(19)
(11) EP 1 947 016 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Claims EN

(48) Corrigendum issued on:
25.05.2011 Bulletin 2011/21

(45) Mention of the grant of the patent:
04.08.2010 Bulletin 2010/31

(21) Application number: 07075740.6

(22) Date of filing: 30.08.2007
(51) International Patent Classification (IPC): 
B65D 1/02(2006.01)
B65D 79/00(2006.01)

(54)

Hot-fillable bottle with flex surface

Heiß befüllbare Flasche mit flexibler Oberfläche

Bouteille remplie à chaud comportant une surface flexible


(84) Designated Contracting States:
DE ES FR GB IT

(30) Priority: 18.01.2007 US 654855

(43) Date of publication of application:
23.07.2008 Bulletin 2008/30

(73) Proprietor: BALL CORPORATION
Broomfield, Colorado 80021 (US)

(72) Inventor:
  • Ross, John R.
    Broomfield, Colorado 80021 (US)

(74) Representative: Pfenning, Meinig & Partner GbR 
Patent- und Rechtsanwälte Joachimstaler Strasse 12
10719 Berlin
10719 Berlin (DE)


(56) References cited: : 
US-A- 5 407 086
US-A1- 2003 000 911
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Background of the Invention



    [0001] The present invention relates to blow-molded bottles, typically made of a plastic such as polyethylene terephthalate (PET), useful in containing beverages that are hot-filled into the bottles. The present invention relates particularly to a structure for a surface portion, particularly the shoulder portion, of such bottles useful to at least partially compensate for any post capping vacuum within the bottle.

    [0002] Plastic blow molded bottles intended to be hot-filled have previously been provided with a variety of features intended to at least partially compensate for the post-capping development of a partial vacuum within the bottle upon cooling of the contents. For example, U.S. Patents 5,005,716; 5,503,283; 6,595,380; 6,896,147; 6,942,116; and 7,017,763 disclose blow molded bottles that can be used in hot-fill operations, which include features in the base of the bottle intended to at least partially compensate for the post capping development upon cooling of a partial vacuum. U.S. Patents 5,092,475; 5,141,121; 5,178,289; 5,303,834; 5,704,504; 6,398,052; 6,585,125; 6,698,606; and 7,032,770 disclose blow molded bottles that can be used in hot-fill operations, which include features in the side wall of the bottle intended to at least partially compensate for the post capping development of a partial vacuum. U.S. Patents 5,222,615; 5,762,221; 6,044,996; 6,662,961; and 6,830,158 disclose blow molded bottles that can be used in hot-fill operations, which include features in the shoulder of the bottle intended to at least partially compensate for the post capping development upon cooling of a partial vacuum.

    [0003] U.S. Patents 5,392.937; 5,407,086(on which is based the preamble of appended claim 1); 5,598,941; 5,971,184; 6,554,146; and 6,796,450 disclose blow molded bottles that can be used in hot-fill operations, which include axially rotationally symmetric shoulders between a side wall and a neck of each bottle. The shoulders of these bottles have a circumferentially continuous outwardly extending upper margin adjoining the neck, an outwardly protruding ring immediately above the side wall, and a concave perimeter surface joining the upper margin to the outwardly protruding ring. This shoulder structure is sometimes described as one that is convenient for grasping the bottle, and has been recognized in U.S. Patent 6,016,932 as possibly contributing to poor top load capabilities. There is not been any recognition that such a substantially axially rotationally symmetric concave perimeter surface could be useful in at least partially compensating for the post capping partial vacuum within the bottle.

    [0004] Despite the various features and benefits of the structures of the forgoing disclosures, there remains a need for alternative geometries for bottle that can be hot filled and have a substantially axially rotationally symmetric geometry that can accommodate the post capping development of a partial vacuum within the bottle. There further remains a need for such a bottle having a substantially axially rotationally symmetric geometry that effectively resists ovalization of the sidewall. There is a further need for such a bottle that will uniformly conform to a specified geometry following hot filling so that the bottles will have a uniform appearance at the time of customer selection and purchase.

    Summary of the Invention



    [0005] These several needs are satisfied by a blow-molded bottle according to claim 1, which has a base, a side wall extending upward from the base including a lower sidewall margin and an upper sidewall margin, a shoulder portion extending upward and axially inward above the upper margin of the side wall to a finish defining a opening adapted to accept a closure. The shoulder includes a circumferentially continuous outwardly extending surface adjoining the neck that terminates in an upper peripheral margin. An outwardly protruding ring is located below the upper peripheral margin of the shoulder and above the sidewall upper margin. A flexible concave perimeter surface joins the upper peripheral margin of the shoulder to the outwardly protruding ring. The flexible concave perimeter surface of the shoulder is specially dimensioned to responding to the presence of a vacuum within the bottle by forming linear segments between the upper peripheral margin and the outwardly protruding ring. The linear segments that form as a result of the vacuum within the bottle are separated from each other by concave indented portions that at least partially compensate for the post capping development of a partial vacuum. A flexible concave perimeter surface of the present invention joining an upper peripheral margin to a lower outwardly protruding ring can be included in areas of the bottle other than the shoulder, and more than one such surfaces can be included in a single bottle.

    [0006] The average radius of the vertical mid-point of the concave perimeter surface, measured from the vertical axis, is generally between about 82% and 96% of the average of the two radii defining the upper peripheral margin and the outwardly protruding ring, which are the vertical limits of the concave perimeter surface. The average mid-point radius of the concave surface is generally greater than (3/π) (sin π/3) (R1 + R2), where R1 is the outermost radius of the upper peripheral margin above the concave perimeter surface, and R2 is the radius of the outwardly protruding ring defining the lower margin of the concave perimeter surface. The radius of the vertical mid-point of the concave perimeter surface is generally no more than (6/π) (sin π/6) (R1 + R2). The entire flexible concave perimeter surface can be at a radius greater than either the outwardly extending upper peripheral margin or the outwardly protruding ring, but not both. The development of the linear segments can be assisted by dimensioning the vertical midpoint of the flexible concave perimeter surface so that the vertical midpoint radius measured from the vertical axis varies by between one and five percent at between three and five positions around the concave surface perimeter.

    [0007] The blow molded bottle can include features other than the flexible concave surface to accommodate the post capping development of a vacuum upon cooling. For example, the side wall and the base can include vacuum responsive features such as panels surrounded by flexible rings more or less like those typically found in the prior art. The side wall can also include one or more upper steps or other features defining an upper margin of a label panel and one or more lower steps or other features defining a lower margin of the label panel. The label panel portion of the side wall can include at least one continuous or discontinuous, inwardly indented or outwardly extending hoop ring to inhibit ovalization of the side wall. An inwardly indented ring can be used to join the upper margin of the side wall to the shoulder portion. The radius of the inwardly indented ring measured from the vertical axis of the bottle can be about equal to the average radius of the vertical midpoint of the concave perimeter surface.

    [0008] One feature of the present invention is the use of a vacuum responsive surface that is substantially rotationally symmetric about the axis of the bottle when the bottle is not under a post capping vacuum. When under a post capping vacuum, this substantially rotationally symmetric surface assumes a modified appearance containing a plurality of linear segments conforming to a specified geometry so that, at the time of customer selection and purchase, all bottles of the same construction and filled under similar circumstances can have a uniform appearance.

    [0009] Other features of the present invention and the corresponding advantages of those features will be come apparent from the following discussion of the preferred embodiments of the present invention, exemplifying the best mode of practicing the present invention, which is illustrated in the accompanying drawings. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.

    Brief Description of the Drawings



    [0010] Figure 1 is a side elevation view of a bottle embodying the present invention.

    [0011] Figure 2 is a perspective view of another bottle embodying the present invention.

    [0012] Figure 3 is a side elevation view, partially in section, of another bottle embodying the present invention.

    [0013] Figure 4 is a sectional slice taken along line 4 - 4 in Figure 3 of a bottle of the present invention prior to post capping vacuum deformation.

    [0014] Figure 5 is a diagrammatic view of the shoulder of any of the bottles shown in Figures 1-3 showing the deformations of the shoulder when subjected to post capping vacuum development within the bottle.

    [0015] Figure 6 is a section slice similar to Figure 4 showing the deformation of the shoulder of a first bottle of the present invention when subjected to post capping vacuum development within the bottle.

    [0016] Figure 7 is a section slice similar to Figure 4 showing the deformation of the shoulder of a second bottle of the present invention when subjected to post capping vacuum development within the bottle.

    [0017] Figure 8 is a section slice similar to Figure 4 showing the deformation of the shoulder of a third bottle of the present invention when subjected to post capping vacuum development within the bottle.

    Description of A Preferred Embodiment



    [0018] A. blow-molded bottle 10 is shown in Figure 1 representing a first embodiment of the present invention. The bottle 10 has a base 12 on which the bottle rests on any underlying supporting surface, not shown. A side wall 14 extending upward from a heel portion 16 coupling the base 12 to the side wall 14. The side wall 14 generally includes a lower margin 18 joined integrally to the heel portion 16 and an upper margin 20. The side wall 14, between the lower margin 18 and the upper margin 20, can be generally circularly symmetric about vertical axis Y passing through the center of the bottle 10. The side wall 14 can include a variety of features including features 22 described in detail below that are intended to be responsive to any development of a vacuum within the bottle 10 that might otherwise cause distortion of the sidewall 14. A shoulder portion 24 extends upward and axially inward above the upper margin 20 of the side wall 14 to a neck 26 supporting a finish 28 defining an opening 30, the finish 28 being adapted to accept a closure, not shown. The finish 28 is illustrated to include a helical thread 32 designed to receive a comparably threaded closure, but the finish 28 could include other closure engaging features such as a crown ring suitable for engagement with a conventional metal deformable crown cap or other closure, not shown. The illustrated bottle 10 also includes a support ring 34 at the upper margin of the neck 26 and an engaging ring 36 for engaging a pilfer-indicating ring of a threaded cap.

    [0019] The side wall 14 of the blow-molded bottle 10 can be formed to include a variety of configurations that may include features for intended to compensate in part for the development of any post capping vacuum within the bottle. For example, the container 10 can have the features shown in Figure 1 wherein the side wall 14 has a label mount area 38 bounded generally by a step defining an upper edge 40 and another step defining a lower edge 42. A plurality of generally vertically oriented, parallel vacuum panels 44, are situated in the label mount area 38 with a vertical post 46 separating each adjacent pair of vacuum responsive panels 44 that are intended to flex inwardly to at least partially compensate for the post capping development of a partial vacuum within the bottle 10. An upper ledge 48 and a lower ledge 50 define the vertical ends of each of the vacuum panels 44. The upper ledge 48 is spaced from the upper edge step 40 by a cylindrical surface portion 52. Similarly, the lower ledge 50 is spaced from the lower edge step 42 by a cylindrical surface portion 54. The upper and lower cylindrical surface portions 52 and 54 are of equal radius from the axis Y, and can be employed to receive a label, not shown, within the edges 40 and 42 of the label mount area 38. The upper and lower cylindrical surface portions 52 and 54, taken together with the outer surface of the vertical posts 46, form a substantially continuous surface of constant radius from the axis Y. The vertical post 46 provided between each pair of adjacent vacuum panels 44 can include stiffening ribs, not shown. The posts 46 can have a width that can be between about 5° and 15° of arc measured from the Y axis. At least one indented ring 66 can be situated in the upper cylindrical surface portion 52 between the upper edge step 40 of the label mount area 38 and the upper ledge 48 of the vacuum panels 44. Other indented rings 68 can be situated in the lower cylindrical surface portion 54 between the lower edge step 42 of the label mount area 38 and the lower ledge 50 of the vacuum panels 44. The indented ring 66 and one of the indented rings 68 are shown to be circumferentially continuous, while another of the indented rings 68 is shown to be segmented or circumferentially discontinuous, however the rings can be of the same character or can be positionally swapped from that shown without any substantial change in performance of the bottle 10.

    [0020] An alternative structure for the label mount area 38 of bottle 10 is shown in Figure 2 wherein the sidewall includes a plurality of grooves 70, which can be of varying vertical and radial dimensions and which are separated by panels 72. The upper and lower cylindrical surface portions of the label mount area and the panels 72 between the grooves 70 are generally of equal radius from the axis Y of the bottle 10 when initially formed. Like the first embodiment, a label, not shown, can be applied to the bottle 10 so that the label completely surrounds the bottle. Some modest radially inward movement of the vertical midpoint of each groove ridge portion 74 can also occur, but little or no vertical shortening of the label mount area 38 occurs. As a result, the overall dimensions of the label mount area 38 remain substantially unchanged despite the presence of the vacuum within the bottle 10, yet some modest compensation for that vacuum can occur by virtue of the flexing of each groove 70. The majority of the vacuum compensation is believed to occur in the shoulder area 24.

    [0021] A further alternative structure for the label mount area 38 of bottle 10 is shown in Figure 3 that includes an arcuate front label panel 78 which extends between upper and lower cylindrical surface portions 52 and 54 of the label mount area 38. An arcuate rear palm panel 80 is located diametrically opposite the front label panel 78 that extends likewise between upper and lower cylindrical surface portions 52 and 54 of the label mount area 38. A pair of flex panels 82 are set inwardly from, and extend between, the upper edge 40 and the lower edge 42 on opposite sides of the bottle 10. The flex panel 82 extends between the front label panel 78 and rear palm panel 80. Unlike the first two embodiments, the presence of the flex panels 82 generally precludes the use of a single label that could completely surround the bottle 10. Each flex panel 82 has formed therein a more or less rigid grip structure 84 for receiving a person's thumb and fingers on opposite sides of the bottle 10 when the palm panel 80 is engaged by the person's palm. The grip structures 84 are deeper closer to the front label panel 78 than to the rear palm panel 80 and are formed to resist inverting in response to changes in volume of the liquid within the bottle 10. Each of the flex panels 82 can have a substantially rectangular elevational configuration with its lengthwise dimension being disposed vertically as shown in Figure 3. Vertical stiffening ribs 86 can extend lengthwise of each flex panel 82 between the adjacent front label panel 78 and the rear palm panel 80. Each flex panel 82 can have upper and lower chordal stiffening panels 88 extending horizontally between the front and rear panels 78, 80. Each flex panel 82, as manufactured, can have a slightly outwardly-bowed convex configuration so that when filled, closed, and cooled, the flex panels 82 can flex inwardly to at least partially offset the developing vacuum within the bottle 10 without effecting unwanted distortion of the bottle. The base 12 of the bottle 10 can include additional features 22 that may also partially offset the developing vacuum.

    [0022] The label panels shown in Figures 1 - 3 are intended as merely examples of possible configurations for bottles 10 that can be constructed in accordance with the present invention, and are not intended to exhaust the possible shapes for the label panel portion of the bottle 10. The shoulder portion 24 as shown in all of the illustrated embodiments generally includes a circumferentially continuous surface 90 extending outwardly from the neck 26 to an upper peripheral margin 92. An outwardly protruding ring 94 is located below the upper peripheral margin 92 and above the upper margin 20 of the sidewall 14. A flexible concave perimeter surface 96 joins the upper peripheral margin 92 of the shoulder 24 to the outwardly protruding ring 94. An inwardly indented ring 91 can separate the outwardly protruding ring 94 from the upper sidewall margin 20. As shown in Figure 3, the upper peripheral margin 92 is situated a radius R1 from the vertical axis Y of the bottle 10. The outwardly protruding ring 94 is shown situated at a larger radius R2. The surface 96 of the shoulder 24 is shown to be concave as compared to a line T that is drawn tangent to both the upper peripheral margin 92 and the outwardly protruding ring 94. At a vertical midpoint, half way between the two radii R1 and R2, a further radius RM can be constructed from the axis Y to the surface 96. It has been found that by limiting the dimension of the average midpoint radius RM, the surface 96 will respond to the presence of a vacuum within the bottle 10 in particularly desirable ways. The radius RII of the inwardly indented ring 91 measured from the vertical axis Y of the bottle 10 is shown to be about equal to the average radius RM of the vertical midpoint of the concave perimeter surface 96.

    [0023] In one preferred embodiment, the flexible concave perimeter surface 96 has an average midpoint radius RM that is at least equal to 0.82 x (R1 + R2)/2, and is no greater than 0.96 x (R1 + R2)/2. Additionally, the midpoint radius RM varies in dimension at selected equally spaced points around the perimeter of the surface 96 by between one and five percent at between three and five positions as shown in Figure 4. The variation in dimension causes the surface 96 to have a minimum radius of RM - Δ1 and a maximum radius of RM + Δ2. The variations in radius Δ1 and Δ2 can be of equal absolute value. When the concave perimeter surface 96 is so dimensioned, the presence of a developing vacuum within the bottle 10 causes the surface to reconfigure in a predictable manner by forming linear segments 98 between the upper peripheral margin 92 and the outwardly protruding ring 94 as shown, for example, by the dotted line on the left side of Figure 5. The linear segments 98 that form as a result of the vacuum within the bottle are separated from each other by concave indented portions 100, as shown, for example, by the dotted line on the right side of Figure 5. The alternating linear segments 98 and concave portions 100 around the perimeter of surface 96 due to the vacuum within the bottle 10 can cause a vertical wavy appearance to develop in the upper wall 93 of the inwardly indented ring 91 joining the sidewall upper margin 20 to the shoulder portion 24. The concave indented portions 100 can at least partially compensate for the post capping development of a partial vacuum within the bottle 10. Upon opening the bottle 10 the partial vacuum is released allowing the bottle to nearly reassume its original configuration.

    [0024] For example, a bottle having a shoulder 24 similar to that shown in Figures 1-3 was made that had a radius R1 for the upper peripheral margin equal to 2.591 cm. The example bottle had a radius R2 for the outwardly protruding ring equal to 3.660 cm. The average of these two radii (R1 + R2)/2 is equal to 3.124 cm. The example bottle was formed so that the average midpoint radius RM was equal to 2.943 cm, which is equal to about 0.94 x (R1 + R2)/2. The surface 96 of the example bottle was formed so that the midpoint radius RM varied between a minimum RM1 of 2.917 cm and a maximum RM + Δ2 of 2.968 cm. This variation in midpoint radius was repeated around the perimeter of the shoulder four times so that in cross-section, the configuration generated by the midpoint radius RM was very nearly circular as shown in Figure 4 so that the concave peripheral surface 96 is substantially rotationally symmetric about the axis Y of the bottle 10 when the bottle is not under a post capping vacuum. When the example bottle was hot-filled, capped and cooled, the surface 96 assumed an alternating linear and concave configuration as discussed in connection with Figure 5, and the vertical midpoint of the concave perimeter surface 96 assumed a rounded corner square cross-sectional configuration as shown in Figure 6.
    Additionally, an upper wall 93 of the inwardly indented ring 91 joining the upper margin 20 of the side wall to the shoulder portion 24 can have a vertically wavy appearance that may be enhanced in response to the presence of a vacuum within the bottle 10.

    [0025] The midpoint radius of surface 96 is not required to be manufactured with a variation in radius, although such a variation does enhance the predictability of the shape of the vacuum displaced surface so that the rounded corner square of Figure 6 can still result. As the average midpoint radius RM is made proportionally smaller than the example container, and the midpoint radius is maintained essentially constant, the surface 96 will increasingly assume a cross-sectional configuration of a rounded corner triangle as shown in Figure 7 when subject to a post-capping vacuum. On the other hand, if the average midpoint radius RM is made proportionally somewhat larger than the example container, and the midpoint radius is maintained essentially constant, the surface 96 can sometimes assume a cross-sectional configuration of a rounded corner pentagon as shown in Figure 8 when subject to a post-capping vacuum. Any unpredictability in the ultimate configuration may not be considered acceptable is some packaging, but may actually be desirable in some other circumstances. Even where the midpoint radius RM is maintained constant, the size of that radius should at least equal to (3/π) (sin π/3) (R1 + R2), and no greater than about (6/π) (sin π/6) (R1 + R2) to achieve the desired surface reconfiguration to at least partially compensate for the post capping development of a partial vacuum.

    [0026] While these features have been disclosed in connection with the illustrated preferred embodiment, other embodiments of the invention will be apparent to those skilled in the art that come within the scope of the invention as defined in the following claims.


    Claims

    1. A blow-molded bottle (10) having a base (12), a side wall (14) having a lower margin (18) joining the base (12), the side wall (14) extending upward from the base (12) to an upper margin (20), a shoulder portion (24) extending upward from the sidewall upper margin (20) and inward to a neck (26) surrounding a vertical axis (Y), the neck (26) supporting a finish (28) defining an opening (30) adapted to accept a closure, a circumferentially continuous outwardly extending upper peripheral margin (92), an outwardly protruding ring (94) located below the upper peripheral margin (92), and a smooth flexible concave perimeter surface (96) joining the upper peripheral margin (92) to the outwardly protruding ring (94), wherein the bottle (10) is further characterized by the vertical midpoint of the flexible concave perimeter surface (96) having a radius (RM) measured from the vertical axis (Y) that varies slightly at a plurality of spaced positions around the surface perimeter, the concave perimeter surface (96) responding to the presence of a vacuum within the bottle by forming substantially linear segments (98) between the upper peripheral margin (92) and the outwardly protruding ring (94).
     
    2. The blow-molded bottle (10) of claim 1, wherein the radius (R2) of the outwardly protruding ring (94) is greater than the outermost radius (R1) of the upper peripheral margin (92).
     
    3. The blow-molded bottle (10) of claim 1 or 2, wherein the entire flexible concave perimeter surface (96) is at a radius greater than the outwardly extending upper peripheral margin (92).
     
    4. The blow-molded bottle (10) of any of claims 1 to 3, wherein the average radius of the vertical mid-point (RM) of the concave perimeter surface (96) is greater than (3/π) (sin π/3) (R1 + R2), where R1 is the outermost radius of the upper peripheral margin (92), and R2 is the radius of the outwardly-protruding ring (94).
     
    5. The blow-molded bottle (10) of any of claims 1 to 4, wherein the average radius of the vertical mid-point (RM) of the concave perimeter surface (96) is less than (6/π) (sin π/6) (R1 + R2), where R1 is the outermost radius of the upper peripheral margin (92), and R2 is the radius of the outwardly protruding ring (94).
     
    6. The blow-molded bottle (10) of any of claims 1 to 5, wherein the variation in the radius of the vertical midpoint (RM) of the flexible concave perimeter surface (96) occurs at least three times around the surface perimeter.
     
    7. The blow-molded bottle (10) of any of claims 1 to 6, wherein the variation in the radius of the vertical midpoint (RM) of the flexible concave perimeter surface (96) occurs no more than six times around the surface perimeter.
     
    8. The blow-molded bottle (10) of any of claims 1 to 7 wherein the variation in the radius of the vertical midpoint (RM) of the flexible concave perimeter surface (96) occurs at four equally spaced positions around the surface perimeter.
     
    9. The blow-molded bottle (10) of any of claims 1 to 8 wherein the maximum variation in the radius of the vertical midpoint (RM) of the flexible concave perimeter surface (96) is between one and five percent of the average radius of the vertical midpoint of the flexible concave perimeter surface.
     
    10. The blow-molded bottle (10) of any of claims 1 to 10 wherein the average radius of the vertical midpoint (RM) of the concave perimeter surface (96) is greater than (4/π) (sin π/4) (R1 + R2), where R1 is the outermost radius of the upper peripheral margin (92), and R2 is the radius of the outwardly protruding ring (94).
     
    11. The blow-molded bottle (10) of any of claims 4, 5, or 10 wherein R1 < R2.
     
    12. The blow-molded bottle (10) of any of claims 1 to 11 wherein the linear segments (98) formed between the upper peripheral margin (92) and the outwardly protruding ring (94) are coincident with the points of maximum variation in the radius of the vertical midpoint (RM) of the flexible concave perimeter surface (96).
     
    13. The blow-molded bottle (10) of any of claims 1 to 12 wherein the linear segments (98) formed between the upper peripheral margin (92) and the outwardly protruding ring (94) are separated from each other by concave indented portions (100).
     
    14. The blow-molded bottle (10) of any of claims 1 to 13 further comprising an inwardly indented ring (91) joining the upper margin (20) of the side wall (14) to the shoulder portion (24).
     
    15. The blow-molded bottle (10) of claim 14 wherein the radius (RII) of the inwardly indented ring (91) is about equal to the average radius of the vertical midpoint (RM) of the concave perimeter surface (96).
     
    16. The blow-molded bottle (10) of either of claims 14 or 15 wherein the concave perimeter surface (96) is situated within the shoulder portion (24) and at least an upper wall (93) of the inwardly indented ring (91) joining the upper margin (20) of the side wall (14) to the shoulder portion (24) is vertically wavy and sufficiently vertically flexible to permit the enhancement of the wavy character of the upper wall (93) in response to the presence of a vacuum within the bottle (10).
     
    17. The blow-molded bottle (10) of any of claims 1 to 16 wherein the side wall (14) includes additional vacuum responsive features (22, 44).
     
    18. The blow-molded bottle (10) of any of claims 1 to 17 wherein the side wall (14) includes an upper step defining an upper margin (40) of a label panel (38) and a lower step defining a lower margin (42) of the label panel (38).
     
    19. The blow-molded bottle (10) of claim 18 wherein the label panel (38) portion of the sidewall (14) includes at least one continuous inwardly indented hoop ring (66).
     
    20. The blow-molded bottle (10) of any of claims 18 and 19 wherein the label panel (38) portion of the sidewall (14) includes at least one discontinuous inwardly indented hoop ring (68).
     


    Ansprüche

    1. Blasgeformte Flasche (10) mit einer Basis (12), einer Seitenwand (14) mit einem unteren Rand (18), der mit der Basis (12) verbunden ist, welche Seitenwand (14) sich von der Basis (12) aufwärts erstreckt bis zu einem oberen Rand (20), einem Schulterbereich (24), der sich von dem oberen Rand (20) der Seitenwand aufwärts und nach innen zu einem Hals (26), der eine vertikale Achse (Y) umgibt, erstreckt, welcher Hals (26) einen eine zur Aufnahme eines Verschlusses ausgebildete Öffnung (30) definierenden Abschluss (28) trägt, einen in Umfangsrichtung kontinuierlichen, sich auswärts erstreckenden oberen peripheren Rand (92), einen auswärts vorstehenden Ring (94), der sich unter dem oberen peripheren Rand (92) befindet, und eine glatte flexible konkave Umfangsfläche (96), die den oberen peripheren Rand (92) mit dem auswärts vorstehenden Ring (94) verbindet, wobei die Flasche (10) weiterhin gekennzeichnet ist durch den vertikalen Mittelpunkt der flexiblen konkaven Umfangsfläche (96) mit einem Radius (RM), gemessen von der vertikalen Achse (Y), der an mehreren im gegenseitigen Abstand angeordneten Positionen um die Umfangsfläche herum leicht variiert, wobei die konkave Umfangsfläche (96) auf die Anwesenheit eines Unterdrucks innerhalb der Flasche anspricht durch Bilden von im Wesentlichen linearen Segmenten (98) zwischen dem oberen peripheren Rand (92) und dem auswärts vorstehenden Ring (94).
     
    2. Blasgeformte Flasche (10) nach Anspruch 1, bei der der Radius (R2) des auswärts vorstehenden Rings (94) größer als der äußerste Radius (R1) des oberen peripheren Rands (92) ist.
     
    3. Blasgeformte Flasche (10) nach Anspruch 1 oder 2, bei der die gesamte flexible konkave Umfangsfläche (96) einen Radius hat, der größer als der sich auswärts erstreckende obere periphere Rand (92) ist.
     
    4. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 3, bei der der durchschnittliche Radius des vertikalen Mittelpunkts (RM) der konkaven Umfangsfläche (96) größer als (3/H) (sin Π/3) (R1 + R2) ist, wobei R1 der äußerste Radius des oberen peripheren Rands (92) ist und R2 der Radius des auswärts vorstehenden Rings (94) ist.
     
    5. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 4, bei der der durchschnittliche Radius des vertikalen Mittelpunkts (RM) der konkaven Umfangsfläche (96) kleiner als (6/Π) (sin Π/6) (R1 + R2) ist, wobei R1 der äußerste Radius des oberen peripheren Rands (92) ist und R2 der Radius des auswärts vorstehenden Rings (94) ist.
     
    6. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 5, bei der die Veränderung des Radius des vertikalen Mittelpunkts (RM) der flexiblen konkaven Umfangsfläche (96) um den Oberflächenumfang herum zumindest dreimal auftritt.
     
    7. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 6, bei der die Veränderung des Radius des vertikalen Mittelpunkts (RM) der flexiblen konkaven Umfangsfläche (96) nicht mehr als sechsmal um den Umfang der Oberfläche herum auftritt.
     
    8. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 7, bei der die Veränderung des Radius des vertikalen Mittelpunkts (RM) der flexiblen konkaven Umfangsfläche (96) an vier in gleichem gegenseitigem Abstand angeordneten Positionen um den Umfang der Oberfläche herum stattfindet.
     
    9. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 8, bei der die maximale Veränderung des Radius des vertikalen Mittelpunkts (RM) der flexiblen konkaven Umfangsfläche (96) zwischen ein und fünf Prozent des durchschnittlichen Radius des vertikalen Mittelpunkts der flexiblen konkaven Umfangsfläche ist.
     
    10. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 10, bei der der durchschnittliche Radius des vertikalen Mittelpunkts (RM) der konkaven Umfangsfläche (96) größer als (4/Π) sin Π/4) (R1 + R2) ist, wobei R1 der äußerste Radius des oberen peripheren Rands (92) ist und R2 der Radius des auswärts vorstehenden Rings (94) ist.
     
    11. Blasgeformte Flasche (10) nach einem der Ansprüche 4, 5 oder 10, bei der R1 < R2 ist.
     
    12. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 11, bei der die linearen Segmente (98), die zwischen dem oberen peripheren Rand (92) und dem auswärts vorstehenden Ring (94) ausgebildet sind, mit den Punkten der maximalen Veränderung des Radius des vertikalen Mittelpunkts (RM) der flexiblen konkaven Umfangsfläche (96) übereinstimmen.
     
    13. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 12, bei der die linearen Segmente (98), die zwischen dem oberen peripheren Rand (92) und dem auswärts vorstehenden Ring (94) ausgebildet sind, durch konkave vertiefte Bereiche (100) voneinander getrennt sind.
     
    14. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 13, weiterhin aufweisend einen nach innen vertieften Ring (91), der den oberen Rand (20) der Seitenwand (14) mit dem Schulterbereich (24) verbindet.
     
    15. Blasgeformte Flasche (10) nach Anspruch 14, bei der der Radius (RII) des nach innen vertieften Rings (91) etwa gleich dem durchschnittlichen Radius des vertikalen Mittelpunkts (RM) der konkaven Umfangsfläche (96) ist.
     
    16. Blasgeformte Flasche (10) nach einem der Ansprüche 14 oder 15, bei der die konkave Umfangsfläche (96) innerhalb des Schulterbereichs (24) angeordnet ist und zumindest eine obere Wand (93) des nach innen vertieften Rings (91), der den oberen Rand (20) der Seitenwand (14) mit dem Schulterbereich (24) verbindet, vertikal wellig und vertikal ausreichend flexibel ist, um die Erhöhung des welligen Charakters der oberen Wand (93) als Antwort auf das Vorhandensein eines Unterdrucks innerhalb der Flasche (10) zu ermöglichen.
     
    17. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 16, bei der die Seitenwand (14) zusätzliche auf Unterdruck ansprechende Merkmale (22, 44) enthält.
     
    18. Blasgeformte Flasche (10) nach einem der Ansprüche 1 bis 17, bei der die Seitenwand (14) eine obere Stufe, die einen oberen Rand (40) einer Etikettierfläche (38) definiert, und eine untere Stufe, die einen unteren Rand (42) der Etikettierfläche (38) definiert, enthält.
     
    19. Blasgeformte Flasche (10) nach Anspruch 18, bei der der Bereich der Seitenwand (14) für die Etikettierfläche (38) zumindest einen kontinuierlichen, nach innen vertieften Bundring (66) enthält.
     
    20. Blasgeformte Flasche (10) nach einem der Ansprüche 18 und 19, bei der der Bereich der Seitenwand (14) für die Etikettierfläche (38) zumindest einen diskontinuierlichen, nach innen vertieften Bundring (68) enthält.
     


    Revendications

    1. Bouteille extrudée soufflée (10) ayant une base (12), une paroi latérale (14) ayant un rebord inférieur (18) reliant la base (12), la paroi latérale (14) s'étendant vers le haut à partir de la base (12) vers un rebord supérieur (20), une partie d'épaulement (24) s'étendant vers le haut à partir du rebord supérieur de paroi latérale (20) et vers l'intérieur à un col (26) entourant un axe vertical (Y), le col (26) supportant une terminaison (28) définissant une ouverture (30) adaptée pour recevoir une fermeture, un rebord périphérique supérieur s'étendant vers l'extérieur de manière circonférentielle continue (92), une bague faisant saillie vers l'extérieur (94) située sous le rebord périphérique supérieur (92), et une surface périphérique concave souple lisse (96) reliant le rebord périphérique supérieur (92) à la bague faisant saillie vers l'extérieur (94), laquelle bouteille (10) est en outre caractérisée par la mi-hauteur verticale de la surface périphérique concave souple (96) ayant un rayon (RM) mesuré à partir de l'axe vertical (Y) qui varie légèrement à une pluralité de positions espacées autour du périmètre de la surface, la surface périphérique concave (96) répondant à la présence d'une dépression dans la bouteille en formant des segments sensiblement linéaires (98) entre le rebord périphérique supérieur (92) et la bague faisant saillie vers l'extérieur (94).
     
    2. Bouteille extrudée soufflée (10) selon la revendication 1, où le rayon (R2) de la bague faisant saillie vers l'extérieur (94) est supérieur au rayon le plus extérieur (R1) du rebord périphérique supérieur (92).
     
    3. Bouteille extrudée soufflée (10) selon la revendication 1 ou 2, où l'ensemble de la surface périphérique concave souple (96) est à un rayon supérieur à celui du rebord périphérique supérieur s'étendant vers l'extérieur (92).
     
    4. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 1 à 3, où le rayon moyen de la mi-hauteur verticale (RM) de la surface périphérique concave (96) est supérieur à (3/π) (sin π/3) (R1 + R2) où R1 est le rayon le plus extérieur du rebord périphérique supérieur (92), et R2 est le rayon de la bague faisant saillie vers l'extérieur (94).
     
    5. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 1 à 4, où le rayon moyen de la mi-hauteur verticale (RM) de la surface périphérique concave (96) est inférieur à (6/π) (sin π/6) (R1 + R2) où R1 est le rayon le plus extérieur du rebord périphérique supérieur (92), et R2 est le rayon de la bague faisant saillie vers l'extérieur (94).
     
    6. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 1 à 5, où la variation de rayon de la mi-hauteur verticale (RM) de la surface périphérique concave souple (96) a lieu au moins trois fois autour du périmètre de surface.
     
    7. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 1 à 6, où la variation de rayon de la mi-hauteur verticale (RM) de la surface périphérique concave souple (96) n'a pas lieu plus de six fois autour du périmètre de surface.
     
    8. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 1 à 7, où la variation de rayon de la mi-hauteur verticale (RM) de la surface périphérique concave souple (96) a lieu à quatre positions également espacées autour du périmètre de surface.
     
    9. Bouteille extrudée soufflée (10) selon l'une quelconque la revendication 1 à 8, où la variation maximum de rayon de la mi-hauteur verticale (RM) de la surface périphérique concave souple (96) est comprise entre un et cinq pour cent du rayon moyen de la mi-hauteur verticale de la surface périphérique concave souple.
     
    10. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 1 à 3, où le rayon moyen de la mi-hauteur verticale (RM) de la surface périphérique concave (96) est supérieur à (4/π) (sin π/4) (R1 + R2) où R1 est le rayon le plus extérieur du rebord périphérique supérieur (92), et R2 est le rayon de la bague faisant saillie vers l'extérieur (94).
     
    11. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 4, 5, ou 10, où R1 < R2.
     
    12. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 1 à 11, où les segments linéaires (98) formés entre le rebord périphérique supérieur (92) et la bague faisant saillie vers l'extérieur (94) coïncident avec les points de variation maximum de rayon de la mi-hauteur verticale (RM) de la surface périphérique concave souple (96).
     
    13. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 1 à 12, où les segments linéaires (98) formés entre le rebord périphérique supérieur (92) et la bague faisant saillie vers l'extérieur (94) sont séparés les uns des autres par des parties dentées concaves (100).
     
    14. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 1 à 13 comprenant en outre une bague dentée vers l'intérieur (91) reliant le rebord supérieur (20) de la paroi latérale (14) à la partie d'épaulement (24).
     
    15. Bouteille extrudée soufflée (10) selon la revendication 14, où le rayon (RII) de la bague dentée vers l'intérieur (91) est environ égal au rayon moyen de la mi-hauteur verticale (RM) de la surface périphérique concave (96).
     
    16. Bouteille extrudée soufflée (10) selon l'une des revendications 14 ou 15, où la surface périphérique concave (96) est située dans la partie d'épaulement (24) et au moins une paroi supérieure (93) de la bague dentée vers l'intérieur (91) reliant le rebord supérieur (20) de la paroi latérale (14) à la partie d'épaulement (24) est ondulée verticalement et suffisamment souple verticalement pour permettre l'augmentation du caractère ondulé de la paroi supérieure (93) en réponse à la présence d'une dépression dans la bouteille (10).
     
    17. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 1 à 16, où la paroi latérale (14) comprend des caractéristiques sensibles à une dépression supplémentaire (22, 44).
     
    18. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 1 à 17, où la paroi latérale (14) comprend un gradin supérieur définissant un rebord supérieur (40) d'un panneau d'étiquette (38) et un gradin inférieur définissant un rebord inférieur (42) du panneau d'étiquette (38).
     
    19. Bouteille extrudée soufflée (10) selon la revendication 18, où la partie de panneau d'étiquette (38) de la paroi latérale (14) comprend au moins une bague continue circulaire dentée vers l'intérieur (66).
     
    20. Bouteille extrudée soufflée (10) selon l'une quelconque des revendications 18 et 19, où la partie de panneau d'étiquette (38) de la paroi latérale (14) comprend au moins une bague continue circulaire dentée vers l'intérieur (66).
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description