[0001] The invention relates to an anchor for consolidating non-cohesive rock layers or
for connecting them to solid rock which anchor comprises an anchor bar having a rock
end and an opposite bar end, a thread, anchor nut and domed plate arranged at the
opposite bar end and a sheathing tube surrounding the anchor bar at a distance therefrom
and extending roughly as far as the rock end wherein the sheathing tube may be filled
from the bar end with grout bonding material to such an extent that the cavity between
the anchor bar and the inner side of the sheathing tube and also the jacket space
between the outer wall and the drill hole wall are filled with the grout bonding material.
[0002] Such an anchor is known in principle from
DE 693 17 784 T2. In the case of this known anchor construction, it is pointed out that tubular anchors
with an expansion bushing were already known beforehand, but that it is more advantageous
on cost grounds and also for reasons of statics to use anchor bars in which the additional
protective jacket is introduced by grout bonding material in such a way that the anchor
bar is then completely sheathed by the grout bonding material. To this end, a sheathing
tube is used, which is provided with a special anchor head, which makes it possible
to pump grout bonding material down the anchor bar as far as the expansion bushing,
in order then to divert it and return it to the drill hole mouth. This makes it possible
to fill the drill hole completely with the anchor bar. In order to be able to guide
the grout bonding material purposefully as described, the upper end of the sheathing
tube is connected to a so-called supporting element, which is of ball-shaped or spherical
construction and comprises a hole through which the mortar or grout bonding material
may be pumped in in such a way that it arrives first of all in the cavity between
anchor bar and sheathing tube inner side, in order then also to fill the remaining
jacket space between the outer wall of the sheathing tube and the drill hole wall
after deflection. This special construction requires a special embodiment of the so-called
domed plate, in that the latter consists on the one hand of the so-called supporting
element and on the other hand of the so-called flange part, the supporting element
also being known as a pressure ball. This pressure ball is pressed against the flange
part by the anchor nut, in order to apply the necessary forces on activation of the
expansion anchor. A disadvantage is that this now two-part domed plate is doubly weakened,
i.e. on the one hand by its annular, relatively flat construction and the connection
with the supporting element, also known as a pressure ball, and on the other hand
by this pressure ball itself, which is weakened by the grouting hole and moreover
in that it is constructed so as to be displaceable on the thread of the sheathing
tube. For this reason, it is difficult permanently to maintain the necessary stress
forces.
[0003] The object of the invention is therefore to provide an anchor with a conventional
commercial domed plate absorbing high stress forces, which anchor simultaneously ensures
purposeful introduction of the grout bonding material and reliable sheathing of the
anchor bar.
[0004] The object is achieved according to the invention in that the bar end is provided
with a connecting tube, which comprises an external thread for the anchor nut and
a distributor head extending into the drill hole in the rock, which distributor head
is constructed with a connection to the anchor bar and to the sheathing tube and with
radial bores extending as far as the internal channel.
[0005] This connecting tube is in a way an extension of the actual anchor bar and needs
to be of correspondingly stable construction. When the anchor is stressed, this connecting
tube is simply incorporated into the stressing process in that the anchor nut is turned
on the external thread of the connecting tube towards the domed plate. This domed
plate comprises a conventional commercial, stable domed plate which effectively transmits
forces, the so-called connecting tube also being used simultaneously as a feed member
for the grout bonding material, in that the internal channel as such conveys the grout
bonding material outwards via the radial bores and into the cavity between anchor
bar and sheathing tube inner side. An advantage is the possibility of a reliable connection,
since the corresponding end of the connecting tube has an external thread, as mentioned
above, and thus even allows connection of an appropriate hose connector, such that
the grout bonding material may be forced with any desired pressure into the drill
hole. As is conventional, this grout bonding material is then diverted at the expansion
element and then forced through the jacket space between outer wall and drill hole
wall back into the cavity under the domed plate, such that reliable sheathing of the
anchor bar is ensured and thus also effective corrosion protection over the entire
length. If the cavity under the domed plate is also filled, the grout bonding material
penetrates to the outside, such that it is clearly obvious to the user that the anchor
bar is definitely additionally fixed and protected.
[0006] According to the invention, there is provided an anchor as defined in claim 1. According
to the invention, there is also provided an anchor as defined in claim 11.
[0007] The anchor according to the invention is particularly for use in underground mining
and tunnelling or as a permanent anchor in geotechnics
[0008] According to the invention, there is further provided an anchor for consolidating
non-cohesive rock layers or for connecting them to solid rock, in particular for use
in underground mining and tunnelling or as a permanent anchor in geotechnics, consisting
of an anchor bar with expansion element attached at the rock end, a thread, anchor
nut and domed plate arranged at the opposite bar end and a sheathing tube surrounding
the anchor bar at a distance therefrom and extending roughly as far as the expansion
element, which sheathing tube may be filled from the bar end with grout bonding material
to such an extent that the cavity between the anchor bar and the inner side of the
sheathing tube and also the jacket space between the outer wall and the drill hole
wall are filled with the grout bonding material, characterised in that the bar end
is provided with a connecting tube, comprising an external thread for the anchor nut
and a distributor head extending into the drill hole in the rock, which distributor
head is constructed with a connection to the anchor bar and to the sheathing tube
as well as with radial bores extending as far as the internal channel.
[0009] According to the invention, there is also provided an anchor for consolidating non-cohesive
rock layers or for connecting them to solid rock, in particular for use in underground
mining and tunnelling, consisting of an anchor bar with expansion element attached
at the rock end, a thread, anchor nut and domed plate arranged at the opposite bar
end and a sheathing tube surrounding the anchor bar at a distance therefrom and extending
roughly as far as the expansion element, which sheathing tube may be filled from the
bar end with grout bonding material to such an extent that the cavity between the
anchor bar and the inner side of the sheathing tube and also the jacket space between
the outer wall and the drill hole wall are filled with the grout bonding material,
characterised in that the sheathing tube comprises a top tube, which is constructed
to extend as far as into the cavity of the domed plate and there comprises a separating
head, which is constructed to separate the upper subchamber from the lower subchamber
of the cavity, wherein the upper subchamber comprises the connection for the pump
hose and is open towards the internal space of the sheathing tube, while the lower
subchamber is connected to the annular space around the sheathing tube.
[0010] Secure fixing of the connecting tube to the bar end on the one hand and also to the
sheathing tube is ensured in that the distributor head comprises an external connection
thread for the sheathing tube and an internal thread for the anchor bar, wherein the
external connection thread is constructed above and the internal thread below the
radial bores. This special arrangement of external and internal thread ensures that
the above-described cavity remains between the sheathing tube and the anchor bar,
which cavity has then to be filled with the grout bonding material. The anchor bar
itself is screwed into the distributor head, while the sheathing tube is screwed on
externally. At the same time, it is ensured by the special outlet area of the radial
bores that the pumped-in grout bonding material is also reliably forced through the
internal channel and then the radial bores into the cavity provided.
[0011] Uniform, reliable guidance of the grout bonding material through the distributor
head is further ensured in that the radial bores are constructed so as to extend obliquely
towards the connecting tube end, the bore openings thereof being located somewhat
below the thread end of the external connection thread. The grout bonding material
is thus immediately directed in the right direction, and cannot anyway escape undesirably
upwards because the external connection thread by means of which the sheathing tube
and the distributor head are effectively connected together prevents this from happening.
[0012] To ensure that the cavity between anchor bar and sheathing tube inner side is of
adequate size, the external connection thread takes the form of a coarse thread, wherein
of course the corresponding thread associated with the sheathing tube takes the same
form.
[0013] Backing up inside the distributor head or the entire connecting tube is prevented
in that the diameters of the oblique radial bores are jointly greater than the diameter
of the internal channel inside the connecting tube. Conventionally, two such radial
bores are provided, without the stability of the connecting tube or of the distributor
head being impaired thereby, but it is also feasible to manage with one such radial
bore or indeed with three.
[0014] The necessary forces in particular on stressing of the anchor bar are transmitted
or applied in that the connecting tube consists of a material corresponding to the
material of the anchor bar. In this way, it is also possible to provide the required
threads, so as to ensure a sufficiently secure connection between connecting tube
and anchor bar on the one hand, as well as between connecting tube and sheathing tube.
However, the sheathing tube consists as a rule of plastics, both to simplify handling
of the overall system but also because said sheathing tube is subsequently completely
surrounded by the grout bonding material and thus fits optimally into the overall
system.
[0015] It has been explained above that the particular construction of the external connection
thread ensures that grout bonding material cannot flow in the wrong direction, i.e.
here in the direction of the drill hole mouth. By the same token, however, it is also
ensured that the grout bonding material cannot flow through the internal thread, by
means of which the anchor bar and the connecting tube are connected, but rather in
directed manner through the radial bores, in that the internal channel is constructed
to determine a sealing surface relative to the anchor bar at the point of transition
to the internal thread. The corresponding shaping ensures a satisfactory sealing surface,
and ensures that the correspondingly prestressed anchor or the anchor bar may also
permanently fulfil its function.
[0016] In the present solution, the grout bonding material is introduced from above into
the connecting tube and the internal channel thereof. It has already been indicated
that a favourable option is provided for fixing the pump hose to the connecting tube;
in detail, the end piece, comprising the external thread, of the connecting tube is
constructed to constitute a connection for the pump hose. This means that the internal
channel extends axially inside the end piece and thus also the entire connecting tube,
such that in this way it is also possible to fix the hose or indeed some other connector
to the top of the end piece in such a way that the grout bonding material may also
be introduced with the required pressure without any risk of the pump hose connection
coming undone and contamination occurring.
[0017] It is advantageous for the cavity under the domed plate to be filled completely with
grout bonding material when the grouting process is terminated. This is achieved in
particular in that the domed plate comprises a flat edge adjoining the dome thereof.
Thus, a certain seal distance is predetermined, depending on the length or width of
the flat edge. Only when the grout bonding material exits at the outer edge does the
operating team know that they can terminate the grouting process.
[0018] Optimum integration of the sheathing tube into the grout bonding material is promoted
in that the sheathing tube comprises, distributed over the length thereof, centring
cams or centring flanks on the outer wall. At the same time, these provide protection
against extraction, but above all ensure that the sheathing tube at all points observes
a distance from the drill hole wall which ensures the necessary jacket space, via
which the grout bonding material may flow in the direction of the drill hole mouth.
[0019] Another option for working with a stable domed plate and thus also wholly fulfilling
the object addressed is one in which the sheathing tube comprises a top tube, which
is constructed to extend as far as into the cavity of the domed plate and there comprises
a separating head, which is constructed to separate the upper subchamber of the cavity
from the lower subchamber, wherein the upper subchamber comprises the connection for
the pump hose and is open towards the internal space of the sheathing tube while the
lower subchamber is connected to the annular space or jacket space around the sheathing
tube.
[0020] In the solution described, it is also advantageously possible to work with a stable,
conventional commercial domed plate. As before, the domed plate is stressed via the
correspondingly constructed anchor nut if the anchor nut is screwed, to be precise
in the direction of the bottom of the drill hole, on the thread of the anchor bar,
which is withdrawn appropriately far out of the drill hole. Separation of the cavity
under the domed plate into the upper and the lower subchambers makes it possible to
force the grout bonding material through the wall of the domed plate into the upper
subchamber, whence the grout bonding material flows to the internal space of the sheathing
tube, so as then to flow, after deflection, via the jacket space or annular space
into the lower subchamber and thence to the outside, so as to signal to the operating
team that the grouting process may be terminated. An advantage of this solution is
that the anchor bar itself remains unchanged, i.e. does not have to be provided with
an extension. In return, however, the domed plate is weakened, albeit only slightly,
by the bore which has to be introduced into its wall for filling the upper subchamber
with grout bonding material and thus initiating the pumping process or grouting process.
[0021] Precise guidance of the grout bonding material into the internal space of the cavity
and then back out via the annular space is made possible in that the top tube and
the sheathing tube have a corresponding screw connection. This means that the corresponding
internal space or indeed the cavity between anchor bar and sheathing tube inner side
is extended up as far as the separating head, such that the grout bonding material
is conveyed correspondingly reliably without influencing or indeed blocking the upward
or downward path in any way. It is also feasible for the separating head to be constructed
so as to form the upper end of the sheathing tube, i.e. for the sheathing tube to
extend correspondingly far upwards, such that the top tube actually consists merely
of the separating head.
[0022] To ensure the necessary mobility in the anchor head area, the invention provides
for the separating head to comprise an annular ball part, which may be swivelled to
a limited degree in a bearing formed of a supporting ring and annular separating disc.
Thus no rigid structure is formed which would make application to the not always flat
rock wall more difficult. Instead, the domed plate and the annular separating disc
may be so swivelled that reliable application against the rock wall is always achieved.
[0023] As has already been explained above, the actual anchor bar has to be connected directly
to the domed plate or the domed plate is then stressed accordingly by means of the
anchor nut on screwing on the anchor bar. Hence, the top tube does not need to absorb
forces or, if it does, then only to a very insignificant degree, such that it is advantageous
for the top tube with the separating head or the separating head alone to be made
from polyethylene.
[0024] In order to separate the upper and the lower subchamber effectively and reliably
from one another, provision is made for the annular separating disc to be provided
at the outer edge with a sealing ring or to comprise a sealing bevel. It is also possible
to connect, preferably weld, the annular separating disc to the domed plate. These
solutions ensure reliable guidance of the grout bonding material via the upper subchamber
and the lower subchamber, such that, as mentioned above, it may be straightforwardly
and reliably detected when the anchor or the anchor bar is completely encapsulated.
[0025] This reliable detection is promoted in that the domed plate comprises a flat edge
adjoining its dome and comprises a bore in the dome serving as a connection. This
bore ensures secure connection of the pump hose, so ensuring overall a problem-free
filling process.
[0026] The necessary jacket space between outer wall and drill hole wall is also reliably
achieved in this solution in that the sheathing tube is provided on the outer wall
with centring cams distributed over its length.
[0027] The invention is distinguished in particular in that an anchor, specifically in the
form of the known expansion anchor, may be realised with a grout bonding material
sheathing, which fills the drill hole around the anchor bar completely, such that
the frictional connection to the rock is achieved not only via the expansion anchor
but also by the "bonded anchor". It is advantageous in particular that use may be
made of a conventional domed plate, which ensures adequate transmission of the stress
forces and ensures permanently reliable seating of the anchor. Thus, double action
of such an anchor is ensured, said anchor as such also having the additional advantage
that relatively cheap auxiliary means may be used for realisation purposes.
[0028] Further details and advantages of the subject matter of the invention will be revealed
by the following description of the attached drawings, which show a preferred exemplary
embodiment with the details and individual components necessary therefor. In the Figures:
- Figure 1
- is a partially sectional view of an anchor stressed in a drill hole, with grout bonding
material,
- Figure 2
- is an enlarged reproduction of the drill hole mouth area,
- Figure 3
- shows another embodiment of the anchor with top tube stressed in a drill hole,
- Figure 4
- is an enlarged reproduction of the drill hole mouth area,
- Figure 5
- is a separate view of the so-called annular separating disc; and
- Figure 6
- shows another embodiment of the edge area of this annular separating disc.
[0029] Figure 1 shows an anchor 1, which has been introduced into the drill hole 3 in order
to stabilise and consolidate the surrounding rock 2.
[0030] The anchor 1 consists of the up to 8 m long anchor bar, the expansion element 5 arranged
at the bottom of the drill hole and the thread 8 with anchor nut 9 and domed plate
10 provided at the upper end. In an alternative embodiment of the anchor 1, it does
not include the expansion element 5. The anchor bar has a rock end 5A and an opposite
end 7. Tightening of the anchor nut 9 by means of the thread 8 towards the domed plate
10 and the surrounding rock 2 influences the expansion element 5 arranged at the bar
tip in such a way that it expands towards the surrounding drill hole wall 19, such
that the rock detritus located therebetween is compressed and consolidated. After
this stressing process, the anchor bar 4 is sheathed with a grout bonding material
12, in order in this way to achieve bonding with the drill hole wall 19 and at the
same time to achieve protection of the anchor bar 4 against corrosion.
[0031] The end 7 of the anchor bar 4 is connected to a connecting tube 22, which is included
in the stressing process in the embodiment shown here in Figure 1 and Figure 2. To
this end, the connecting tube 22 comprises an external thread 23, on which the anchor
nut 9 may be displaced. Moreover, a distributor head 24 adjoins the connecting tube
22 or is a part thereof. The distributor head 24 comprises a connection 25 for the
anchor bar 4 and a further connection 26 for the sheathing tube 11. The sheathing
tube 11 is necessary in order to allow a channel for pumping the grout bonding material
12 in the direction of the expansion element 5 (or in the direction of rock end 5A
if the expansion element 5 is not present) and thence back in the direction of the
domed plate 10.
[0032] During grouting, as indicated by arrows, the grout bonding material 12 is firstly
forced through the connecting tube 22, through the internal channel 29 therein, so
as then to reach, via the radial bores 27, 28, the cavity 15 between anchor bar 4
and sheathing tube inner side 16. In the area of the expansion element 5 (or in the
area of rock end 5A if the expansion element 5 is not present), the grout bonding
material 12 is then diverted, so as to flow back via the jacket space 17 between outer
wall 18 and drill hole wall 19 in the direction of the domed plate 10. It then fills
the cavity under the domed plate 10, so as then to flow along the rock wall 13, such
that the operating team may detect that the grouting process may now be terminated.
[0033] An enlarged reproduction of the anchor bar head is shown in Figure 2. This clearly
shows the connecting tube 22, which is connected to the anchor bar 4 and also the
domed plate 10. To this end, the connecting tube 22 has an external connection thread
32, which matches the corresponding thread at the upper end of the sheathing tube
11. The internal thread 33 provided in the distributor head 24 serves for connection
to the anchor bar 4. This internal thread 33 develops in the area of the distributor
head 24 into two radial bores 27, 28, wherein the bore opening 34 thereof is located
between the external connection thread 32 or the thread end 35 and the transition
36 between distributor head 24 and anchor bar 4 in such a way that an annular cavity
15 forms, which receives grout bonding material 12 from the internal channel 29 and
the radial bores 27, 28. In the area of the transition 36, a sealing surface 37 is
determined, which allows effective sealing relative to the end of the anchor bar 4.
[0034] At the end piece 38 of the connecting tube 22 there is provided the anchor nut 9,
which ensures that the domed plate 10 is pressed against the rock wall 13 and thus
ensures that the anchor bar 4 is stressed towards the expansion element 5. The internal
channel 29 comprises a connection 39 at the connecting tube end 40 for the pump hose,
not shown. The thread 8 for the anchor nut 9 may advantageously also be used to secure
the pump hose effectively.
[0035] The domed plate 10 is a conventional commercial domed plate, which comprises a corresponding
dome 42 and a flat edge 43.
[0036] As has already been mentioned, the grouting material 12 is conveyed via the connection
39 into the internal channel 29, so as then to arrive, via the radial bores 27, 28,
in the cavity between sheathing tube inner side 16 and anchor bar 4. Here the grout
bonding material 12 flows on as far as the expansion element 5 (or as far as rock
end 5A if the expansion element 5 is not present), where it is diverted and then flows
back upwards along the outer wall 44 through the jacket space designated 17. The outer
wall 44 of the sheathing tube 11 is provided with centring cams 45 or centring flanks
46 distributed over its length, so as always effectively to hold open a sufficiently
large jacket space 17 and to ensure that the grout bonding material 12 ultimately
also effectively fills the cavity 51 under the dome 42 of the domed plate 10.
[0037] Guidance of the grout bonding material 12 is also realised in the construction according
to Figures 3 to 6 in such a way that weakening of the domed plate 10 does not occur.
Moreover, reliable guidance of the grout bonding material 12 is realised by the special
construction of the top tube 50 used. In the embodiment portrayed in Figures 3 to
6, the actual anchor bar 4 is constructed so as to protrude beyond the rock wall 13,
wherein the cavity 51 under the dome 42 of the domed plate 10 is subdivided by means
of a separating head 52 into an upper subchamber 53 and a lower subchamber 54. In
this way, the grout bonding material 12 introduced via the bore 68 in the wall of
the domed plate 10 may flow via the upper subchamber 53 into the internal space 55
and then be deflected thereby so as to flow back through the annular space 56 into
the lower subchamber 54. Complete sheathing of the anchor bar 4 is ensured in this
way. The top tube 50 has a screw connection 58 for connection of the sheathing tube
11, such that this top tube 50 in practice constitutes an extension of the sheathing
tube 11. At the upper end this top tube 50 widens out into an annular ball part 59,
while a supporting ring 61 and an annular separating disc 62 form a bearing 60, so
as to allow a swivel movement. The outer edge 64 of the annular separating disc 62
is generally welded to the inside of the dome 42, such that the entire domed plate
10 may be swivelled about the corresponding bearing 60 or the annular ball part 59.
However, it is also feasible to provide the outer edge 64 with a sealing ring 65 or
a sealing bevel 66, so as to allow an effective seal between upper subchamber 53 and
lower subchamber 54.
[0038] Both solutions have therefore proven advantageous because, in the case of an optimum
embodiment of a stressed anchor, the latter may in practice be combined with a bonded
anchor, by sheathing it completely through skilful guidance of the grout bonding material
12 and connecting it to the drill hole wall 19.
[0039] All the stated features, including those revealed solely by the drawings, are regarded
as essential to be invention both alone and in combination.
1. An anchor for consolidating non-cohesive rock layers which anchor comprises an anchor
bar (4) with a rock end (5A), a thread (8), anchor nut (9) and domed plate (10) arranged
at opposite bar end (7) and a sheathing tube (11) surrounding the anchor bar (4) at
a distance therefrom and extending roughly as far as the rock end (5A), which sheathing
tube (11) may be filled from the bar end (7) with grout bonding material (12) to such
an extent that the cavity (15) between the anchor bar (4) and the inner side (16)
of the sheathing tube and also the jacket space (17) between the outer wall (18) and
the drill hole wall (19) are filled with the grout bonding material (12),
characterised in that
the bar end (7) is provided with a connecting tube (22), comprising an external thread
(23) for the anchor nut (9) and a distributor head (24) extending into the drill hole
(3) in the rock (2), which distributor head (24) is constructed with a connection
(25, 26) to the anchor bar (4) and to the sheathing tube (11) as well as with radial
bores (27, 28) extending as far as the internal channel (29).
2. An anchor according to claim 1,
characterised in that
the distributor head (24) comprises an external connection thread (32) for the sheathing
tube (11) and an internal thread (33) for the anchor bar (4), the external connection
thread (32) being provided above and the internal thread (33) below the radial bores
(27, 28).
3. An anchor according to claim 2,
characterised in that
the radial bores (27, 28) are constructed so as to extend obliquely relative to the
connecting tube end (40), the bore openings (24) being located somewhat below the
thread end (35) of the external connection thread (32).
4. An anchor according to claim 2 or claim 3,
characterised in that
the external connection thread (32) takes the form of a coarse thread.
5. An anchor according to any one of the preceding claims,
characterised in that
the diameters of the oblique radial bores (27, 28) are jointly greater than the diameter
of the internal channel (29).
6. An anchor according to any one of the preceding claims,
characterised in that
the connecting tube (22) consists of a material corresponding to the material of the
anchor bar (4).
7. An anchor according to any one of the preceding claims,
characterised in that
the internal channel (29) is constructed so as to determine a sealing surface (37)
relative to the anchor bar (4) at the point of transition (36) to the internal thread
(33).
8. An anchor according to any one of the preceding claims,
characterised in that
the end piece (38), comprising the external thread (23), of the connecting tube (22)
is constructed to constitute a connection (39) for the pump hose.
9. An anchor according to any one of the preceding claims,
characterised in that
the domed plate (10) comprises a flat edge (43) adjoining the dome (42) thereof.
10. An anchor according to any one of the preceding claims,
characterised in that
the sheathing tube (11) comprises, distributed over the length thereof, centring cams
(45) or centring flanks (46) on the external wall (44) .
11. An anchor for consolidating non-cohesive rock layers which anchor comprises an anchor
bar (4) with a rock end (5A), a thread (8), anchor nut (9) and domed plate (10) arranged
at opposite bar end (7) and a sheathing tube (11) surrounding the anchor bar (4) at
a distance therefrom and extending roughly as far as the rock end (5A), which sheathing
tube (11) may be filled from the bar end (7) with grout bonding material (12) to such
an extent that the cavity (15) between the anchor bar (4) and the inner side (16)
of the sheathing tube and also the jacket space (17) between the outer wall (18) and
the drill hole wall (19) are filled with the grout bonding material (12),
characterised in that
the sheathing tube (11) comprises a top tube (50), which is constructed to extend
as far as into the cavity (51) of the domed plate (10) and there comprises a separating
head (52), which is constructed to separate the upper subchamber (53) from the lower
subchamber (54) of the cavity (51), wherein the upper subchamber (53) comprises the
connection (39) for the pump hose and is open towards the internal space (55) of the
sheathing tube (11), while the lower subchamber (54) is connected to the annular space
(56) around the sheathing tube (11).
12. An anchor according to claim 11,
characterised in that
the top tube (50) and the sheathing tube (11) have a corresponding screw connection
(58).
13. An anchor according to claim 11,
characterised in that
the separating head (52) is constructed to form the upper end of the sheathing tube
(11).
14. An anchor according to claim 11,
characterised in that
the separating head (52) comprises an annular ball part (59), which may be swivelled
to a limited degree in a bearing (60) formed of a supporting ring (61) and annular
separating disc (62).
15. An anchor according to one or more of claims 11 to 14,
characterised in that
the top tube (50) with the separating head (52) or the separating head (52) are made
of polyethylene.
16. An anchor according to claim 14,
characterised in that
the annular separating disc (62) is provided at the outer edge (64) with a sealing
ring (65) or comprises a sealing bevel (66).
17. An anchor according to claim 11,
characterised in that
the domed plate (10) comprises a flat edge (43) adjoining its dome (42) and comprises
a bore (68) in the dome (42) serving as a connection (39).
18. An anchor according to claim 11,
characterised in that
the sheathing tube (11) is provided on the outer wall (18) with centring cams (45)
distributed over its length.
19. An anchor according to claim 14,
characterised in that
the annular separating disc (62) is connected, preferably welded, to the domed plate
(10).
20. An anchor according to any one of the preceding claims,
characterised in that
it comprises expansion element (5) attached at the rock end (5A).