre der DE 102 02 184 C1 löst die vorgenannten Nachteile nicht, selbst wenn die Energie des Lasers in einer Stickstoffatmosphäre impulsartig auf die Aluminiumoberfläche aufgebracht wird und sich das Aluminiumnitrid feindispers bildet.

[0008] Eine weitere Möglichkeit der Oberflächenveredelung mittels Laserbehandlung besteht darin, durch die Laserbehandlung oxidkeramische Schutzschichten auf Aluminiumwerkstoffen herzustellen, wobei Hartstoffpartikel, wie z. B. Aluminiumoxid (Al₂O₃), Zirkoniumoxid (ZrO₂) etc., auf die Oberfläche des Aluminiumwerkstoffes aufgeschmolzen werden (vgl. Laser und Optoelektronik, 29 (4), Seiten 48 bis 52, 1997). Der Nachteil dieser grundsätzlichen Möglichkeit, Feststoffe durch Laser aufzuschmelzen und auf die betreffenden Werkstoffoberflächen aufzubringen, besteht darin, daß diese Partikel sich nicht gleichmäßig auf die Werkstoffoberfläche aufbringen lassen. Insbesondere bei kompliziert geformten Bauteilen ist eine gleichmäßige Beschichtung nicht zu realisieren. Außerdem wird oftmals eine schlechte Haftung der aufgeschmolzenen Partikel in bezug auf die Werkstoffoberfläche beobachtet, was oftmals die Ursache in einer bereits vorhandenen Oxidschicht auf dem zu behandelnden Werkstück hat.

[0009] Das der vorliegenden Erfindung zugrundeliegende Problem ist daher die Bereitstellung eines Verfahrens zur Erzeugung von Verschleißschutzschichten auf Werkstoffen von sperrschichtbildenden Metallen, insbesondere Aluminium, Magnesium und Titan sowie deren Legierungen und Mischungen, welches die zuvor geschilderten Nachteile des Standes der Technik zumindest weitgehend vermeidet oder aber wenigstens abschwächt.

[0010] Zur Lösung des zuvor geschilderten Problems schlägt die vorliegende Erfindung - gemäß einem <u>ersten</u> Aspekt der vorliegenden Erfindung - ein Verfahren nach

40

Anspruch 1 vor. Weitere, insbesondere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind Gegenstand der Verfahrensunteransprüche.

[0011] Denn die Anmelderin hat nun überraschenderweise herausgefunden, daß das zuvor geschilderte Problem dadurch gelöst werden kann, daß man die Werkstoffoberflächen von Werkstoffen auf Basis sperrschichtbildender Metalle, wie Aluminium, Magnesium und Titan sowie deren Legierungen und Mischungen, in Gegenwart einer sauerstoffhaltigen Atmosphäre einer Laserbehandlung bzw. Laserbestrahlung in Form einer Laseroxidationsbehandlung aussetzt derart, daß die obere bzw. äußere Schicht der Werkstoffoberfläche mit dem Sauerstoff zu einem Oxid des Werkstoffmetalls umgesetzt wird, während die darunterliegende Schicht des Werkstoffs ohne Reaktion mit dem Sauerstoff umgeschmolzen wird. [0012] Weiterer Gegenstand der vorliegenden Erfindung ist - gemäß einem zweiten Aspekt der vorliegenden Erfindung - die erfindungsgemäße Anwendung des Verfahrens nach der vorliegenden Erfindung, wie sie in den Ansprüchen 17 bis 19 definiert ist.

[0013] Schließlich sind Gegenstand der vorliegenden Erfindung - gemäß einem weiteren, <u>dritten</u> Aspekt der vorliegenden Erfindung - die nach dem erfindungsgemäßen Verfahren erhältlichen Werkstoffe nach der vorliegenden Erfindung, welche mit einer Verschleißschutzschicht der vorgenannten Art versehen sind und wie sie in den Ansprüchen 20 bis 22 definiert sind.

[0014] Gegenstand der vorliegenden Erfindung ist somit - gemäß einem ersten Aspekt der vorliegenden Erfindung - ein Verfahren zur Erzeugung Verschleißschutzschichten auf Werkstoffen von sperrschichtbildenden Metallen, insbesondere Aluminium, Magnesium und Titan sowie deren Legierungen und Mischungen, bevorzugt Aluminium oder dessen Legierungen, mittels Laserbehandlung, wobei die Werkstoffoberfläche in Gegenwart einer sauerstoff haltigen Atmosphäre einer Laserbestrahlung ausgesetzt wird derart, daß die obere bzw. äußere Schicht der Werkstoffoberfläche mit dem Sauerstoff der sauerstoffhaltigen Atmosphäre zu einem Oxid des Werkstoffinetalls, vorzugsweise Aluminiumoxid, reagiert bzw. umgesetzt wird und die darunterliegende Schicht des Werkstoffs ohne mit dem Sauerstoff zu reagieren umgeschmolzen wird.

[0015] Durch die erfindungsgemäße Laserbehandlung bzw. Laseroxidation resultieren Verschleißschutzschichten mit ausgezeichneten Verschleißschutzeigenschaften, insbesondere mit exzellenter Korrosionsbeständigkeit sowie ausgezeichneter Abriebfestigkeit und extremer Härte, wobei die Verschleißschutzschichten im Unterschied zu Aluminiumnitridschichten des Standes der Technik - keinerlei Sprödigkeit aufweisen und infolge eines Härtegradienten innerhalb des Schichtengefüges - die Härte (Vickers-Härte) der Schichten bzw. des Schichtengefüges nimmt von außen nach innen graduell ab - ausgezeichnete mechanische Eigenschaften aufweist, insbesondere bei punktueller Belastung der Oberfläche nicht zu einem sogenannten "Eierschalenef-

fekt" neigt.

[0016] Die erfindungsgemäß erzeugten Schichten weisen vergleichbare oder zum Teil verbesserte Eigenschaften im Vergleich zu nach herkömmlichen Elektrolytverfahren hergestellten Verschleißschutzschichten auf, wobei deren Nachteile in effizienter Weise vermieden werden, insbesondere durch die Vermeidung der Verwendung von Elektrolytbädern.

[0017] Bei der erfindungsgemäß durchgeführten Laserbehandlung bzw. Laseroxidation resultiert ein Mehrschichtengefüge: Die eigentliche Verschleißschutzschicht als solche umfaßt im allgemeinen ein zweischichtiges Schichtengefüge, wobei dieses die obere bzw. äußere Oxidschicht des Werkstoffmetalls und die an die obere bzw. äußere Oxidschicht angrenzende, unter dieser Oxidschicht liegende Schicht des umgeschmolzenen Werkstoffs ("Umschmelzschicht") umfaßt, unterhalb derer dann die hieran angrenzende, unveränderte (d h. unreagierte und nicht umgeschmolzene) Schicht des Werkstoffs angeordnet ist. Insgesamt resultiert also ein Mehrschichtengefüge, welches - von außen nach innen bzw. von oben nach unten betrachtet - die obere, äußere Oxidschicht des Werkstoffinetalls, die hierunter angeordnete Umschmelzschicht und die wiederum hierunter angeordnete Schicht des Grundwerkstoffs, welche unreagiert und nicht umgeschmolzen ist, umfaßt. Dabei weist die äußere Schicht (d. h. die Oxidschicht des Werkstoffmetalls) die größte Härte (Vickers-Härte), die darunterliegende Umschmelzschicht eine im Vergleich hierzu geringere Härte (Vickers-Härte) und die wiederum hierunter angeordnete Schicht des Grundwerkstoffs die geringste Härte (Vickers-Härte) auf. Es entsteht gewünschtermaßen ein Mehrschichtengefüge mit dem vorgenannten Härtegradienten, der zu exzellenten mechanischen Eigenschaften führt.

[0018] Gemäß einer besonderen Ausführungsform des erfindungsgemäßen Verfahrens kann es vorgesehen sein, daß die Werkstoffoberfläche vor der Erzeugung der Verschleißschutzschicht (d. h. vor der erfindungsgemäßen Laserbehandlung bzw. Laseroxidation) einem Umschmelzen, insbesondere gleichermaßen mittels Laserbehandlung, bevorzugt unter inerten Bedingungen, unterzogen wird. Dabei ist insbesondere darauf zu achten, daß bei dieser Vorbehandlung keine Oxidation der Werkstoffoberfläche stattfindet. Dies wird dadurch erreicht, daß unter inerten Bedingungen, insbesondere unter Inertgasatmosphäre, vorzugsweise unter Edelgasatmosphäre, und unterhalb der Reaktionstemperaturen der Werkstoffoberfläche, im allgemeinen unterhalb von Temperaturen von 1.000 °C der Werkstoffoberfläche, gearbeitet wird. Dieser vorangehende Verfahrensschritt des Umschmelzens ist aber rein fakultativer Natur.

[0019] Gemäß einer bevorzugten Ausführungsform wird als Werkstoffmetall insbesondere Aluminium oder eine Aluminiumlegierung eingesetzt, so daß als obere, äußere Schicht der erfindungsgemäßen Laserbehandlung bzw. Laseroxidation eine Aluminiumoxidschicht (Al₂O₃-Schicht) resultiert. Bei dem erfindungsgemäßen

25

Werkstoff kann es sich beispielsweise um einen Druckguß oder Guß, insbesondere einen Aluminiumdruckguß oder Aluminiumguß, handeln. Insbesondere kann es sich um einen grobkörnigen Druckguß oder Guß, insbesondere Aluminiumdruckguß oder Aluminiumguß, handeln, Erzeugung gegebenenfalls vor der Verschleißschutzschicht durch die erfindungsgemäße Laserbehandlung einem Umschmelzen, insbesondere gleichermaßen mittels Laserbehandlung, wie zuvor beschrieben, unterzogen worden sein kann, wobei diese Vorbehandlung optional ist. Anstelle von Druckguß- oder Gußlegierungen können auch Knetlegierungen, insbesondere Aluminiumknetlegierungen, der erfindungsgemäßen Behandlung unterzogen werden. Die vorgenannten Beispiele für eingesetzte Werkstoffe sind jedoch nicht beschränkender Natur.

[0020] Grundsätzlich wird für die erfindungsgemäße Laserbehandlung ein Laser mit einer Wellenlänge im Bereich von 700 bis 1.200 nm, insbesondere 800 bis 1.100 nm, eingesetzt.

[0021] Grundsätzlich können für die erfindungsgemäße Laserbehandlung bzw. Laseroxidation sowohl gepulste als auch nichtgepulste Laser eingesetzt werden. Im Falle des Einsatzes von gepulsten Lasern wird die Pulsdauer (FWHM) insbesondere im Bereich von 10⁻⁷ s bis 10⁻² s, insbesondere mit etwa 10⁻³ s, gewählt; über die Pulsdauer des Lasers kann die Schichtdicke der Verschleißschutzschicht gezielt gesteuert werden.

[0022] Beispielsweise kann im Rahmen des erfindungsgemäßen Verfahrens als Laser ein nichtgepulster Diodenlaser oder ein Nd:YAG-Laser, insbesondere jeweils mit einer Wellenlänge im Bereich von 800 bis 1.100 nm, eingesetzt werden.

[0023] Im allgemeinen wird die Laserbehandlung derart durchgeführt, insbesondere die mittels Laserbestrahlung einwirkende bzw. eingestrahlte Energie derart bemessen, daß die Reaktionstemperatur $T_{Reaktion}$ an der Werkstoffoberfläche mindestens 1.000 °C beträgt ($T_{Reaktion} \ge 1.000$ °C).

[0024] Im allgemeinen kann die eingesetzte Leistungsdichte des Lasers in weiten Bereichen variieren. So kann die eingesetzte Leistungsdichte des Lasers beispielsweise im Bereich von 10⁴ bis 10⁸ W/cm², insbesondere im Bereich von 10⁵ bis 10⁷ W/cm², vorzugsweise mit etwa 10⁶ W/cm², gewählt werden. Dennoch kann es einzelfallbedingt oder anwendungsbezogen erforderlich sein, von den vorgenannten Werten abzuweichen, ohne daß der Rahmen der vorliegenden Erfindung verlassen ist.

[0025] Wie zuvor beschrieben, wird die erfindungsgemäße Laserbehandlung bzw. Laseroxidation in einer sauerstoffhaltigen Atmosphäre durchgeführt. Die sauerstoffhaltige Atmosphäre kann entweder reinen Sauerstoff umfassen bzw. hieraus bestehen oder ein Gasgemisch aus Sauerstoff mit mindestens einem weiteren, unter Reaktionsbedingungen nichtreaktiven, inerten Gas, vorzugsweise einem Edelgas, umfassen bzw. hieraus bestehen. Damit bei der erfindungsgemäßen Laser-

behandlung bzw. Laseroxidation keine Nitride, insbesondere kein Aluminiumnitrid, gebildet werden kann, enthält die sauerstoffhaltige Atmosphäre keinen Stickstoff und/oder kein unter Reaktionsbedingungen Stickstoff generierendes Gas.

[0026] Im allgemeinen wird das erfindungsgemäße Verfahren unter Atmosphärendruck durchgeführt. Dennoch ist es nicht ausgeschlossen, das Verfahren unter reduziertem oder erhöhtem Druck durchzuführen, wenn auch die Durchfiihrung des Verfahrens unter Atmosphärendruck bevorzugt ist.

[0027] Mit dem erfindungsgemäßen Verfahren erzeugte Verschleißschutzschichten weisen im allgemeinen Gesamtdicken von 50 bis 350 μ m, insbesondere 75 bis 300 μ m, vorzugsweise 100 bis 250 μ m, auf. Diese Dicken umfassen im allgemeinen die obere bzw. äußere Oxidschicht sowie die darunterliegende Umschmelzschicht.

[0028] Was die obere bzw. äußere Schicht anbelangt, welche im Fall von Aluminium bzw. Aluminiumlegierungen eine Aluminiumoxidschicht (Al $_2$ O $_3$ -Schicht), gegebenenfalls mit weiteren Bestandteilen (z. B. SiO $_2$ bzw. Mullit im Fall siliziumhaltiger Aluminiumlegierungen), ist, so beträgt deren Schichtdicke im allgemeinen 1 bis 50 μ m, insbesondere 2 bis 30 μ m, vorzugsweise 3 bis 20 μ m.

[0029] Die obere, äußere Schicht, insbesondere Aluminiumoxidschicht (Al_2O_3 -Schicht), weist eine extreme Härte auf. Die Vickers-Härte (HV) dieser oberen (äußeren) Schicht beträgt mindestens 1.000 HV, insbesondere mindestens 1.500 HV, vorzugsweise mindestens 2.000 HV.

[0030] Ein weiteres, besonderes Merkmal dieser oberen, äußeren Schicht, insbesondere Aluminiumoxidschicht (Al $_2$ O $_3$ -Schicht), ist ihre extrem geringe Rauheit (Rauhtiefe): Im allgemeinen beträgt die Rauheit (Rauhtiefe) R $_a$ der oberen, äußeren Schicht \le 0,5 μ m, insbesondere \le 0,4 μ m, vorzugsweise \le 0,3 μ m. Damit sind die erfindungsgemäß erzeugten Verschleißschutzschichten auch für solche Anwendungen geeignet, bei denen höchste Anforderungen an die Maßhaltigkeit und die Ebenheit der Schichten gestellt sind.

[0031] Für den Fall, daß der Werkstoff aus Aluminium oder einer Aluminiumlegierung besteht, ist die obere, äußere Schicht der erfindungsgemäßen Verschleißschutzschicht eine Aluminiumoxidschicht (Al₂O₃-Schicht) und umfaßt zu mindestens 60 %, vorzugsweise zu mindestens 80 %, besonders bevorzugt zu mindestens 90 %, Korund (α-Al₂O₃). Dies erklärt die extreme Härte dieser äußeren Schicht. Im Fall von siliziumhaltigen Aluminiumlegierungen kann die obere Schicht außerdem bis zu 10 %, insbesondere bis zu 20 %, vorzugsweise bis zu 30 %, Siliziumdioxid (SiO₂), vorzugsweise in Form von Mullit, enthalten; dieses zeigt gleichermaßen eine große Vikkers-Härte. Alle vorgenannten Prozentangaben sind Gewichtsprozentangaben mit Bezug auf das Gewicht der oberen, äußeren Schicht.

[0032] Was die unter der äußeren Oxidschicht, insbe-

sondere Al_2O_3 -Schicht, angeordnete Umschmelzschicht anbelangt, so weist diese im allgemeinen eine Dicke im Bereich von 50 bis 300 μ m, insbesondere 75 bis 250 μ m, vorzugsweise 100 bis 200 μ m, auf.

[0033] Diese Umschmelzschicht weist im allgemeinen eine Vickers-Härte (HV) auf, die kleiner als die Vickers-Härte (HV) der darüberliegenden äußeren Schicht und größer als die Vickers-Härte (HV) der unterliegenden Schicht des Grundwerkstoffs ist. Im allgemeinen weist die unter der äußeren Oxidschicht, insbesondere unter der äußeren Al₂O₃-Schicht, angeordnete Umschmelzschicht eine Vickers-Härte (HV) ≥ 150 HV, insbesondere ≥ 200 HV, auf. Die gegenüber der äußeren Oxidschicht deutlich geringere Vickers-Härte der Umschmelzschicht erklärt sich dadurch, daß die Umschmelzschicht durch bloßes Umschmelzen des Grundwerkstoffs entstanden ist, jedoch nicht dem Sauerstoff der Laserbehandlungsatmosphäre reagiert hat; die im Vergleich zu der unterliegenden Schicht des Grundwerkstoffs größere Vickers-Härte der Umschmelzschicht wiederum erklärt sich dadurch, daß durch den Umschmelzvorgang eine feindispersere bzw. feinkörnerige Phase bzw. Schicht entstanden ist.

[0034] Denn durch den Umschmelzvorgang mittels erfindungsgemäßer Laserbehandlung bzw. Laseroxidation ist die unter der äußeren Oxidschicht, insbesondere unter der äußeren Al $_2$ O $_3$ -Schicht, angeordnete Umschmelzschicht feindispers und/oder feinkörnig ausgebildet, insbesondere mit einer Korngröße < 1 μ m, vorzugsweise < 0,5 μ m.

[0035] Der unter der Umschmelzschicht liegende Grundwerkstoff dagegen ist im allgemeinen grobkörnig und/oder grobdispers ausgebildet, insbesondere mit einer Korngröße > 10 μ m, vorzugsweise > 20 μ m.

[0036] Wie zuvor beschrieben, weist der unter der Umschmelzschicht angeordnete Grundwerkstoff im allgemeinen eine geringere Vickers-Härte als die darüberliegende Umschmelzschicht auf: Im allgemeinen beträgt die Vickers-Härte (HV) der unter der Umschmelzschicht liegenden Grundwerkstoffschicht bis zu 150 HV und liegt insbesondere im Bereich von 50 bis 150 HV, vorzugsweise 75 bis 125 HV.

[0037] Der grundsätzliche Schichtaufbau der nach dem erfindungsgemäßen Verfahren erhältlichen Verschleißschutzschichten ist in den Figurendarstellungen veranschaulicht. Es zeigt:

Fig. 1 eine schematische Schnittdarstellung durch den Aufbau eines nach dem erfindungsgemäßen Verfahren erhältlichen Mehrschichtengefüges;

Fig. 2 eine REM-Aufnahme eines Schnitts durch den Aufbau eines nach dem erfindungsgemäßen Verfahren erhältlichen Mehrschichtengefüges.

[0038] Wie aus den Figurendarstellungen gemäß Fig. 1 und 2 ersichtlich, resultiert nach dem erfindungsgemä-

ßen Verfahren ein Mehrschichtengefiige aus der eigentlichen Verschleißschutzschicht, welche im allgemeinen ein zweischichtiges Schichtgefüge umfaßt, wobei dieses die obere bzw. äußere Oxidschicht 1 des Werkstoffmetalls und die an die obere bzw. äußere Oxidschicht angrenzende, unter dieser Oxidschicht 1 liegende Schicht 2 des umgeschmolzenen Werkstoffs ("Umschmelzschicht") umfaßt, unterhalb derer dann die hieran angrenzende Schicht des Werkstoffs 3 angeordnet ist, wobei die Umschmelzschicht 2 feinkörnig bzw. feindispers ausgebildet ist, während die unreagierte Werkstoffschicht 3 dagegen grobkörnig bzw. grobdispers ausgebildet ist. Für weitergehende Einzelheiten zu den einzelnen Schichten und deren Aufbau und Zusammensetzung kann auf obige Ausführungen verwiesen werden. [0039] Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung kann das Verfahren nach der vorliegenden Erfindung mehrstufig durchgeführt werden: Dabei kann zunächst in einem ersten Verfahrensschritt ein bloßes Umschmelzen der Werkstoffoberfläche, vorzugsweise in oberflächennahen Bereichen, durchgeführt werden (und zwar, wie zuvor beschrieben, unter inerten bzw. nichtreaktiven Bedingungen) und nachfolgend in einem zweiten Verfahrensschritt mit dem erfindungsgemäßen Verfahren eine Korund- bzw. Korund/Mullit-Deckschicht erzeugt bzw. aufgebracht werden. Dabei können die beiden Verfahrensschritte nacheinander durchgeführt werden. Für die beiden Verfahrensschritte können gleiche oder verschiedene Lasertypen eingesetzt werden. Wie zuvor beschrieben, wird der erste Verfahrensschritt das Umschmelzen im allgemeinen unter inerten Bedingungen durchgeführt, ohne daß eine chemische Reaktion der Werkstoffoberfläche zu einer Oxidschicht stattfindet; diesbezüglich kann auf die vorstehenden Ausführungen verwiesen werden, um unnötige Wiederholungen zu vermeiden.

[0040] Wie zuvor geschildert, führt das erfindungsgemäße Verfahren zu Verschleißschutzschichten mit ausgezeichneten Korrosionsbeständigkeiten sowie ausgezeichneten Abriebfestigkeiten und extremen Härten. Das mehrschichtige Gefiige, welches durch die erfindungsgemäße Laserbehandlung bzw. Laseroxidation resultiert, neigt zudem zu keinerlei Sprödigkeit, so daß die erfindungsgemäß erzeugten Verschleißschutzschichten auch für Bauteile, insbesondere Sicherheitsbauteile, geeignet sind, welche Schwingungen ausgesetzt sind (z B. Aluminiumbauteile von Verbrennungsmotoren, wie Kolben, Zylinderlaufflächen, Ventilen etc.).

[0041] Gemäß einer typischen Ausführungsform des erfindungsgemäßen Verfahrens kann wie folgt vorgegangen werden:

Wie zuvor beschrieben, wird erfindungsgemäß die Verschleißschutzschicht auf der Werkstoffoberfläche, insbesondere der Aluminiumoberfläche, mittels Laseroxidation in einer sauerstoffhaltigen Atmosphäre gebildet, wobei die obere Schicht der Werkstoffoberfläche, insbesondere in oberflächennahen

55

Bereichen, zu einem Oxid des Werkstoffinetalls, insbesondere Aluminiumoxid, reagiert bzw. umgesetzt wird und die darunterliegende Schicht, ohne mit dem Sauerstoff zu reagieren, umgeschmolzen und neu skaliert wird.

[0042] Erfindungsgemäß läßt sich die Laserbehandlung auch einsetzen, wenn selektiv nur ein bestimmter Bereich des Werkstoffs bzw. Werkstückes aus sperrschichtbildenden Metallen oxidiert werden soll (z B. nur die Ringnut eines Kolbens für Verbrennungsmotoren). Dabei kann insbesondere mit einer Düse gearbeitet werden, die auf die betreffende Stelle gerichtet wird und durch die das Reaktionsgas Sauerstoff oder ein Gemisch Sauerstoff/Inertgas (stickstofffrei!), wie zuvor definiert, strömt. Der Abstand der Düse vom Fußpunkt des Laserstrahles sollte z. B. mindestens 5 mm betragen und beträgt, je nach Anwendung, z. B. maximal 30 mm. Der Einfallswinkel der Düse zur Oberfläche des Werkstückes sollte 60° bis 95° betragen. Wird reiner Sauerstoff verwendet, so kann beispielsweise ein Volumenstrom bei Austritt aus der Düse von 5 1/min bis 30 1/min eingestellt werden.

[0043] Die Anordnung der Verwendung einer Düse für die erfindungsgemäße Laseroxidation läßt sich beispielsweise für die Bearbeitung von Nuten, wie z B. der Ringnut eines Aluminiummotorkolbens, oder von Bohrungen einsetzen. Durch die erfindungsgemäße Laseroxidation ist es beispielsweise möglich, die Ringnut eines Aluminiumkolbens aus G-AlSi12MgCuNi mit einer Verschleißschutzschicht überwiegend aus Korund mit einer Härte der oberen Schicht von bis zu ca. 2.000 HV und mehr sowie einer Schichtdicke der oberen Schicht von bis zu 15 μ m und mehr und einer Rauheit R_a von 0,4 bis $0.5~\mu\text{m}$ und einer ungeschmolzenen, darunterliegenden Schicht mit einer Härte von 150 bis 200 HV herzustellen. Zu diesem Zweck kann der zu beschichtende Aluminiummotorkolben in einer Einspannvorrichtung gedreht und der Laser auf die Ringnut des Kolbens mit den zuvor beschriebenen Parametern gerichtet werden. Es ist dabei alternativ auch möglich, den Laser zu bewegen und das Werkzeug bzw. den Werkstoff, auf dem die Verschleißschutzschicht anzubringen ist, zu fixieren. Durch die Laserbehandlung entstehen sehr hohe Temperaturen oberhalb von 1.000 °C auf der behandelten Werkstoffoberfläche, so daß das sperrschichtbildende Metall aufgeschmolzen wird und die obere Schicht mit dem Sauerstoff zu dem entsprechenden Oxid reagiert, wohingegen die darunterliegende Schicht lediglich aufgeschmolzen wird, ohne mit dem Sauerstoff reagieren zu können. Bei der Bildung von Korund (α-Al₂O₃) im Fall von aluminiumbasierten Werkstoffen und gegebenenfalls Mullit (SiO₂) im Fall von siliziumhaltigen Legierungen ist nicht nur die Temperatur des Lasers für die Bildung der oberen Schicht entscheidend; vielmehr entsteht auch sehr hohe Wärme durch die stark exotherm ablaufende chemische Reaktion des geschmolzenen sperrschichtbildenden Metalls, wie Aluminium, Titan,

Magnesium etc., mit dem Sauerstoff.

[0044] Im Falle von Aluminium als Grundwerkstoff umfaßt die obere, äußere Schicht Aluminiumoxid (Al₂O₃) in der Modifikation Korund zu mindestens 60 % (siehe obige Ausführungen). Es werden Vickers-Härten von bis zu ca. 2000 HV (0,1) und mehr bestimmt. Diese hohe Härte ist darauf zurückzuführen, daß vorzugsweise Korund als Hochtemperaturform des Aluminiumoxids entstanden ist. Röntgenographische Messungen haben ergeben, daß der Korundanteil im Bereich von 60 % bis 90 % variiert und insbesondere von der eingetragenen Temperatur und/oder der Einwirkzeit des Lasers abhängig ist. [0045] Bei Al-Legierungen mit hohen Anteilen von Silizium, wie z. B. GD-AlSi12, GD-AlSi9Cu3, G-AlSi12MgCuNi, ADC 12 etc., entsteht neben Korund (α -Al₂O₃) auch Mullit (SiO₂), welches gleichermaßen sehr hart ist; hier werden Vickers-Härten von bis zu ca. 1900 HV (0,1) und mehr gemessen. Aus röntgenographischen Messungen wurde gefunden, daß der Anteil von Mullit (SiO₂)z. B. bei Einsatz der Legierung GD-AlSi12 in der Korundmatrix bis zu 30 % beträgt.

[0046] Die obere Schicht weist geringe Rauheiten bzw. Rauhtiefen R_a auf. Im Falle des Einsatzes von Aluminiumwerkstoffen hat die Korundschicht typischerweise eine Rauheit R_a von ca. 0,3 bis 0,5 μ m und eine Schichtdicke von typischerweise 1 bis 50 μ m, insbesondere 2 bis 30 μ m, vorzugsweise 3 bis 20 μ m.

[0047] Sowohl die Wärme des Lasers als auch die Wärme aus der exothermen Reaktion des sperrschichtbildenden Metalls mit dem Sauerstoff verursachen einen hohen Energieeintrag in die darunterliegende Schicht des sperrschichtbildenden Metalls. Im Falle des Einsatzes von Aluminiumwerkstoffen, die ein grobkörniges Gefüge aufweisen, so z. B. einer Zylinderlauffläche in einem Al-Kurbelgehäuse aus GD-AlSi12 oder einem Al-Motorkolben aus G-AlSi12MgCuNi, erfolgt daher in der darunterliegenden Schicht ein Umschmelzen des grobkörnigen Gefüges mit Korngrößen von 10 bis 20 µm zu einem sehr feinkörnigen Gefüge. Die umgeschmolzene Schicht hat bei Al-Werkstoffen eine Vickers-Härte, je nach eingesetzter Legierung, von typischerweise 150 bis 200 HV (im Vergleich hierzu hat grobkörniger Al-Guß oder Al-Druckguß Vickers-Härten von nur 60 bis 80 HV), ist feindispers bzw. feinkörnig und hat insbesondere Korngrößen von weniger als 1 μ m, vorzugsweise weniger als 0,5

[0048] In Fig. 1 ist der prinzipielle Aufbau des zuvor beschriebenen Schichtsystems veranschaulicht. In der REM-Aufnahme gemäß Fig. 2 ist dieses mehrschichtige Gefüge von Schichten im Schnitt dargestellt.

[0049] Das erfindungsgemäße Verfahren läßt sich universell anwenden und auf die speziellen Anwendungen maßschneidern

[0050] Weiterer Gegenstand - gemäß einem <u>zweiten</u> Aspekt der vorliegenden Erfindung - ist somit die Anwendung des erfindungsgemäßen Verfahrens, wie sie in den Ansprüchen 17 bis 19 beschrieben ist.

[0051] So läßt sich das erfindungsgemäße Verfahren

40

45

50

55

beispielsweise zur Erzeugung von Verschleißschutzschichten auf Erzeugnissen des Maschinenbaus, insbesondere des Automobilbaus, anwenden, beispielsweise für Komponenten von Verbrennungsmotoren, wie z. B. Zylinder, Zylinderlaufbahnen, Kolben, Nokkenwellen, Tassenstößel, Ventile, Lagerstellen an Pleueln etc.

[0052] Weiterhin läßt sich das erfindungsgemäße Verfahren beispielsweise zur Erzeugung von Verschleißschutzschichten auf Kolben von Verbrennungsmotoren, insbesondere für deren zumindest partielle Beschichtung, vorzugsweise mindestens im Bereich der oberen bzw. obersten Ringnut der Kolben, anwenden.

[0053] Des weiteren läßt sich das erfindungsgemäße Verfahren beispielsweise auch zur Erzeugung von Verschleißschutzschichten auf Erzeugnissen der Medizin und Medizintechnik anwenden.

[0054] In bezug auf die erfindungsgemäße Anwendung des Verfahrens nach der vorliegenden Erfindung kann - zur Vermeidung unnötiger Wiederholungen - auf die obigen Ausführungen zu dem erfindungsgemäßen Verfahren selbst verwiesen werden, welche in bezug auf seine erfindungsgemäße Anwendung entsprechend gelten.

[0055] Schließlich sind Gegenstand der vorliegenden Erfindung - gemäß einem dritten Aspekt der vorliegenden Erfindung - Werkstoffe von sperrschichtbildenden Metallen, insbesondere Aluminium, Magnesium und Titan sowie deren Legierungen und Mischungen, bevorzugt Aluminium oder dessen Legierungen, deren Oberflächen mit Verschleißschutzschichten versehen sind, wie sie nach dem zuvor geschilderten erfindungsgemäßen Verfahren erhältlich sind.

[0056] Insbesondere sind Gegenstand der vorliegenden Erfindung gemäß diesem Erfindungsaspekt Werkstoffe von sperrschichtbildenden Metallen, insbesondere Aluminium, Magnesium und Titan sowie deren Legierungen und Mischungen, bevorzugt Aluminium oder dessen Legierungen, deren Oberfläche mit einer mittels Laserbehandlung in Gegenwart einer sauerstoffhaltigen Atmosphäre erzeugten Verschleißschutzschicht versehen ist, wobei die obere, äußere Schicht der Werkstoffoberfläche eine Oxidschicht des Werkstoffmetalls, vorzugsweise Aluminiumoxid, umfaßt bzw. ist und die darunterliegende Schicht eine unreagierte, umgeschmolzene Schicht des Werkstoffs umfaßt bzw. ist.

[0057] Die erfindungsgemäß erzeugte Verschleißschutzschicht ist im allgemeinen ein Mehrschichtengefiige, insbesondere ein zweischichtiges Schichtengefiige, wobei dieses Mehrschichtengefüge die obere, äußere Oxidschicht des Werkstoffmetalls und die an die obere, äußere Oxidschicht angrenzende, unter der Oxidschicht liegende Schicht des umgeschmolzenen Werkstoffs ("Umschmelzschicht") umfaßt, unterhalb derer dann die hieran angrenzende unreagierte bzw. unveränderte Schicht des Werkstoffs angeordnet ist.

[0058] Für weitergehende Einzelheiten in bezug auf die erfindungsgemäßen Werkstoffe kann - zur Vermeidung unnötiger Wiederholungen - auf die obigen Ausfüh-

rungen zu dem erfindungsgemäßen Verfahren und dessen Anwendung verwiesen werden, welche in bezug auf die erfindungsgemäßen Werkstoffe entsprechend gelten.

[0059] Die zuvor beschriebene Figurendarstellung gemäß Fig. 1 zeigt schematisch einen Schnitt durch den Aufbau eines erfindungsgemäß mittels Laserbehandlung mit einer Verschleißschutzschicht versehenen Werkstoffes: Wie aus Fig. 1 ersichtlich, besteht der unterliegende Werkstoff 3 aus einer grobkörnigen bzw. grobdispersen Phase, auf der die feindispersere bzw. feinkörnigere Umschmelzschicht 2 angeordnet ist, auf der wiederum die Oxidschicht 1 des Werkstoffmetalls aufgebracht ist.

[0060] Weitere Ausgestaltungen, Abwandlungen und Variationen der vorliegenden Erfindung sind für den Fachmann beim Lesen der Beschreibung ohne weiteres erkennbar und realisierbar, ohne daß er dabei den Rahmen der vorliegenden Erfindung verläßt.

[0061] Die vorliegende Erfindung wird anhand des nachfolgenden Ausführungsbeispiels veranschaulicht, welches die vorliegende Erfindung jedoch keinesfalls beschränken soll.

Ausführungsbeispiel

[0062] Ein Zylinder aus G-AlSi12MgCuNi mit einem Durchmesser von 40 mm und einer Länge von 60 mm wird auf der Mantelfläche mit einem Nd:YAG-Laser (Wellenlänge: 1.064 nm) behandelt. Die Leistungsdichte am Fußpunkt des Laserstrahls ist mit 10⁶ W/cm² eingestellt. Der Zylinder ist in eine Vorrichtung eingespannt und wird mit 6 U/min gedreht. Die Mantelfläche des Zylinders wird unter Rotation des Zylinders und gleichzeitigem Axialvorschub des Lasers systematisch abgerastert, wobei der Überlappungsgrad der Laserspuren 30 % beträgt. [0063] Die Sauerstoffzufuhr (Atmosphäre: reiner Sauerstoff) erfolgt über eine Düse koaxial mit dem Laserstrahl in einem Winkel von 60°. Der Abstand der Düse

strom von 15 1/min verwendet.

[0064] In einem Querschliff, welcher den Figurendarstellungen gemäß Fig. 1 und 2 entspricht, wird folgender Schichtaufbau auf dem beschichteten Zylinder bestimmt:

vom Fußpunkt des auftreffenden Laserstrahls beträgt 20

mm. Als Gas wird reiner Sauerstoff mit einem Volumen-

- Obere Schicht: Zusammensetzung Korund (α -Al₂O₃) >90 %, Vickers-Härte (HV): (2.032 \pm 88) HV (0,01), Dicke: (10 \pm 2) μ m
- Unterliegende Umschmelzschicht: Feinkörniges Gefüge, Vickers-Härte (HV): 180 HV, Dicke: ca. 200 μm
- Grundwerkstoff: Grobkörniges Gefüge, Vickers-Härte (HV): 80 HV

15

25

30

35

40

45

Patentansprüche

 Verfahren zur Erzeugung von Verschleißschutzschichten auf Werkstoffen von sperrschichtbildenden Metallen, insbesondere Aluminium, Magnesium und Titan sowie deren Legierungen und Mischungen, bevorzugt Aluminium oder dessen Legierungen, mittels Laserbehandlung,

dadurch gekennzeichnet,

daß die Werkstoffoberfläche in Gegenwart einer sauerstoffhaltigen Atmosphäre einer Laserbestrahlung ausgesetzt wird derart, daß die obere (äußere) Schicht der Werkstoffoberfläche mit dem Sauerstoff zu einem Oxid des Werkstoffinetalls, vorzugsweise Aluminiumoxid, reagiert und die darunterliegende Schicht des Werkstoffs ohne mit dem Sauerstoff zu reagieren umgeschmolzen wird.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die erzeugte Verschleißschutzschicht ein Mehrschichtengefüge, insbesondere ein zweischichtiges Schichtengefüge, umfaßt, wobei das Mehrschichtengefüge die obere (äußere) Oxidschicht des Werkstoffmetalls und die an die obere (äußere) Oxidschicht angrenzende, unter der Oxidschicht liegende Schicht des umgeschmolzenen Werkstoffs (Umschmelzschicht), unterhalb derer die hieran angrenzende Schicht des Werkstoffs angeordnet ist, umfaßt.
- Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß die Werkstoffoberfläche vor der Erzeugung der Verschleißschutzschicht einem Umschmelzen, insbesondere gleichermaßen mittels Laserbehandlung, bevorzugt unter inerten Bedingungen, unterzogen worden ist und/ oder daß als Werkstoffmetall Aluminium oder eine Aluminiumlegierung eingesetzt wird und als obere (äußere) Schicht eine Aluminiumoxidschicht (Al₂O₃-Schicht) resultiert.

 Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß als Werkstoff ein Druckguß oder Guß, insbesondere ein Aluminiumdruckguß oder Aluminiumguß, eingesetzt wird, insbesondere wobei der Druckguß oder Guß, insbesondere Aluminiumdruckguß oder Aluminiumguß, grobkörnig ist und gegebenenfalls vor der Erzeugung der Verschleißschutzschicht einem Umschmelzen, insbesondere gleichermaßen mittels Laserbehandlung, unterzogen worden ist.

5. Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß ein Laser mit einer Wellenlänge im Bereich von 700 bis 1.200 nm, insbesondere 800 bis 1.100 nm, eingesetzt wird und/ oder daß als Laser ein nichtgepulster Diodenlaser oder ein Nd:YAG-Laser, insbesondere jeweils mit einer Wellenlänge im Bereich von 800 bis 1.100 nm, eingesetzt wird.

6. Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß die Laserbehandlung derart durchgeführt wird, insbesondere die mittels Laserbestrahlung einwirkende und/oder eingestrahlte Energie derart bemessen wird, daß die Reaktionstemperatur $T_{Reaktion}$ an der Werkstoffoberfläche mindestens 1.000 °C beträgt ($T_{Reaktion} \geq 1.000$ °C), und/oder daß die eingesetzte Leistungsdichte des Lasers im Bereich von 10^4 bis 10^8 W/cm², insbesondere im Bereich von 10^5 bis 10^7 W/cm², vorzugsweise mit etwa 10^6 W/cm², gewählt wird.

20 **7.** Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß die sauerstoffhaltige Atmosphäre reinen Sauerstoff umfaßt oder ein Gasgemisch aus Sauerstoff mit mindestens einem unter Reaktionsbedingungen nichtreaktiven, inerten Gas, vorzugsweise einem Edelgas, umfaßt und/oder daß die sauerstoffhaltige Atmosphäre keinen Stickstoff und/oder kein unter Reaktionsbedingungen Stickstoff generierendes Gas enthält.

8. Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß die erzeugte Verschleißschutzschicht eine Gesamtdicke von 50 bis 350 μm , insbesondere 75 bis 300 μm , vorzugsweise 100 bis 250 μm , aufweist und/oder die obere (äußere) Schicht, insbesondere Aluminiumoxidschicht (Al $_2$ O $_3$ -Schicht), eine Schichtdicke von 1 bis 50 μm , insbesondere 2 bis 30 μm , vorzugsweise 3 bis 20 μm , aufweist.

9. Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß die obere (äußere) Schicht, insbesondere Aluminiumoxidschicht (Al₂O₃-Schicht), eine Vickers-Härte (HV) von mindestens 1.000 HV, insbesondere mindestens 1.500 HV, vorzugsweise mindestens 2.000 HV, aufweist.

 Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß die obere (äußere) Schicht, insbesondere Aluminiumoxidschicht (Al $_2$ O $_3$ -Schicht), eine Rauheit (Rauhtiefe) R $_a \le 0.5$ μ m, insbesondere ≤ 0.4 μ m, vorzugsweise ≤ 0.3 μ m, aufweist.

11. Verfahren nach einem oder mehreren der vorange-

8

20

30

35

40

45

50

55

henden Ansprüche,

dadurch gekennzeichnet, daß die obere (äußere) Schicht eine Aluminiumoxidschicht (Al $_2$ O $_3$ -Schicht) ist und zu mindestens 60 %, vorzugsweise zu mindestens 80 %, besonders bevorzugt zu mehr als 90 %, aus Korund (α -Al $_2$ O $_3$) besteht und/oder daß im Fall von siliziumhaltigen Aluminiumlegierungen als Werkstoffgrundstoff die obere (äußere) Schicht außerdem bis zu 10 %, insbesondere bis zu 20 %, vorzugsweise bis zu 30 %, Siliziumdioxid (SiO $_2$), insbesondere in der Form von Mullit, enthält.

12. Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß die unter der oberen (äußeren) Oxidschicht, insbesondere Al_2O_3 -Schicht, angeordnete Umschmelzschicht eine Dicke von 50 bis 300 μ m, insbesondere 75 bis 250 μ m, vorzugsweise 100 bis 200 μ m, aufweist.

 Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß die unter der oberen (äußeren) Oxidschicht, insbesondere Al_2O_3 -Schicht, angeordnete Umschmelzschicht eine Vikkers-Härte (HV) ≥ 150 HV, insbesondere ≥ 200 HV, aufweist und/oder daß die unter der oberen (äußeren) Oxidschicht, insbesondere Al_2O_3 -Schicht, angeordnete Umschmelzschicht eine Vickers-Härte (HV) aufweist, die größer als die Vickers-Härte (HV) der unterliegenden Schicht des Grundwerkstoffs ist.

 Verfahren nach einem oder mehreren der vorangehenden Ansprüche.

dadurch gekennzeichnet, daß die unter der oberen (äußeren) Oxidschicht, insbesondere Al_2O_3 -Schicht, angeordnete Umschmelzschicht feindispers und/oder feinkörnig ist, insbesondere mit einer Korngröße < 1 μ m, vorzugsweise < 0,5 μ m.

 Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß der unter der Umschmelzschicht liegende Grundwerkstoff grobkörnig und/oder grobdispers ist, insbesondere mit einer Korngröße > 10 μ m, vorzugsweise > 20 μ m, und/oder daß der unter der Umschmelzschicht liegende Grundwerkstoff eine Vickers-Härte (HV) von bis zu 150 HV, insbesondere im Bereich von 50 bis 150 HV, vorzugsweise 75 bis 125 HV, aufweist.

 Verfahren nach einem oder mehreren der vorangehenden Ansprüche,

dadurch gekennzeichnet, daß das Verfahren mehrstufig durchgeführt wird, wobei zunächst in einem ersten Verfahrensschritt ein bloßes Umschmelzen der Werkstoffoberfläche, vorzugsweise im oberflächennahen Bereich, durchgeführt wird und nach-

folgend in einem zweiten Verfahrensschritt eine Korund- oder Korund/Mullit-Deckschicht erzeugt und/ oder aufgebracht wird, insbesondere wobei die Verfahrensschritte nacheinander und/oder mit verschiedenen Lasertypen durchgeführt werden.

- 17. Anwendung des Verfahrens gemäß den vorangehenden Ansprüchen zur Erzeugung von Verschleißschutzschichten auf Erzeugnissen des Maschinenbaus, insbesondere des Automobilbaus, vorzugsweise für Komponenten von Verbrennungsmotoren, insbesondere Zylinder, Zylinderlaufbahnen, Kolben, Nockenwellen, Tassenstößel, Ventile, Lagerstellen an Pleueln oder dergleichen.
- 18. Anwendung des Verfahrens gemäß den vorangehenden Ansprüchen zur Erzeugung von Verschleißschutzschichten auf Kolben von Verbrennungsmotoren, insbesondere für deren zumindest partielle Beschichtung, vorzugsweise mindestens im Bereich der obersten Ringnut der Kolben.
- 19. Anwendung des Verfahrens gemäß den vorangehenden Ansprüchen zur Erzeugung von Verschleißschutzschichten auf Erzeugnissen der Medizin und Medizintechnik.
- 20. Werkstoffe von sperrschichtbildenden Metallen, insbesondere Aluminium, Magnesium und Titan sowie deren Legierungen und Mischungen, bevorzugt Aluminium oder dessen Legierungen, deren Oberfläche mit einer Verschleißschutzschicht versehen ist, erhältlich nach dem Verfahren gemäß den vorangehenden Ansprüchen.
- 21. Werkstoffe von sperrschichtbildenden Metallen, insbesondere Aluminium, Magnesium und Titan sowie deren Legierungen und Mischungen, bevorzugt Aluminium oder dessen Legierungen, deren Oberfläche mit einer mittels Laserbehandlung in Gegenwart einer sauerstoffhaltigen Atmosphäre erzeugten Verschleißschutzschicht versehen ist,

dadurch gekennzeichnet,

daß die Verschleißschutzschicht mehrschichtig, insbesondere zweischichtig, aufgebaut ist und eine obere (äußere) Schicht und eine darunterliegende Schicht umfaßt, wobei die obere (äußere) Schicht der Werkstoffoberfläche eine Oxidschicht des Werkstoffinetalls, vorzugsweise Aluminiumoxid, umfaßt oder ist und die darunterliegende Schicht eine unreagierte, umgeschmolzene Schicht des Werkstoffs umfaßt oder ist.

22. Werkstoffe nach Anspruch 20 oder 21, dadurch gekennzeichnet, daß die erzeugte Verschleißschutzschicht ein Mehrschichtengefüge, insbesondere ein zweischichtiges Schichtengefüge, umfaßt, wobei das Mehrschichtengefüge die obere (äußere) Oxidschicht des Werkstoffmetalls und die an die obere (äußere) Oxidschicht angrenzende, unter der Oxidschicht liegende Schicht des umgeschmolzenen Werkstoffs (Umschmelzschicht), unterhalb derer die hieran angrenzende Schicht des Werkstoffs angeordnet ist, umfaßt.

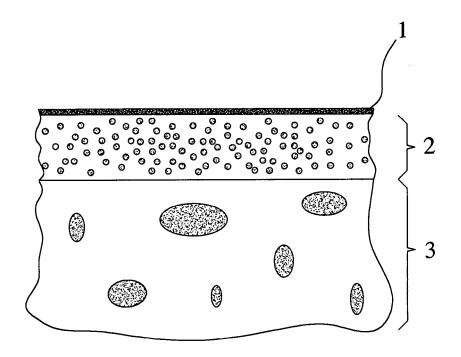


Fig. 1

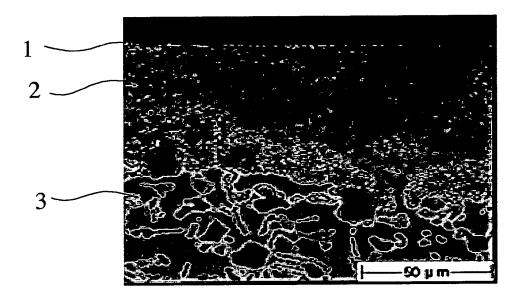


Fig. 2

EP 1 921 177 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• EP 0545230 A [0002]

DE 10202184 C1 [0004] [0005] [0007]

In der Beschreibung aufgeführte Nicht-Patentliteratur

• **J. BARNIKEL et al.** Nitrieren von Aluminiumlegierungen mit UV-Laserstrahlung. *Zeitschrift HTM 52*, 1997, vol. 2, 91-93 [0004]

Laser und Optoelektronik, 1997, vol. 29 (4), 48-52 [0008]