Technical Field
[0001] This disclosure relates generally to devices used in the telecommunications industry,
and associated methods of making such devices. In particular, this disclosure relates
to center conductors used in coax jack modules.
Background
[0002] The telecommunications industry has central offices or locations that utilize a substantial
number of coax jack modules. The coax jack modules are used to provide cross-connect
functions, line monitoring, and line access of high-speed signals carried over coaxial
cables.
[0003] A coax jack module generally includes a housing that carries one or more internal
switching assemblies. Each of the switching assemblies receives a jack plug through
a jack port formed in a housing. The internal switch assemblies are interconnected
to coax connectors located on the housing opposite the jack ports. The coax connectors
are in turn attached to coaxial cables carrying the high-speed signals. In use, jack
plugs are inserted into the jack ports to provide cross-connect, line monitoring,
and line access functions. The jack plugs each include a pin element that is received
by a center conductor of the switching assemblies. Further details of an example coax
jack module are provided in
U.S. Patent No. 5,467,062, the disclosure of which is incorporated herein by reference.
[0004] FIGS. 1-3 illustrate one conventional center conductor 10 that can be used in a switching
assembly of a coax jack module. During use, a jack plug 12 (partially shown in FIG.
3) is inserted into a jack port of the coax jack module such that a pin element 14
of the jack plug 12 is received within an end 16 of the center conductor 10.
[0005] The end 16 of the center conductor 10 has a generally tubular construction 18 that
receives the pin element 14 of the jack plug 12. The tubular construction 18 includes
a crimped contact portion 20 (FIG. 3) that ensures proper contact between the center
conductor 10 and the pin element 14 of the jack plug 12. (FIGS. 1 and 2 illustrate
the center conductor 10 prior to formation of the crimped contact portion 20.) The
crimped contact portion 20 is located in a region 22 at which two opposing slots 24,
26 are located. The opposing slots 24, 26 are positioned 180 degrees from one another.
The slots 24, 26 accommodate crimping of the tubular construction 18 (i.e. the inward
displacement of material), and permit the crimped contact portion 20 to expand when
a pin element is inserted into the center conductor. That is, the crimped contact
portion 20 functions as a spring beam for mechanical connection to the pin element
14 of the jack plug 12. The contact portion 20 is crimped about the entire circumference
(360 degrees) of the tubular construction 18.
[0006] A center conductor according to the preamble of claim 1 is disclosed in
GB993316A.
[0007] Conventional center conductor arrangements have experienced problematic mechanical
failure and premature fatigue at the crimped contact portion of the conductor. In
general, improvement has been sought with respect to such conductor designs, generally
to improve upon component reliability and the extended life cycle of a center conductor,
while still ensuring proper electrical contact with a pin element of a jack plug.
Summary
[0008] One aspect of the present invention is a center conductor according to claim 1.
[0009] Another aspect of the present invention is a method of manufacturing a center conductor
according to claim 8.
[0010] A variety of examples of desirable product features or methods are set forth in part
in the description that follows, and in part will be apparent from the description,
or may be learned by practicing various aspects of the disclosure. The aspects of
the disclosure may relate to individual features as well as combinations of features.
It is to be understood that both the foregoing general description and the following
detailed description are explanatory only, and are not restrictive of the claimed
invention.
Brief Description of the Drawings
[0011]
FIG. 1 is a perspective view of a prior art center conductor having two 180-degree
opposed slots, shown prior to forming a crimped contact portion;
FIG. 2 is a cross-sectional view of the prior art center conductor of FIG. 1;
FIG. 3 is a partial, cross-sectional view of the prior art center conductor of FIG.
1, shown after forming the crimped contact portion;
FIG. 4 is a perspective view of one embodiment of a center conductor having a crimped
region configured in accordance with the principles disclosed;
FIG. 5 is a top plan view of the center conductor of FIG. 4;
FIG. 6 is a cross-sectional view of the center conductor of FIG. 5, taken along line
6-6;
FIG. 7 is a side elevation view of the center conductor of FIG. 4;
FIG. 8 is a cross-sectional view of the center conductor of FIG. 7, taken along line
8-8;
FIG. 9 is an alternative embodiment of a center conductor having a crimped region
configured in accordance with the principles disclosed;
FIG. 10 is yet another alternative embodiment of a center conductor having a crimped
region configured in accordance with the principles disclosed;
FIG. 11 is a side elevation view of the center conductor of FIG. 10;
FIG. 12 is an exploded view of one embodiment of a coax jack module assembly having
center conductors in accordance with the principles disclosed;
FIG. 13 is a side elevation view of one embodiment a front module component of the
coax jack module assembly of FIG. 12, having center conductors as shown in FIG. 10;
FIG. 14 is an exploded view of the front module component of FIG. 13;
FIG. 15 is a side elevation view of one embodiment a rear module component of the
coax jack module assembly of FIG. 12, having center conductors as shown in FIG. 9;
FIG. 16 is an exploded view of the rear module component of FIG. 15;
FIG. 17 is a perspective view of still another embodiment of a center conductor having
a crimped region configured in accordance with the principles disclosed; and
FIG. 18 is a partial, cross-sectional view of the center conductor of FIG. 17.
Detailed Description
[0012] Reference will now be made in detail to various features of the present disclosure
that are illustrated in the accompanying drawings. Wherever possible, the same reference
numbers will be used throughout the drawings to refer to the same or like parts.
[0013] FIG. 4 illustrates one embodiment of center conductor 30 with a crimped region 50
having features that are examples of how inventive aspects in accordance with the
principles of the present disclosure may be practiced. Preferred features are adapted
for improving structural reliability and life cycle use of the center conductor, while
ensuring proper electrical contact with pin elements of jack plugs.
[0014] Referring to FIGS. 4 and 5, the center conductor 30 includes a conductive body 32
having a first end 34 and a second end 36. The conductive body 32 includes a tubular
structure 38 located at the first end 34. The tubular structure 38 defines an inner
diameter D1 (FIG. 6) sized for receipt of a pin element (e.g. 14 in FIG. 3) of a jack
plug. In the illustrated embodiment, the inner diameter D1 of the tubular structure
38 is generally between about 0.762 millimeters (0.030 inches) and 0.864 millimeters
(0.034 inches); more preferably about 0.813 millimeters (0.032 inches).
[0015] The conductive body 32 of the center conductor 30 defines a central, longitudinal
axis A-A. The longitudinal axis A-A is generally concentric with the inner diameter
D1 of the tubular structure 38. As shown in FIGS. 6 and 8, the longitudinal axis A-A
defines a plane P that bisects the conductive body 32 to define a first body half
40 and a second body half 42.
[0016] The crimped region 50 of the center conductor 30 is located in only one of the either
the first body half 40 or the second body half 42. What is meant by crimped region
is the region at which material is radially displaced, generally toward the center
or longitudinal axis A-A of the center conductor. In the illustrated embodiment, the
crimped region 50 is located only within the first body half 40 of the center conductor
30.
[0017] Referring back to FIGS. 4 and 5, the crimped region includes first and second elongated
slots 44, 46 formed in the tubular structure 38 of the center conductor 30. Other
numbers of slots 44, 46 can be provided in accordance with the principle disclosed.
The elongated slots 44, 46 extend parallel with the longitudinal axis A-A of the center
conductor 30. Preferably, the elongated slots 44, 46 are provided only in the first
half 40 of the center conductor 30. In particular, the elongated slots 44, 46 are
located a distance S (FIG. 8) from the plane P that bisects the center conductor 30.
In the illustrated embodiment, the slots 44, 46 are located to provide an uninterrupted
tubular region 90 of approximately 270 degrees (a region equal to approximately 75%
of the diameter of the tubular structure 38). The uninterrupted tubular region 90
increases the structural stability and strength of the tubular structure 38 and thereby
improves the mechanical reliability of the center conductor 30.
[0018] Referring still to FIGS. 4 and 5, the first and second elongated slots 44, 46 define
a contact member or contact portion 48. The contact member 48 is the portion of the
conductive body 38 that lies between the first and second slots 44, 46 formed in the
first half 40 of the conductive body 38. As shown in FIG. 6, the contact member 48
is crimped so that at least a central portion 52 of the contact member 48 radially
projects into the inner diameter D1 of the tubular structure 38 of the center conductor
30. The crimped contact member 48 functions as a spring member that ensures proper
electrical connection between a pin element of a jack plug and the center conductor.
[0019] Referring again to FIG. 5, the contact member 48 at the crimped region 50 of the
center conductor includes first and second ends 54, 56 integrally connected to the
conductive body 32 of the center conductor 30. The first and second ends 54, 56 are
wider than the central portion 52 of the contact member 48. In particular, the first
and second ends narrow or taper toward the center portion 52 of the contact member
48. The wider first and second ends 54, 56 increase the structural strength of the
contact member 48 at the ends 54, 56 to prevent the contact member 48 from crushing
or tearing during insertion of a pin element.
[0020] The hourglass shape or tapered configuration of the contact member 48, as shown in
FIG. 5, is provided via the manufacturing of the first and second elongated slots
44, 46. In particular, the first and second elongated slots 44, 46 are formes by saw
cuts. As shown in FIGS. 5 and 8, the saw cuts are provided by a saw blade 58 oriented
at an angle parallel to the plane P that bisects the conductive body 32. Accordingly,
as shown in FIG. 8, the saw cuts or slots 44, 46 are formed at an angle parallel to
the plane P, as opposed to being radially formed or formed perpendicular to the longitudinal
axis A-A of the center conductor. As can be seen in FIG. 5, orienting the saw blade
58 parallel to the plane P provides the tapered or narrowing configuration of the
contact member 48.
[0021] After the contact member 48 is formed, the contact member is crimped such that the
central portion 52 projects into the inner diameter D1 of the center conductor, as
previously described. In the illustrated embodiment, only the contact member 48 is
crimped. Crimping only the contact member 48 contributes to the un-interruption of
the tubular region 90.
[0022] Referring to FIG. 8, the tubular region 90 and the crimped region 50 of the center
conductor 30 define a circumference C of the conductive body 32. The crimped region
50 is located about a portion of the circumference C of the conducive body 32; a remaining
portion (i.e. 90) of the circumference C is the uninterrupted portion. The uninterrupted
region 90 is non-slotted and un-crimped. By preserving the structural integrity of
the region 90 (the region 90 being preferably equal to greater than 50%, more preferably
approximately 75% of the diameter of the tubular structure 38), the overall rigidity
and strength of the center conductor increases in comparison to conventional conductors.
It is believed that the disclosed design of the center conductor 30 provides a 25-30%
increase in strength over the conventional center conductor disclosed in FIGS. 1-3.
[0023] Referring now to FIG. 9, an alternative embodiment of a center conductor 130 having
first and second ends 134, 136 is illustrated. Similar to the previous embodiment,
the center conductor 130 includes a crimped region 150 located at the first end 134.
The crimped region 150 includes first and second elongated slots 144, 146 formed only
in a first body half 140 of a conductive body 132. The second end 136 of the illustrated
center conductor 130 is configured to use in a different module application than that
of the first embodiment, as will be described in greater detail hereinafter.
[0024] Referring to FIG. 10, yet another alternative embodiment of a center conductor 230
having first and second ends 234, 236 is illustrated. Similar to the previous embodiments,
the center conductor 230 includes a crimped region 250 located at the first end 234.
The crimped region 250 includes first and second elongated slots 244, 246 formed only
in a first body half 240 (FIG. 11) of a conductive body 232. The second end 236 of
the illustrated center conductor 230 is configured to use in a different module application
than that of the previous embodiments, as will be described in greater detail hereinafter.
Referring to FIG. 11, the first end 234 of the center conductor 230 is a flared end
235. The flared end 235 aids a user in guiding a pin element of a jack plug into the
inner diameter (e.g., D1 in FIG. 6) of the center conductor 230.
[0025] Referring now to FIGS. 17 and 18, still another alternative embodiment of a center
conductor 330 having first and second ends 334, 336 is illustrated. Similar to the
previous embodiments, the center conductor 330 includes a crimped region 350 located
at the first end 334 of the center conductor 330. In this embodiment, however, the
crimped region 350 does not include elongated slots formed in a conductive body 332.
Rather, the crimped region 350 is formed by a lancing or punching operation that essentially
displaces an amount of material of the conductive body 332 toward the longitudinal
axis of the center conductor 330. The crimped region 350 defines a contact member
348 formed by the lancing operation. Similar to the previous embodiment, the contact
member 348 is formed only in a first body half 340 (FIG. 18) of a conductive body
332.
[0026] Referring now to FIG. 12, the center conductors of the present disclosure can be
used in a variety of applications, including a coax jack module assembly 60. The illustrated
coax jack module assembly 60 includes at least one front module component 62 (two
are shown) and a rear module component 64. The front and rear module components 62,
64 are interconnect to one another by an intermediate connection module 66 having
intermediate coaxial cables 76 (shown in part adjacent to each of the front and rear
module components 62, 64). The front and rear module components 62, 64 and the intermediate
connection module 66 can be configured such that the coax jack module assembly 60
provides cross-connect functions, line monitoring, and line access of high speed signals,
as desired.
[0027] Referring now to FIGS. 12-14, the front module component 62 of the coax jack module
assembly 60 includes a housing 68 that carries a number of switching assemblies 92
(FIG. 14). The housing 68 has a front 70 and a rear 80. The front 70 of the housing
defines ports 72. Jack plugs are inserted within the ports 72 such that the pin elements
(e.g. 14 in FIG. 3) of the jack plugs 12 are received within the center conductors
230 (FIG. 13) of the front module component 62. As shown in FIG. 14, the front module
component 62 includes three center conductors 230, each associated with a switching
assembly and each located within a port 72 of the housing 68. The center conductors
230 used in the illustrated front module component 62 are similar to those shown in
FIGS. 10 and 11. The center conductors 230 interconnect to coaxial connectors 74 located
at the rear 80 of the housing 68. The coaxial connectors 74 are in turn are coupled
to the intermediate coaxial cables 76 of the intermediate connection module 66 (FIG.
12).
[0028] Referring back to FIG. 12, the intermediate coaxial cables 76 of the intermediate
connection module 66 at least partially interconnect the front module component 62
and the rear module component 64. In particular, the intermediate coaxial cables 76
of the intermediate connection module 66 provide an interconnection between the coaxial
connectors 76 of the front module component 62 and coaxial connectors 78 of the rear
module component 64. The intermediate connection module 66 also includes coaxial connectors
96 that interconnect to the pieces of equipment. The coaxial connectors 96 also preferably
include center conductors in accordance with the principles disclosed.
[0029] Referring now to FIGS. 12 and 15-16, the rear module component 64 also includes a
housing 82 that carries a number of switching assemblies 94 (FIG. 16). The housing
has a front 84 and a rear 86. The coaxial connectors 78 are located at the front 84
of the housing 82 of the rear module component 64. The rear 86 of the housing 82 defines
ports 88 (FIG. 16). Jack plugs are inserted within the ports 88 such that the pin
elements (e.g. 14 in FIG. 3) of the jack plugs 12 are received within center conductors
130 of the rear module component 64. As shown in FIG. 16, the rear module component
64 includes two center conductors 130, each associated with a switching assembly and
each located within a port 88 of the housing 82. The center conductors 130 used in
the illustrated rear module component 64 are similar to those shown in FIG. 9. The
center conductors 230 interconnect to coaxial connectors 78 located at the front 84
of the housing 82.
[0030] The front and rear module components 62, 64 can be used in a number of a coax jack
module assembly configurations. For example, the coax jack module assembly 60 of FIG.
12 is configured to function as a 4-port module assembly. A 4-port module assembly
provides direct monitoring access to incoming and outgoing signals. The front and
rear module components 62, 64 can be used in other types or differently configured
coax jack modules assemblies, such as a 6-port module assembly, or an interconnect
module assembly, and further, a looping module assembly, a non-looping module assembly,
or a 75-ohm auto-termination module assembly, for example. A 6-port module assembly
provides the direct monitoring of signals as provided in the 4-port module, and also
provides monitoring of auxiliary incoming cross-connect signals and auxiliary outgoing
cross-connect signals. An interconnect module assembly is used to directly interconnect
two pieces of equipment, as opposed to using more than one module component for cross-connection
between the two pieces of equipment. The various looping, non-looping and termination
configurations relate to options concerning the disposition of alarm signals generated
by, and associated feedback to, the pieces of equipment.
[0031] As can be understood, telecommunication systems are often adapted to accommodate
fast-changing network connections. Adapting, monitoring, and testing the connections
requires a technician to insert and remove jack plugs from the various front and rear
modules a repeated number of times. Preferably, each of the front and rear modules
(e.g., 62, 64) of the coax jack module assembly 60 includes a center conductor having
a crimped region, as described herein. The disclosed crimped region of the center
conductor embodiments improve the structural reliability and life cycle of the center
conductor, as compared to conventional center conductor arrangements that experienced
problematic mechanical failure and premature fatigue.
[0032] The above specification provides a complete description of the present invention.
Since many embodiments of the invention can be made without departing from the scope
of the invention, the invention is defined in the claims hereinafter appended.
1. A center conductor (34), comprising:
a) a conductive body (32) defining an inner diameter (D1) and having a longitudinal
axis, the longitudinal axis defining a plane that bisects the conductive body, the
plane defining a first body half (40) and a second body half (42); and
b) a crimped region (50) located in only one of the first body half and the second
body half, the crimped region including a contact member (48) having a portion that
projects into the inner diameter toward the longitudinal axis of the conductive body;
wherein the contact member is defined by elongated slots (44, 46) formed in the conductive
body; the center conductor being
characterised in that
the contact member has first and second ends that taper toward a central portion of
the contact member.
2. The center conductor of claim 1, wherein the elongated slots are saw cuts, each of
the saw cuts being provided in the conductive body at an angle parallel to the plane
that bisects the conductive body.
3. The center conductor of claim 1, wherein the elongated slots are formed in the conductive
body at a distance from the plane that bisects the conductive body.
4. The center conductor of claim 1, wherein the contact member includes a central portion
and first and second ends (54, 56), the first and second ends being wider than the
central portion.
5. The center conductor of claim 1, wherein each of the first and second ends of the
contact member is integrally connected to the conductive body.
6. The center conductor of claim 1, wherein the crimped region is located about a portion
of a circumference of the conductive body, a remaining portion of the circumference
defining an uninterrupted region.
7. The center conductor of claim 1, wherein the inner diameter of the conductive body
is located only at a first end of the conductive body, the inner diameter being approximately
0.813 millimeters (0.032 inches).
8. A method of manufacturing a center conductor, the method comprising the steps of:
a) providing a conductive body (32), the conductive body defining a longitudinal axis;
b) forming first and second slots (44, 46) within a first half of the conductive body;
and
c) crimping a contact portion of the conductive body, the contact portion being located
between the first and second slots formed within the first half of the conductive
body;
wherein the step of forming the first and second slots includes providing the contact
portion, the contact portion including first and second ends that taper toward a center
region.
9. The method of claim 8, wherein the step of forming the first and second slots includes
saw cutting the slots in the conductive body.
10. The method of claim 9, wherein the step of saw cutting the slots includes angling
a saw blade parallel to a plane that defines the first half of the conductive body
to form the first and second slots within the first half of the conductive body.
11. The method of claim 8, wherein the step of crimping the contact portion includes crimping
only the contact portion, the contact portion being located along a portion of a circumference
of the conductive body, a remaining portion of the circumference defining an uninterrupted
region.
12. The method of claim 11, wherein the step of crimping only the contact portion includes
providing an uninterrupted region of approximately 75% of the circumference of the
conductive body.
13. The method of claim 8, wherein the step of providing the contact portion includes
providing the contact portion having first and second ends integrally connected to
the conductive body.
14. The method of claim 8, wherein the step of providing the conductive body includes
providing the conductive body having an inner diameter at a first end of the conductive
body, the inner diameter being approximately 0.813 millimeters (0.032 inches).
1. Mittelleiter (34), der Folgendes aufweist:
a) einen leitfähigen Körper (32), der einen Innendurchmesser (D1) definiert und eine
Längsachse hat, wobei die Längsachse eine Ebene definiert, die den leitfähigen Körper
halbiert, wobei die Ebene eine erste Körperhälfte (40) und eine zweite Körperhälfte
(42) definiert; und
b) eine gecrimpte Zone (50), die nur in einer von der ersten Körpferhälfte und der
zweiten Körperhälfte angeordnet ist, wobei die gecrimpte Zone ein Kontaktelement (48)
aufweist, das einen Bereich hat, der in den Innendurchmesser zu der Längsachse des
leitfähigen Körpers hin vorsteht;
wobei das Kontaktelement durch langgestreckte Schlitze (44, 46) definiert ist, die
in dem leitfähigen Körper ausgebildet sind; wobei der Mittelleiter
dadurch gekennzeichnet ist, dass das Kontaktelement ein erstes und ein zweites Ende hat, die sich zu einem Mittelbereich
des Kontaktelements hin verjüngen.
2. Mittelleiter nach Anspruch 1, wobei die langgestreckten Schlitze Sägeschnitte sind,
wobei jeder der Sägeschnitte in dem leitfähigen Körper unter einem Winkel verläuft,
der zu der Ebene, die den leitfähigen Körper halbiert, parallel ist.
3. Mittelleiter nach Anspruch 1, wobei die langgestreckten Schlitze in dem leitfähigen
Körper in einem Abstand von der Ebene ausgebildet sind, die den leitfähigen Körper
halbiert.
4. Mittelleiter nach Anspruch 1, wobei das Kontaktelement einen Mittelbereich und ein
erstes und ein zweites Ende (54, 56) aufweist, wobei das erste und das zweite Ende
breiter sind als der Mittelbereich.
5. Mittelleiter nach Anspruch 1, wobei jedes von dem ersten und dem zweiten Ende des
Kontaktelements mit dem leitfähigen Körper integral verbunden ist.
6. Mittelleiter nach Anspruch 1, wobei die gecrimpte Zone um einen Bereich eines Umfangs
des leitfähigen Körpers herum angeordnet ist, wobei ein verbleibender Bereich des
Umfangs eine ununterbrochene Zone definiert.
7. Mittelleiter nach Anspruch 1, wobei der Innendurchmesser des leitfähigen Körpers nur
an einem ersten Ende des leitfähigen Körpers angeordnet ist, wobei der Innendurchmesser
ungefähr 0,813 Millimeter (0,032 inches) ist.
8. Verfahren zum Herstellen eines Mittelleiters, wobei das Verfahren die folgenden Schritte
aufweist:
a) Bereitstellen eines leitfähigen Körpers (32), wobei der leitfähige Körper eine
Längsachse definiert;
b) Ausbilden eines ersten und eines zweiten Schlitzes (44, 46) innerhalb einer ersten
Hälfte des leitfähigen Körpers; und
c) Crimpen eines Kontaktbereichs des leitfähigen Körpers, wobei der Kontaktbereich
zwischen dem ersten und dem zweiten Schlitz angeordnet ist, die innerhalb der ersten
Hälfte des leitfähigen Körpers ausgebildet sind;
wobei der Schritt des Ausbildens des ersten und des zweiten Schlitzes das Vorsehen
des Kontaktbereichs aufweist, wobei der Kontaktbereich das erste und das zweite Ende
aufweist, die sich zu einem Mittelbereich hin verjüngen.
9. Verfahren nach Anspruch 8, wobei der Schritt des Ausbildens des ersten und des zweiten
Schlitzes das Sägeschneiden der Schlitze in den leitfähigen Körper umfasst.
10. Verfahren nach Anspruch 9, wobei der Schritt des Sägeschneidens der Schlitze das Abwinkeln
eines Sägeblatts parallel zu einer Ebene umfasst, welche die erste Hälfte des leitfähigen
Körpers definiert, um den ersten und den zweiten Schlitz innerhalb der ersten Hälfte
des leitfähigen Körpers zu bilden.
11. Verfahren nach Anspruch 8, wobei der Schritt des Crimpens des Kontaktbereichs das
Crimpen nur des Kontaktbereichs umfasst, wobei der Kontaktbereich entlang einem Bereich
eines Umfangs des leitfähigen Körpers angeordnet ist, wobei ein verbleibender Bereich
des Umfangs eine ununterbrochene Zone definiert.
12. Verfahren nach Anspruch 11, wobei der Schritt des Crimpens nur des Kontaktbereichs
das Vorsehen einer ununterbrochenen Zone von ungefähr 75 % des Umfangs des leitfähigen
Körpers umfasst.
13. Verfahren nach Anspruch 8, wobei der Schritt des Vorsehens des Kontaktbereichs das
Vorsehen des Kontaktbereichs umfasst, dessen erstes und zweites Ende mit dem leitfähigen
Körper integral verbunden sind.
14. Verfahren nach Anspruch 8, wobei der Schritt des Vorsehens des leitfähigen Körpers
das Vorsehen des leitfähigen Körpers umfasst, der einen Innendurchmesser an einem
ersten Ende des leitfähigen Körpers hat, wobei der Innendurchmesser ungefähr 0,813
Millimeter (0,032 inches) ist.
1. Conducteur central (34), comprenant :
a) un corps conducteur (32) définissant un diamètre interne (D1) et ayant un axe longitudinal,
l'axe longitudinal définissant un plan qui coupe le corps conducteur, le plan définissant
une première moitié de corps (40) et une seconde moitié de corps (42) ; et
b) une région ondulée (50) positionnée uniquement dans l'une parmi la première moitié
de corps et la seconde moitié de corps, la région ondulée comprenant un élément de
contact (48) ayant une partie qui fait saillie dans le diamètre interne vers l'axe
longitudinal du corps conducteur ;
dans lequel l'élément de contact est défini par des fentes allongées (44, 46) formées
dans le corps conducteur ; le conducteur central étant
caractérisé en ce que :
l'élément de contact a des première et seconde extrémités qui se rétrécissent progressivement
vers une partie centrale de l'élément de contact.
2. Conducteur central selon la revendication 1, dans lequel les fentes allongées sont
des traits de scie, chacun des traits de scie étant prévu dans le corps conducteur
selon un angle parallèle au plan qui coupe le corps conducteur.
3. Conducteur central selon la revendication 1, dans lequel les fentes allongées sont
formées dans le corps conducteur à une certaine distance du plan qui coupe le corps
conducteur.
4. Conducteur central selon la revendication 1, dans lequel l'élément de contact comprend
une partie centrale et des première et seconde extrémités (54, 56), les première et
seconde extrémités étant plus larges que la partie centrale.
5. Conducteur central selon la revendication 1, dans lequel chacune des première et seconde
extrémités de l'élément de contact est raccordée de manière solidaire au corps conducteur.
6. Conducteur central selon la revendication 1, dans lequel la région ondulée est positionnée
sur une partie d'une circonférence du corps conducteur, une partie restante de la
circonférence définissant une région non interrompue.
7. Conducteur central selon la revendication 1, dans lequel le diamètre interne du corps
conducteur est positionné uniquement au niveau d'une première extrémité du corps conducteur,
le diamètre interne étant d'approximativement 0,813 millimètre (0,032 pouce).
8. Procédé pour fabriquer un conducteur central, le procédé comprenant les étapes consistant
à :
a) prévoir un corps conducteur (32), le corps conducteur définissant un axe longitudinal
;
b) former les première et seconde fentes (44, 46) à l'intérieur d'une première moitié
du corps conducteur ; et
c) onduler une partie de contact du corps conducteur, la partie de contact étant située
entre les première et seconde fentes formées à l'intérieur de la première moitié du
corps conducteur ;
dans lequel l'étape consistant à former les première et seconde fentes comprend l'étape
consistant à prévoir la partie de contact, la partie de contact comprenant des première
et seconde extrémités qui se rétrécissent progressivement vers une région centrale.
9. Procédé selon la revendication 8, dans lequel l'étape consistant à former les première
et seconde fentes comprend l'étape consistant à couper à la scie les fentes dans le
corps conducteur.
10. Procédé selon la revendication 9, dans lequel l'étape consistant à couper à la scie
les fentes, comprend l'étape consistant à orienter une lame de scie parallèlement
à un plan qui définit la première moitié du corps conducteur afin de former les première
et seconde fentes dans la première moitié du corps conducteur.
11. Procédé selon la revendication 8, dans lequel l'étape consistant à onduler la partie
de contact comprend l'étape consistant à onduler uniquement la partie de contact,
la partie de contact étant située le long d'une partie d'une circonférence du corps
conducteur, une partie restante de la circonférence définissant une région non interrompue.
12. Procédé selon la revendication 11, dans lequel l'étape consistant à onduler uniquement
la partie de contact comprend l'étape consistant à prévoir une région non interrompue
représentant approximativement 75% de la circonférence du corps conducteur.
13. Procédé selon la revendication 8, dans lequel l'étape consistant à prévoir la partie
de contact comprend l'étape consistant à prévoir la partie de contact ayant les première
et seconde extrémités raccordées de manière solidaire au corps conducteur.
14. Procédé selon la revendication 8, dans lequel l'étape consistant à prévoir le corps
conducteur comprend l'étape consistant à prévoir le corps conducteur ayant un diamètre
interne au niveau d'une première extrémité du corps conducteur, le diamètre interne
étant d'approximativement 0,813 millimètre (0,032 pouce).