(19)
(11) EP 1 953 739 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
06.08.2008  Patentblatt  2008/32

(21) Anmeldenummer: 08008031.0

(22) Anmeldetag:  12.04.2006
(51) Internationale Patentklassifikation (IPC): 
G10L 19/14(2006.01)
G10L 21/02(2006.01)
G10L 19/02(2006.01)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30) Priorität: 28.04.2005 DE 102005019863
17.06.2005 DE 102005028182
08.07.2005 DE 102005032079

(62) Anmeldenummer der früheren Anmeldung nach Art. 76 EPÜ:
06725716.2 / 1869671

(71) Anmelder: SIEMENS AKTIENGESELLSCHAFT
80333 München (DE)

(72) Erfinder:
  • Gartner, Martin
    74950 Ekolsund (SE)
  • Schandl, Stefan
    1130 Wien (AT)

 
Bemerkungen:
Diese Anmeldung ist am 25-04-2008 als Teilanmeldung zu der unter INID-Code 62 erwähnten Anmeldung eingereicht worden.
 


(54) Verfahren und Vorrichtung zur Geräuschunterdrückung


(57) Verfahren zur Geräuschunterdrückung (S_out) bei einem decodierten Signal, welches sich aus einem ersten decodierten Signalbeitrag (S_CELP) und einem zweiten decodierten Signalbeitrag (S_TDAC) zusammensetzt mit folgenden Schritten: Ermitteln einer ersten Energiehüllkurve (env_CELP) und einer zweiten Energiehüllkurve (env_TDAC) des ersten Signalbeitrags (S_CELP) und des zweiten decodierten Signalbeitrags (S_TDAC); Bilden einer Kennzahl (R) in Abhängigkeit von einem Vergleich von erster und zweiter Energiehüllkurve (env_CELP, env_TDAC); Ableiten eines Verstärkungsfaktors (G) in Abhängigkeit von der Kennzahl (R)




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zur Decodierung eines Signals, welches mittels eines Hybridcodierers codiert wurde. Die Erfindung betrifft ferner eine entsprechend ausgestaltete Vorrichtung zur Decodierung.

[0002] Zur Codierung von Audiosignalen haben sich unterschiedliche Verfahren als besonders effektiv herausgestellt. So hat sich beispielsweise zur qualitativ guten Codierung von Sprachsignalen, welche eine gute Qualität aufweisen, und bei gleichzeitig niedrigen Bitraten des codierten Datenstroms insbesondere die sogenannte CELP Technologie (Code Excited Linear Prediction) als günstig erwiesen. CELP arbeitet im Zeitbereich und basiert auf einem Anregungsmodell für ein variables Filter. Hierbei wird das Sprachsignal sowohl durch Filterparameter als auch durch Parameter, welche das Anregungssignal beschreiben, dargestellt.

[0003] Zumeist wird in Hinblick auf Codierer auch von dem entsprechenden Decodierer gesprochen, der die codierten Daten wieder entschlüsseln bzw. decodieren kann. Entsprechende Kommunikationsgeräte weisen einen solchen sogenannten Codec auf, um eben Daten versenden und empfangen zu können, was für eine Kommunikation erforderlich ist.

[0004] Für die Codierung von Musik- und Sprachsignalen, welche eine sehr hohe Qualität insbesondere auch bei höheren Bitraten des codierten Datenstroms aufweisen sollen, haben sich vor allem sogenannte perceptuelle Codecs (Codec = Codierer/Decodierer) durchgesetzt. Diese perceptuellen Codecs basieren auf einer Informationsreduktion im Frequenzbereich und sie nutzen Maskierungseffekte des menschlichen Hörsystems aus, d.h., dass beispielsweise bestimmte Frequenzen oder Änderungen, die der Mensch nicht wahrnehmen kann, auch nicht dargestellt werden. Dadurch wird die Komplexität des Coders oder Codecs gesenkt. Da diese Coder meist mit einer Transformierung des Zeitsignals in den Frequenzbereich arbeiten, wobei die Transformierung beispielsweise mittels MDCT (Modified Discrete Cosine Transformation) vorgenommen wird, werden diese oft auch als Transformcoder oder -codecs bezeichnet. Dieser Ausdruck wird im Rahmen der weiteren Anmeldung verwendet.

[0005] In letzter Zeit kommen zunehmend sogenannte skalierbare Codecs zum Einsatz. Skalierbare Codecs sind solche Codecs, die zunächst eine exzellente Audioqualität bei relativ hoher Bitrate des codierten Datenstroms erzeugen. Damit ergeben sich relativ lange, periodisch zu übertragende Pakete.

[0006] Ein Paket ist eine Mehrzahl Daten, welche in einem Zeitintervall anfallen, und zusammen eben in diesem Paket übertragen werden. Bei Paketen werden oftmals wichtige Daten zuerst und weniger wichtige Daten nachfolgend übertragen. Bei diesen langen Paketen besteht jedoch die Möglichkeit, diese Pakete zu kürzen, indem ein Teil der Daten entfernt wird, insbesondere indem der zeitlich zuletzt übertragene Teil des Paketes abgeschnitten wird. Damit geht natürlich eine Verschlechterung der Qualität einher.

[0007] Wegen der zuvor genannten Eigenschaften bietet es sich für skalierbare Codecs an, bei niedrigen Bitraten mit CELP Codecs zu arbeiten und bei höheren Bitraten mit Transformcodecs. Dies hat zur Entwicklung von hybriden CELP/Transformcodecs geführt, die ein Basissignal mit guter Qualität nach dem CELP Verfahren codieren und zusätzlich dazu ein Zusatzsignal nach dem Transformcodec-Verfahren generieren, mit dem das Basissignal verbessert wird. Dies führt dann zu der erwünschten exzellenten Qualität.

[0008] Nachteilig bei der Verwendung dieser Transformcodecs ist, dass ein sogenannter "Pre-Echo Effekt" auftritt. Dabei handelt es sich um ein Störgeräusch, das gleichmäßig über die gesamte Blocklänge eines Transform-Coder Blocks verteilt ist. Unter einem Block versteht man, eine Gesamtheit von Daten, welche gemeinsam codiert werden. Für Transformcodecs beträgt eine typische Blocklänge 40 msec. Das Störgeräusch des PreEcho Effekts entsteht durch Quantisierungsfehler von übertragenen spektralen Komponenten. Bei gleichmäßigem Signalpegel liegt der Pegel dieses Störgeräusches überall unter dem Pegel des Nutzsignals. Hat man allerdings ein Nutzsignal mit einem Null-Pegel gefolgt von einem plötzlichen hohen Pegel, so ist dieses Störgeräusch vor dem Einsetzen des hohen Pegels deutlich zu hören. In der Literatur ist ein bekanntes Beispiel hierfür der Signalverlauf beim Klappern einer Castanette.

[0009] Zur Reduktion dieses Effekts werden bereits verschiedene Verfahren angewandt. Diese arbeiten aber alle mit der Übertragung von Zusatzinformationen, was wiederum das Coderdesign sehr komplex gestaltet oder erzwingt, dass die Coder mit vorübergehend erhöhten Bitraten arbeiten müssen.

[0010] Ausgehend von diesem Stand der Technik ist es Aufgabe der vorliegenden Erfindung, eine einfache Möglichkeit zu schaffen, eine Störgeräuschreduktion bei mittels eines hybriden Coders codierten Signalen herbeizuführen, bei der keine Zusatzinformation benötigt wird.

[0011] Diese Aufgabe wird durch den Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche.

[0012] Für diese Störgeräuschreduktion bei einem decodierten Signal, das sich aus einem ersten, z.B. von einem CELP Decodierer stammenden, und einem zweiten, z.B. von einem TransformDecodierer stammenden Signal zusammensetzt, werden folgende Schritte durchgeführt:

[0013] Aus den beiden decodierten Signalbeiträgen wird jeweils die zugehörige Energiehüllkurve ermittelt. Unter Energiehüllkurve versteht man insbesondere den Energieverlauf eines Signals gegenüber der Zeit.

[0014] Aus einem Vergleich beider Hüllkurven wird eine Kennzahl gebildet, beispielsweise ein Verhältnis.

[0015] Diese Kennzahl dient wiederum zum Ableiten eines Verstärkungsfaktors.

[0016] Dieses Verfahren weist insbesondere Vorteile auf, wenn Energie z.B. bei dem Codierverfahren, welches zum ersten decodierten Signalbeitrag führt, zuverlässiger erkannt wird. Dann kann nämlich durch die Kennzahl oder den Verstärkungsfaktor eine Abweichung erkannt werden.

[0017] Insbesondere kann der zweite decodierte Signalbeitrag mit dem Verstärkungsfaktor multipliziert werden. Dadurch kann die oben erwähnte Abweichung korrigiert werden.

[0018] Sämtliche Signale können in Zeitabschnitte unterteilt sein, wobei insbesondere die Zeitabschnitte, welche für den ersten decodierten Signalbeitrag verwendet werden, kürzer sein können als diejenigen für den zweiten.

[0019] Damit können aufgrund der höheren Zeitauflösung Energieabweichungen im zweiten Signalbeitrag besser korrigiert werden.

[0020] Der erste Signalbeitrag kann aus einem CELP Decodierer stammen, der ein CELP codiertes Signal decodiert, der zweite aus einem Transformdecodierer, der ein transformcodiertes Signal decodiert. Dieses transformcodierte Signal kann insbesondere auch den ersten, CELP-decodierten Signalbeitrag enthalten, der nach der Decodierung transform-codiert wurde, zum vom Sender übertragenen transformcodierten Signal addiert wurde (also schon im Frequenzbereich), und dann im Transformdecodierer als Beitrag zum zweiten Signalbeitrag decodiert wird.

[0021] Alternativ hierzu kann eine Summenbildung aus dem übertagenen CELP-codierten Signal und dem übertragenen transformcodierten-Signal auch im Zeitbereich erfolgen.

[0022] Der Verstärkungsfaktor kann insbesondere gleich der Kennzahl sein. Dann kann sich bei Bildung eines geeigneten Verhältnisses einen entsprechende Schwächung des zweiten decodierten Signalbeitrages ergeben, wenn dieses vornehmlich das Pre-Echo noise enthält.

[0023] Insbesondere kann es sich bei dem ersten Decoder um einen auf der CELP-Technologie basierenden, oder/und bei dem zweiten Coder um einen Transformdecoder handeln. Damit ergibt sich eine besonders effektive Geräuschreduktion bei gleichzeitig exzellenter Qualität des decodierten Signals.

[0024] Die Veränderung des empfangenen Gesamtsignals auf Decoderseite kann insbesondere nur dann vorgenommen werden, wenn bestimmte Kriterien vorliegen.

[0025] Insbesondere ist es vorgesehen, dass das Verändern des empfangenen Gesamtsignals auf Decoderseite nur erfolgt, wenn die Signalpegeländerung eine bestimmte Schwelle übersteigt. Dies ermöglicht eine besonders effektive Pre-Echo-Reduktion, da der Pre-Echo-Effekt - wie bereits dargelegt- hauptsächlich bei Pegeländerungen auftritt, da dann das Pre-Echo Geräusch überhalb des Signalpegels liegt. Andererseits wird durch dieses selektive Verändern nicht unnötigerweise auf die Qualitätsverbesserung durch den zweiten Coder verzichtet.

[0026] Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren geschaffen, bei dem aufbauend auf dem erläuterten Verfahren das decodierte Signal bzw. dessen erste und zweite decodierte Signalbeiträge nach Frequenzbereichen getrennt behandelt werden. Dies hat folgenden Vorteil. Beim Decodieren ist für mehrere Frequenzbänder die Sollenergie für diese Frequenzbändern bekannt, nämlich aus der Energie der einzelnen nach Frequenzbereichen getrennten ersten decodierten Signalbeiträge, beispielsweise CELP-Signale. Durch den zweiten decodierten Signalbeitrag kann nun ein Add-on Signal (Zusatzbeitrag) bereitgestellt werden, welches jedoch in seiner Energie erheblich abweichen kann. Problematisch ist vor allem, wenn die Energie des zweiten decodierten Signalbeitrags erheblich zu hoch ist, z.B. aufgrund von Pre-Echo-Effekten. Das Verfahren führt nun für jedes einzeln behandelte Frequenzband eine Begrenzung der Energie (bzw. des Pegels) des zweiten Signalbeitrags abhängig von der Energie des ersten Signalbeitrags ein. Dieses Verfahren ist umso effektiver, je mehr Frequenzbänder auf diese Weise getrennt behandelt werden.

[0027] Weitere Vorteile der Erfindung werden anhand beispielhafter Ausführungsformen dargestellt.

[0028] Es zeigen:
Figur 1
eine Darstellung der wesentlichen Komponenten auf einer Codiererseite und einer Decodiererseite zur Erläuterung des beispielhaften Ablaufs eines Codierungs/Decodierungsvorganges;
Figur 2
eine schematische Darstellung einer Kommunikationsanordnung zur Übertragung eines codierten Signals zwischen Kommunikationsgeräten über ein Kommunikationsnetz;
Figur 3
eine Decodiereinrichtung bzw. eine Geräuschunterdrückungseinrichtung zur Erläuterung der Reduktion von Pre-Echos mit Hilfe von Gain-Adaption, welche auf einem CELP Signal basiert;
Figur 4
eine weitere Ausführungsform zur Pegelanpassung bzw. zur Reduktion von Pre-Echos.


[0029] In FIG 1 ist der schematische Ablauf eines Codierungs- und Decodierungsvorgang anhand einer Ausführungsführungsform gezeigt. Auf einer Codiererseite C wird ein analoges an einen Empfänger zu übertragendes Signal S mittels einer Vorverarbeitungseinrichtung PP für die Codierung vorverarbeitet bzw. vorbereitet, beispielsweise indem es digitalisiert wird. Es erfolgt weiterhin eine Zerlegung des Signals in Zeitabschnitte bzw. Rahmen in einer Unterteilungseinheit F. Ein derart vorbereitetes Signal wird einer Codierungseinheit COD zugeführt. Die Codierungseinheit COD weist einen hybriden Coder auf, der einen ersten Coder, einen CELP-Coder COD1 und einen zweiten Coder, einen Transformcoder COD2 umfasst. Der CELP-Coder COD1 umfasst eine Mehrzahl von CELP-Codern COD1_A, COD1_B, COD1_C, welche in unterschiedlichen Frequenzbereichen arbeiten. Durch diese Aufteilung in unterschiedliche Frequenzbereiche kann eine besonders akkurate Codierung gewährleistet werden. Ferner unterstützt diese Aufteilung in unterschiedliche Frequenzbereiche sehr gut das Konzept eines skalierbaren Codecs, da je nach gewünschter Skalierung nur einer, mehrere oder alle Frequenzbereiche übertragen werden können. Der CELP-Coder COD1 liefert einen Grundbeitrag S_G zum codierten Gesamtsignal S_GES. Der Transformcoder COD2 liefert einen Zusatzbeitrag S_Z zum codierten Gesamtsignal S_GES. Das codierte Gesamtsignal S_GES wird mittels einer Kommunikationsvorrichtung KC auf der Codiererseite C an eine Kommunikationsvorrichtung KD auf einer Decodiererseite D übertragen. Hier erfolgt ggf. eine Verarbeitung (beispielsweise eine Aufspaltung des codierten Gesamtsignals in die Beiträge S_G und S_Z) der Daten bzw. des empfangenen codierten Gesamtsignals S_GES in einer Verarbeitungseinrichtung PROC, wobei anschließend die verarbeiteten Daten bzw. das verarbeitete Signal einer Decodiereinrichtung DEC zur nachfolgenden Decodierung DEC übertragen werden (vgl. dazu auch die Figuren 3 und 4). An die Decodierung schließt sich eine Geräuschreduktion in einer Geräuschreduktionseinrichtung NR an, die in Figur 3 in größerem Detail dargestellt ist.

[0030] In FIG 2 ist ein erstes Kommunikationsgerät COM1 (beispielsweise repräsentierend die Komponenten auf der Codiererseite C von Figur 1) dargestellt, welches eine Sende- und Empfangseinheit ANT1 (beispielsweise entsprechend der Kommunikationsvorrichtung KC) zum Übertragen oder/und Empfangen von Daten, sowie eine Recheneinheit CPU1 aufweist, die zur Realisierung der Komponenten auf der Codiererseite C bzw. zur Durchführung des in FIG 1 dargestellten Codierverfahrens (Verarbeitung auf der Codiererseite C) eingerichtet ist. Die Übertragung von Daten erfolgt mittels der Sende/Empfangseinheit ANT1 über ein Kommunikationsnetz CN (das beispielsweise je nach zu verwendenden Kommunikationsgeräten als Internet, ein Telefonnetz bzw. Mobilfunknetz eingerichtet sein kann). Der Empfang erfolgt durch ein zweites Kommunikationsgerät COM2 (beispielsweise repräsentierend die Komponenten auf der rechten Seite der Figur 1), welches wiederum eine Sende- und Empfangseinheit ANT2 (beispielsweise entsprechend der Kommunikationsvorrichtung KB), sowie eine Recheneinheit CPU2 aufweist, welche zur Realisierung der Komponenten auf der Decodiererseite D bzw. zur Durchführung eines Decodierverfahrens (Verarbeitung auf der Decodiererseite D) gemäß FIG 1 eingerichtet ist. Beispiele für mögliche Realisierungen der Kommunikationsgeräte COM1 und COM2, in denen dieses Verfahren zur Anwendung kommen kann, sind IP-Telefone, Voice-Gateways oder Mobiltelefone.

[0031] Es sei nun auf Figur 3 verwiesen, in der die Decodierungseinrichtung DEC und die Geräuschreduktionseinrichtung NR mit den wesentlichen Komponenten zur schematischen Darstellung des Ablaufs einer Pre-Echo-Reduktion zu sehen ist.
Ein CELP-codiertes Signal S_COD,CELP (entsprechend dem Signal S_G) wird mittels eines Gesamtband-CELP-Decodierers DEC_GES,CELP decodiert. Das decodierte Signal S_CELP wird einerseits zu einer (ersten) Energiehüllkurvenbestimmungseinheit GE1 zur Bestimmung der zugehörigen Hüllkurve ENV_CELP, anderseits zu einem TDAC(Time domain aliasing cancellation)Encoder COD_TDAC weitergeleitet. Bei der TDAC-Codierung handelt es sich um ein Beispiel für eine Transformcodierung.

[0032] Das codierte Signal S_COD,CELP,TDAC wird zusammen mit dem von Empfängerseite stammenden transformcodierten Signal S_COD,TDAC (entsprechend dem Signal S_Z) zu einem Transformdecodierer DEC_TDAC geleitet, um ein decodiertes Signal S_TDAC zu erzeugen. Auch aus diesem decodierten Signal S_TDAC wird ebenfalls in einer (zweiten) Energiehüllkurvenbestimmungseinheit GE2 die zugehörige Energiehüllkurve ENV_TDAC bestimmt. In einer Verhältnisbestimmungseinheit D wird das Verhältnis R der Energiehüllkurven zueinander als Kennzahl zeitabschnittweise bestimmt. In einer Bedingungsfeststellungseinheit BFE wird festgestellt, ob das Verhältnis R einen festgelegten Mindestabstand von 1 (1: beide Energiehüllkurven gleich) hat, d.h. dass die Pegel beider Signale gleich sind oder zumindest nur um einen vorgegebenen Prozentsatz voneinander abweichen.

[0033] Ergebnis ist dann ein Verstärkungsfaktor bzw. Dämpfungsfaktor G, der im gezeigten Fall gleich dem Verhältnis R (Kennzahl) ist, mit dem der transformdecodierte Signalbeitrag S_TDAC in einer Multiplikationseinrichtung M multipliziert wird, um ein endgültiges störgeräuschreduziertes Signal S_OUT zu erhalten. Genauer gesagt, wird beispielsweise davon ausgegangen, dass das Verhältnis R gebildet wird durch R = ENV_CELP / ENV_TDAC, und wurde festgelegt, dass dieses Verhältnis einen vorbestimmten Schwellenwert SW nicht unterschreiten darf, so wird bei unterschreiten des Schwellenwerts SW der transformdecodierte Signalbeitrag S_TDAC mit einem Verstärkungsfaktor G, beispielsweise G = R multipliziert, was zu einer Dämpfung des Signalbeitrags S_TDAC führt. Es ist ferner möglich, in dem Fall, in dem der Schwellenwert SW nicht unterschritten wird, dem Verstärkungsfaktor G den Wert "1" zuzuordnen, so dass bei einer Multiplikation des Signalbeitrags S_TDAC, die dann in jedem Fall stattfinden kann, der Wert S_TDAC unverändert bleibt.

[0034] Somit kann im Fall einer Abweichung der Energie des transformdecodierten Signalbeitrags S_TDAC, wobei die Abweichung eben der genannte Pre-Echo-Effekt ist, die Energie bzw. der Pegel dieses Signalbeitrags zum zuverlässigeren Wert des CELP-decodierten Signals S_CELP bewegt werden, so dass das endgültige Signal S_out störgeräuschreduziert ist.

[0035] Es sei nun auf Figur 4 verwiesen, anhand der eine weitere Ausführungsform zur Reduzierung des Pre-Echoeffekts erläutert werden soll.

[0036] Es ist möglich, dass anstelle nur eines CELP-codecs mehrere, nach Frequenzbereichen getrennte (CELP- oder andere) Codecs vorhanden sind. Die in Figur 4 gezeigte Ausführungsform entspricht größtenteils der in Figur 3 gezeigten Ausführungsform und stellt ein Erweiterung diesbezüglich dar, dass das in Figur 3 gezeigte Verfahren nicht auf die Gesamtsignale von CELP (oder anderen)-Decoder und Transformdecoder angewendet wird, sondern dass das Verfahren getrennt nach Frequenzbereichen angewendet wird. Das heißt, es findet zunächst eine Aufteilung des Gesamtsignals bzw. der einzelnen Signalbeiträge nach Frequenzbereichen statt, wobei das Verfahren von Figur 3 dann pro Frequenzbereich auf die einzelnen Signalbeiträge angewendet werden kann.

[0037] Der Vorteil davon wird im Folgenden erläutert. Beim Decoder ist für mehrere Frequenzbänder die Sollenergie für diese Frequenzbänder bekannt, nämlich aus der Energie der einzelnen nach Frequenzbereichen getrennten CELP-Signale. Der Transformdecoder liefert nun ein Add-on Signal (Zusatzbeitrag), welches jedoch in seiner Energie erheblich abweichen kann. Problematisch ist vor allem, wenn die Energie des Signals aus dem Transformdecoder erheblich zu hoch ist, z.B. aufgrund von Pre-Echo-Effekten. Das Verfahren führt nun für jedes einzeln behandelte Frequenzband eine Begrenzung der Transformcodec-Energie abhängig von der CELP-Energie ein. Dieses Verfahren ist umso effektiver, je mehr Frequenzbänder auf diese Weise getrennt behandelt werden.

[0038] Dies wird anhand von folgendem Beispiel sofort deutlich:

[0039] Das Gesamtsignal bestehe aus einem 2000 Hz Ton, welches gänzlich aus dem CELP codec Anteil kommt. Zusätzlich, aufgrund von Preecho Effekten liefert der Transformcodec nun noch ein Störsignal mit einer Frequenz von 6000 Hz; die Energie des Störsignals sei 10% der Energie des 2000 Hz Tons.
Das Kriterium zur Begrenzung des Transformcodec-Anteils sei, dass dieser max. gleich groß wie der CELP-Anteil sein darf. Fall 1: Es wird kein Splitting nach Frequenzbändern gemacht (erste Ausführungsform): Dann wird das 6000 Hz Störsignal nicht unterdrückt, da es nur 10% der Energie des 2000Hz Tons aus dem CELP Codec hat.

[0040] Fall 2: Die Frequenzbänder A: 0 - 4000 Hz und B: 4000 Hz - 8000 Hz werden getrennt behandelt (weitere Ausführungsform): In diesem Fall wird das Störsignal komplett unterdrückt, da im oberen Frequenzband der CELP-Anteil Null ist, und somit auch das Transformcodecsignal auf den Wert Null begrenzt wird.

[0041] In Figur 4 ist nun (entsprechend zu Figur 3) wieder eine Decodierungseinrichtung DEC und eine Geräuschreduktionseinrichtung NR mit den wesentlichen Komponenten zur schematischen Darstellung des Ablaufs einer Pegelanpassung bzw. Pre-Echo-Reduktion zu sehen. Für die Erzeugung von codierten Signalen bzw. die Übertragung an einen Empfänger sei wieder auf die Figuren 1 oder 2 verwiesen.

[0042] Ein CELP-codiertes Signal S_COD,CELP (entsprechend dem Signalbeitrag S_G) wird mittels eines Gesamtband-CELP-Decodierers DEC_GES,CELP' decodiert. Der Gesamtband-CELP-Decodierer umfasst dabei zwei Decodiereinrichtungen, eine erste Decodiereinrichtung DEC_FB_A zum Decodieren des Signals S_COD,CELP in einem ersten Frequenzband A und eine zweite Decodiereinrichtung DEC_FB_B zum Decodieren des Signals S_COD,CELP in einem zweiten Frequenzband B. Ein erstes decodiertes Signal S_CELP_A wird zu einer (ersten) Energiehüllkurvenbestimmungseinheit GE1_A zur Bestimmung der zugehörigen Hüllkurve ENV_CELP_A geleitet, während ein zweites decodiertes Signal S_CELP_B zu einer (zweiten) Energiehüllkurvenbestimmungseinheit GE1_B zur Bestimmung der zugehörigen Hüllkurve ENV_CELP_B geleitet wird.

[0043] Ein von der Empfängerseite stammendes transformcodiertes Signal S_COD,TDAC (entsprechend dem Signal S_Z) wird zu einem Transformdecodierer DEC_TDAC geleitet, um ein decodiertes Signal S_TDAC zu erzeugen, das wiederum einem Frequenzbandsplitter (Frequenzbandaufteiler) FBS zugeführt wird. Dieser teilt das Signal S_TDAC in zwei Signale, nämlich S_TDAC_A für das Frequenzband A und S_TDAC_B für das Frequenzband B auf. Die Aufteilung in Frequenzbänder kann optional auch im Frequenzbereich, vor der Rücktransformation in den Zeitbereich, erfolgen. Dadurch entfällt insbesondere die mit einem im Zeitbereich arbeitenden Frequenzbandsplitter (Hoch-,Tief-, oder Bandpassfilter) einhergehende Verzögerung. Auch aus diesen decodierten frequenzbandabhängigen Signalen S_TDAC_A und S_TDAC_B wird ebenfalls in einer (dritten) Energiehüllkurvenbestimmungseinheit GE2_A bzw. einer (vierten) Energiehüllkurvenbestimmungseinheit GE2_B die zugehörige Energiehüllkurve ENV_TDAC_A bzw. ENV_TDAC_B bestimmt.

[0044] In einer ersten Verstärkungsbestimmungseinheit BD_A wird für das Frequenzband A anhand der Energiehüllkurven ENV_CELP_A und ENV_TDAC_A ein Verstärkungsfaktor (oder auch Dämpfungsfaktor, da die Verstärkung negativ ist) G_A bestimmt, während in einer zweiten Verstärkungsbestimmungseinheit BD_B für das Frequenzband B anhand der Energiehüllkurven ENV_CELP_B und ENV_TDAC_B ein Verstärkungsfaktor (Dämpfungsfaktor) G_B bestimmt wird. Die Bestimmung der jeweiligen Verstärkungsfaktoren kann entsprechend der Bestimmung von Figur 3 (vgl. Komponenten D, BFE) von statten gehen. Es kann dabei beispielsweise wieder ein jeweiliges Verhältnis (Kennzahl) R_A, R_B der Energiehüllkurven für ein jeweiliges Frequenzband A und B, nämlich R_A = ENV_CELP_A/ ENV_TDAC_A bzw. R_B = ENV_CELP_B/ENV_TDAC_B gebildet werden, wobei für ein jeweiliges Frequenzband ein Schwellenwert SW_A bzw. SW_B festgelegt wird, bei dessen Unterschreiten ein jeweiliger Verstärkungsfaktor G_A (beispielsweise G_A = R_A) bzw. G_B (beispielsweise G_B = R_B) erzeugt wird, der schließlich auf ein jeweiliges frequenzbandabhängiges Signal S_TDAC_A bzw. S_TDAC_B anzuwenden ist (um eine Dämpfung herbeizuführen). Wird ein jeweiliger Schwellenwert nicht unterschritten kann ein jeweiliger Verstärkungsfaktor G_A bzw. G_B auf "1" festgelegt werden, so dass bei einer Multiplikation ein jeweiliges frequenzbandabhängiges Signal S_TDAC_A bzw. S_TDAC_B unverändert bleibt.

[0045] In einer ersten Multiplikationseinrichtung M_A für das Frequenzband A wird schließlich der Verstärkungsfaktor G_A mit dem Signal S_TDAC_A und wird der Verstärkungsfaktor G_B mit dem Signal S_TDAC_B multipliziert. Schließlich werden die multiplizierten (eventuell gedämpften) frequenzbandabhängigen Signale zusammengeführt, um ein endgültiges störgeräuschreduziertes (Gesamtfrequenz-)Signal S_OUT' zu erzielen.

[0046] Es sei bemerkt, dass obwohl im vorliegenden Beispiel lediglich eine Aufspaltung der decodierten Signalbeiträge S_CELP_A, S_CELP_B, S_TDAC_A und S_TDAC_B in zwei Frequenzbereiche A und B stattgefunden hat, eine Aufteilung auch in 3 oder mehr Frequenzbereiche möglich und vorteilhaft sein kann.


Ansprüche

1. Verfahren zur Geräuschunterdrückung (S_OUT) bei einem decodierten Signal, welches sich aus einem ersten decodierten Signalbeitrag (S_CELP) und einem zweiten decodierten Signalbeitrag (S_TDAC) zusammensetzt mit folgenden Schritten:

a. Ermitteln einer ersten Energiehüllkurve (ENV_CELP) und einer zweiten Energiehüllkurve (ENV_TDAC) des ersten Signalbeitrags (S_CELP) und des zweiten decodierten Signalbeitrags (S_TDAC);

b. Bilden einer Kennzahl (R) in Abhängigkeit von einem Vergleich von erster und zweiter Energiehüllkurve (ENV_CELP, ENV_TDAC) ;

c. Ableiten eines Verstärkungsfaktors (G) in Abhängigkeit von der Kennzahl (R).


 
2. Verfahren nach Anspruch 1 mit folgendem weiteren Schritt:

d. Multiplizieren des zweiten decodierten Signalbeitrags (S_TDAC) mit dem Verstärkungsfaktor (G), wenn die Kennzahl (R) ein festgelegtes Kriterium (C) nicht erfüllt.


 
3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die decodierte Signalbeiträge (S_TDAC, S_CELP) in Zeitabschnitte unterteilt ist und die Schritte a) bis d) zeitabschnittweise erfolgen.
 
4. Verfahren nach Anspruch 3, bei dem die Länge der Zeitabschnitte für den ersten und den zweiten decodierten Signalbeitrag (S_TDAC, S_CELP) unterschiedlich ist und die Schritte a) bis d) zeitabschnittweise für den kürzeren Zeitabschnitt erfolgen.
 
5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der erste decodierte Signalbeitrag (S_CELP) durch Decodieren eines ersten Codierbeitrags (S_COD,CELP)aus einem ersten Decodierer (DEC_GES,CELP) stammt und der zweite decodierte Signalbeitrag (S_TDAC) durch Decodieren eines zweiten Codierbeitrags (S_COD,TDAC, S_COD,CELP,TDAC) aus einem zweiten Decodierer (DEC_TDAC) stammt .
 
6. Verfahren nach Anspruch 5, bei dem der zweite Codierbeitrag (S_TDAC) den ersten Codierbeitrag (S_CELP) enthält.
 
7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Kennzahl (R) durch das Bilden des Verhältnisses von erster und zweiter Energiehüllkurve (ENV_CELP, ENV_TDAC) gebildet wird.
 
8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Verstärkungsfaktor (G) gleich der Kennzahl (R) ist.
 
9. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das erste decodierte Signal (S_CELP) durch Decodieren eines Signals (S_COD,CELP) gebildet wird, welches von einer Mehrzahl von ersten Codierern (COD1_A, COD1_B, COD_C) stammt, welche in unterschiedlichen Frequenzbereichen arbeiten.
 
10. Verfahren nach einem der vorhergehenden Ansprüche 5 oder 6, bei dem der erste Decodierer (DEC_GES_CELP) durch einen CELP-Decodierer gebildet wird.
 
11. Verfahren nach einem der vorhergehenden Ansprüche 5, 6 oder 10, bei dem der zweite Decodierer (DEC_TDAC) durch einen Transform Decodierer gebildet wird.
 
12. Verfahren nach einem der vorhergehenden Ansprüche 5, 6, 10 oder 11, bei dem erster und zweiter Decodierer (DEC_TDAC, DEC_CELP) den gleichen Frequenzbereich umfassen.
 
13. Verfahren zur Geräuschunterdrückung bei einem einem Frequenzband zugeordneten decodierten Signal , welches sich aus einem jeweiligen ersten decodierten Signalbeitrag (S_CELP_A, S_CELP_B) und einem jeweiligen zweiten decodierten Signalbeitrag (S_TDAC_A, S_TDAC_B) für ein jeweiliges Teilfrequenzband des Frequenzbands zusammensetzt, mit folgenden Schritten:

a. Ermitteln einer ersten Energiehüllkurve (ENV_CELP_A, ENV_CELP_B) des jeweiligen ersten decodierten Signalbeitrags und einer zweiten Energiehüllkurve (ENV_TDAC_A, ENV_TDAC_B) und des jeweiligen zweiten decodierten Signalbeitrags für ein jeweiliges Teilfrequenzband;

b. Bilden einer jeweiligen Kennzahl (R_A, R_B) in Abhängigkeit von einem Vergleich von erster und zweiter Energiehüllkurve für ein jeweiliges Teilfrequenzband;

c. Ableiten eines jeweiligen Verstärkungsfaktors (G_A, G_B) in Abhängigkeit von der jeweiligen Kennzahl für ein jeweiliges Teilfrequenzband.


 
14. Verfahren nach Anspruch 13 mit folgendem weiteren Schritt:

d. Multiplizieren des zweiten decodierten Signalbeitrags (S_TDAC_A, S_TDAC_B) mit dem jeweiligen Verstärkungsfaktor (G_A, G_B) für ein jeweiliges Teilfrequenzband, wenn die jeweilige Kennzahl (R_A, R_B) ein festgelegtes Kriterium nicht erfüllt.


 
15. Vorrichtung, insbesondere Kommunikationsgerät, mit einer Recheneinheit (CPU2), die zur Durchführung eines Verfahrens nach Anspruch 1 bis 14 ausgebildet ist.
 




Zeichnung