(19)
(11) EP 1 961 832 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
27.08.2008  Patentblatt  2008/35

(21) Anmeldenummer: 08002285.8

(22) Anmeldetag:  07.02.2008
(51) Internationale Patentklassifikation (IPC): 
C22C 38/26(2006.01)
C21D 9/08(2006.01)
C22C 38/32(2006.01)
C21D 8/10(2006.01)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL BA MK RS

(30) Priorität: 07.02.2007 DE 102007006875

(71) Anmelder: BENTELER STAHL/ROHR GMBH
33104 Paderborn (DE)

(72) Erfinder:
  • Diekmann, Uwe, Dr.
    33102 Paderborn (DE)
  • Gramlich, Michael, Dr.
    33104 Paderborn (DE)
  • Tegethoff, Dirk
    33154 Salzkotten (DE)

(74) Vertreter: Griepenstroh, Jörg 
Bockermann - Ksoll - Griepenstroh Patentanwälte Bergstrasse 159
44791 Bochum
44791 Bochum (DE)

   


(54) Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen und Rohrbauteil


(57) Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen, die in Gewichtsprozenten aus
Rest Eisen und üblicher Verunreinigungen besteht, wobei die Zugfestigkeit Rm des Rohrbauteils im vergüteten Zustand größer als 1.800 MPa und die Streckgrenze Rp0,2 größer als 1.600 MPa ist.


Beschreibung


[0001] Die Erfindung betrifft die Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen sowie ein solches Rohrbauteil.

[0002] Bauteile, die über sehr lange Zeiträume hohen dynamischen Beanspruchungen standhalten müssen, sind insbesondere im Bereich des Fahrwerks von Kraftfahrzeugen zu finden. Als Beispiel sind Stabilisatoren zu nennen, welche zur Verringerung der Kurvenneigung der Karosserie und zur Beeinflussung des Eigenlenkverhaltens eingesetzt werden. Sie versteifen bei einseitiger Belastung die Federung, da die Widerstandskraft des Werkstoffs des Stabilisators der Seitenneigung federnd entgegenwirkt. Ein weiteres Beispiel wäre eine torsionsbelastete Welle.

[0003] Stabilisatoren sind hinsichtlich der Beanspruchungsart geraden Torsionsfedern oder auch Drehstäben zuzuordnen, da ein Stabilisator bei unterschiedlichem Einfedern der Räder um seine Längsachse verdrillt wird. Aus der EP 0 753 595 B1 ist es bekannt, Stabilisatoren aus Rohren herzustellen. Hierbei macht man sich das bei einem Rohr günstigere Verhältnis des Widerstandsmoments gegen Torsion zur Rohrmasse im Vergleich zu einem Vollstab zunutze. Bei dem für die Torsion optimalen Verhältnis von Wanddicke zu Durchmesser der Rohre müssten die zur Anwendung gelangenden Werkstoffe unter Beibehaltung der in den Fahrzeugen konstruktiv vorgegebenen bzw. verwendbaren Außendurchmesser eine um etwa den Faktor 1,4 höhere Streckgrenze und Zugfestigkeit als Werkstoffe von Vollstäben besitzen.

[0004] Ein weiterer wesentlicher Faktor zur Erzielung einer hohen Dauerwechselfestigkeit ist die Oberflächengüte der Außen- und Innenoberfläche der verwendeten Rohre. Die besten Oberflächengüten weisen längsnahtgeschweißte und ggf. nachfolgend kalt gezogene Rohre aus gewalztem Stahlband auf. Hierbei werden die bei nahtlos gezogenen Rohren vorkommenden Fehler, wie Fältelungen usw., vermieden.

[0005] Der in der EP 0 753 595 B1 beschriebene Stahlwerkstoff mit folgender Zusammensetzung: C0,18 - 0,3%, Si0,1 - 0,5 %, Mn 1,1 - 1,8 %, P max. 0,025 %, S max. 0,025%, Ti 0,02 - 0,05 %, B 0,0005 - 0,005%, Al 0,01 - 0,05 %, Rest Eisen und erschmelzungsbedingter Verunreinigungen, erreichte bereits Zugfestigkeiten von maximal 1.600 MPa. Allerdings reicht diese Zugfestigkeit nicht aus, um mit Stabilisatoren aus einem Vollmaterial höherer Festigkeit zur konkurrieren. Auch der bislang häufig zum Einsatz gelangende Stahl 34MnB5 für Rohre zur Herstellung von Stabilisatoren erreicht nur Zugfestigkeiten bis 1.800 MPa, allerdings bei einer relativ geringen Dauerfestigkeit.

[0006] Zum Stand der Technik zählt auch die EP 1 698 712, die einen Stahlwerkstoff für hochbelastete Federn offenbart, welcher folgende Zusammensetzung aufweist: C 0,35 - 0,65 %, Si 1,4 - 2,5 %, Mn 0,1 - 1,0 %, Cr > 2,0 %, Ni > 1,0 %, Cu>1,0%, P > 0,020 %, S > 0,020 %, N > 0,006 %, Al > 0,1 % und Rest Eisen. Dieser Stahl erzielt zwar auch Festigkeiten bis ca. 2.100 MPa.

[0007] Hohe Ti- und Al-Gehafte beinhalten das Risiko einer verminderten Dauerschwingfestigkeit, was auf die Ausbildung harter Phasen zurückgeführt werden kann. Titangehalte im Bereich größer als 0,01 % führen zur primären Ausscheidung von harten Titannitriden, die innere Kerben im Werkstoff erzeugen und bei höchstfesten Federstählen die Dauerfestigkeit negativ beeinflussen. Aluminiumgehalte größer als 0,01 % führen ebenfalls zur Bildung von Aluminiumoxiden und Aluminiumnitriden mit den vorstehend beschriebenen negativen Eigenschaften auf die Dauerfestigkeit. Weiterhin ist dieser Stahlwerkstoff bei einem Kupfergehalt über 0,2 % für den Rohrherstellungsprozess, d. h. das Streckreduzieren, weniger geeignet und in Anbetracht des relativ hohen Nickelgehaltes zudem teuer. Ein Kupfergehalt von mehr als 0,2 % führt bei der Warmumformung zum Komgrenzenversagen, insbesondere wenn, wie im Fall der Rohrherstellung, vorhandene hohe Zuspannungsanteile bei der Warmumformung vorliegen.

[0008] Die ebenfalls bekannten höchstfesten Federstähle 50CrV4, 55SiCr6 sind schweißtechnisch nicht zu verarbeiten und damit zur Herstellung von geschweißten und nachgezogenen Rohren nicht geeignet.

[0009] Stand der Technik ist nach Kenntnis der Anmelderin die Herstellung von geschweißten Rohren durch Press-Schweißverfahren bis zu einem Kohlenstoff Gehalt von ca. 0,35 %. Ein höherer Kohlenstoffgehalt führt in der Regel zu hohen Spitzenhärten in der Schweißnaht mit derart verringerter Duktilität, dass während der Kalibrierung und Abkühlung des Rohrbauteils Risse entstehen. Daher gelten Stähle mit Kohlenstoff-Gehalten über 0,35 % allgemein als nicht schweißbar.

[0010] Wenn aufgrund eines hohen Kohlenstoffgehaltes nahtlos gezogene Stahlrohre zum Einsatz kommen sollen, spielt die Oberflächenqualität eine wichtige Rolle. Die Verbesserung der Oberflächenqualität kann bei nahtlosen Rohren durch Innenschälen, d.h. durch eine spanabhebende Bearbeitung, erreicht werden, die allerdings mit hohen Kosten verbunden ist und damit nur eine geringe Wirtschaftlichkeit aufweist.

[0011] Aufgrund der Tatsache, dass die Festigkeit von geeigneten Rohrwerkstoffen bislang auf ca. 1.800 MPa begrenzt war und im Bereich der Vollmaterialien Festigkeiten in einer Größenordnung von 2.100 MPa realisiert werden konnten, wie z.B. in der Fedemindustrie bei der Verwendung von 55SiCr6, war es bislang nicht möglich, das Leichtbaupotenzial von dynamisch belasteten Rohrbauteilen vollständig auszunutzen.

[0012] Der Erfindung liegt hiervon ausgehend die Aufgabe zugrunde, die Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen aufzuzeigen, wobei der Werkstoff den hohen Anforderungen für die Herstellung von dynamisch belasteten Rohrbauteilen, insbesondere zur Herstellung von geraden oder gewundenen Torsionsfedern, wie z.B. Schraubenfedern, oder auch Hohlwellen geeignet ist und zudem das Festigkeitsniveau von Federstählen erreicht.

[0013] Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.

[0014] Vorteilhafte Weiterbildungen des Erfindungsgedankens sind Gegenstand der Unteransprüche. Ein Rohrbauteil mit den gewünschten Eigenschaften ist Gegenstand des Patentanspruchs 6.

[0015] Die Lösung des vorstehend beschriebenen Problems wird in der Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen gesehen, wobei die Stahllegierung in Gewichtsprozenten aus
C
0,32 - 0,45
Si
0,8 - 2,2
Mn
0,1 - 0,8
Cr
0,8 - 1,8
N
max. 0,015
Nb
0,01 - 0,08
V
max. 0,04
B
0,001 - 0,005
sowie Eisen als Rest und üblicher Verunreinigungen besteht. Zu den üblichen Verunreinigungen zählen max. 0,015 % Phosphor, max. 0,01 % Schwefel, max. 0,2 % Nickel, max. 0,1 % Kupfer, max. 0,02 % Zinn, max. 0,015 % Aluminium, max. 0,01 % Titan, max. 0,08 % Molybdän. Die Zugfestigkeit des aus diesem Werkstoff hergestellten Rohrbauteils liegt im vergüteten Zustand in einem Bereich größer als 1.800 MPa, wobei die Streckgrenze Rp02 in einem Bereich größer als 1.600 MPa liegt. Dieser Werkstoff eignet sich hervorragend zur Herstellung von Stabilisatoren, Antriebswellen, Drehstäben und Schraubenfedern, d.h. allgemein für gerade oder gewundene Torsionsfedem sowie Hohlwellen, die dynamisch beansprucht werden. Zu diesen vorteilhaften Materialeigenschaften hat eine Variation der chemischen Zusammensetzungen durch Absenkung des Kohlenstoffgehaltes und eine Optimierung der Cr-Si-Mn-Balance und die Anwendung eines Mikrolegierungskonzepts (Nb, V, B) geführt. Ein weiterer wichtiger Aspekt ist, dass der Werkstoff sehr hohe Abkühlgeschwindigkeiten erträgt und daher mit Abschreckgeschwindigkeken größer als 200 K/s wasservergütbar ist, ohne dass Härterisse entstehen oder ein signifikanter Verzug auftritt. Übliche Federstähle werden demgegenüber in Öl bei deutlich langsameren Abkühlgeschwindigkeiten gehärtet (< 100 K/s).

[0016] Der Stahlwerkstoff ist auch dann noch schweißbar, wenn der Kohlenstoffgehalt größer als 0,35 % ist, so dass sich als Herstellungsverfahren für dynamisch belastete Rohrbauteile a) sowohl das Schweißen und Ziehen, b) das direkte Schweißen, als auch c) die nahtlose Herstellung eignen.

[0017] Die gute Schweißbarkeit wird durch eine vergleichsweise hohe Duktilität im Schweißnahtbereich erreicht, so dass eine verminderte Neigung zum spröden Versagen der Schweißnaht bei der Abkühlung und beim Kalibrieren der Rohre vorhanden ist. Dies kann auf feinste Lamellen aus Restaustenit im Härtegefüge zurückgeführt werden. Im Transmissionsetektronenmikroskop werden diese Lamellen im Nanometerbereich sichtbar. Diese Lamellen erhöhen die Duktilität des Härtegefüges ohne die Streckgrenze und Festigkeit abzusenken.Die Lamellen besitzen eine mittlere Korngröße von 60 - 70 nm.

[0018] Eine nahtlose Herstellung bietet sich insbesondere in Kombination mit einer optimierten Innenbearbeitung an, wenn die Wanddicke s in einem Bereich größer als 18% des Außendurchmessers D ist (s/D > 18%). Der erfindungsgemäße Werkstoff eignet sich daher für alle genannten Rohrherstellungsverfahren, ist zudem kostengünstig herstellbar und besitzt aufgrund hoher erreichbarer Festigkeitswerte das Potenzial, bei torsionsbelasteten Bauteilen, z.B. Torsionsfedem, Vollmaterialien zu ersetzen.

[0019] Die erfindungsgemäßen Vorteile ergeben sich insbesondere dann, wenn die Stahllegierung in Gewichtsprozenten ausgedrückt folgende Zusammensetzung aufweist:
C
0,40 - 0,44
Si
1,5 - 2,2
Cr
1,1 - 1,5
N
0,004 - 0,015
Nb
0,02 - 0,04
V
0,01 - 0,15
B
0,002 - 0,004


[0020] Rest Eisen und üblicher Verunreinigungen. Im vergüteten Zustand ist es möglich, mit den zuvor genannten Legierungen Zugfestigkeiten Rm größer als 2.000 MPa und Streckgrenzen Rp0,2 größer als 1.900 MPa zu erreichen. Im vergüteten Zustand besitzt das hergestellte Rohrbauteil eine Dehnung A5 größer als 9 %. Bemerkenswert ist zudem, dass bereits bei einer sehr niedrigen. Anlasstemperatur von 250 C eine. Brucheinschnürung Z von größer als 30 % erreicht wird, so dass eine hohe Streckgrenze erhalten bleibt.

[0021] Das Vergüten erfolgt durch vorzugsweise induktives Aufheizen auf Austenitisierungstemperatur von 900 - 950 °C, anschließendes Abschrecken in Wasser oder Öl (vorzugsweise Wasser mit einer Abkühlgeschwindigkeit > 200 K/s, insbesondere > 400 K/s) und anschließendes Anlassen auf eine Temperatur von 200 - 300 °C, vorzugsweise < 275°C, insbesondere auf eine Temperatur von 250°C.

[0022] Auf diese Weise lassen sich dynamisch belastbare Rohrbauteile in Durchmesserbereichen von 3mm bis 150 mm, insbesondere in Durchmesserbereichen von 8 mm bis 50 mm herstellen. Die Wanddicke beträgt bei derart dynamisch belasteten Rohrbauteilen vorzugsweise 10 % bis 22 % des Außendurchmessers des Rohrbauteils. Die Herstellung der Rohrbauteile erfolgt bevorzugt im weichgeglühten, perlitischen Zustand.

[0023] Durch die Verwendung der erfindungsgemäßen Legierung kann aufgrund der höheren Werkstofffestigkeiten eine Gewichtsreduktion größer als 20 % im Verhältnis zu vergleichbaren Bauteilen aus Vollmaterial erreicht werden. Zudem führt die geringere Masse zu einer vorteilhaften Erhöhung der Eigenfrequenzen der dynamisch belasteten Rohrbauteile. Ein weiterer Vorteil ist, dass dieser hochbelastbare Federstahl wasservergütbar ist.

[0024] Anhand der nachfolgenden Tabelle wird deutlich, welche hervorragenden Eigenschaften die Stahllegierung für den beanspruchten Verwendungszweck mit sich bringt.

[0025] In der nachfolgenden Tabelle sind Stahllegierungen 1 bis 5 unterschiedlicher chemischer Zusammensetzung aufgelistet. Die Stahllegierung Nr. 1 ist der Werkstoff, wie er bei den erfindungsgemäßen Rohrbauteilen verwendet werden soll. Der Vergleichswerkstoff Nr. 2 entspricht der Legierung 34MnB5. Der Vergleichswerkstoff Nr. 3 entspricht der Legierung 25MnB5. Der Vergleichswerkstoff Nr. 4 entspricht der Legierung 42CrMo4. Der Vergleichswerkstoff Nr. 5 entspricht der Legierung 70Mn7. Sämtliche Stahllegierungen befinden sich im Lieferzustand QT (QT= Quenched and Tempered, d.h.gehärtet und angelassen). Sie sind mit einer Anlasstemperatur von 250 °C vergütet worden. Es fällt auf, dass die Zugfestigkeit Rm bei der Stahllegierung Nr. 1 mit einem aus dem Wertebereich 2.138 MPa bis 2.152 MPa arithmetische gemittelten Wert für die Festigkeit Rm von 2.145 MPa Werte größer als 2.100 MPa erreicht. Dabei ist der aus dem Wertebereich von 2.072 MPa bis 2.085 MPa arithmetisch gemittelte Wert für die die Streckgrenze Rp0,2 mit 2.078 MPa größer als 2.000 MPa. Gleichzeitig liegt die Bruchdehnung A5 mit Werten von 9,3% bis 9.8% (arithmetisch gemittelt 9,5%) deutlich über den Werten der Vergleichswerkstoffe. Auch die Brucheinschnürung Z liegt mit Werten von 30,3 % bis 32,6 % (arithmetisch gemittelt 31,5%) höher als die Brucheinschnürungen der Vergleichsproben.
Nr. C [%] Si [%] Mn [%] Cr [%] Nb [%] V [%] B [%] AI [%] Ti [%] Rm [MPa] Rp0,2 [MPa] A5 [%] Z [%]
1 0,42 2,0 0,5 1,4 0,04 0,01 0,002 - - 2145 2078 9,5 31,5
2 0,34 0,2 1,4 0,1 - - 0,002 0,02 0,03 1664 1490 8,5 25
3 0,25 0,22 1.33 0,1 - - 0,002 0,03 0.04 1511 1300 8 27
4 0,43 0,23 0.8 1.05 - - - 0,03 - 2020 1750 6 21
5 0,7 0,35 1,5 - - - - - - 1970 1790 0.6 2



Ansprüche

1. Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen, die in Gewichtsprozenten aus

Kohlenstoff 0,32 - 0,45

Silizium 0,8 - 2,2

Mangan 0,1 - 0,8

Chrom 0,8 - 1,8

Stickstoff max. 0,015

Niob 0,01 - 0,08

Vanadium max. 0,4

Bor 0,001 - 0,005

Rest Eisen und üblicher Verunreinigungen besteht, wobei die Zugfestigkeit Rm des Rohrbauteils im vergüteten Zustand größer als 1.800 MPa und die Streckgrenze Rp0,2 größer als 1.600 MPa ist.
 
2. Verwendung einer Stahllegierung nach Anspruch 1, die in Gewichtsprozenten aus

Kohlenstoff 0,40 - 0,44

Silizium 1,5 - 2,2

Mangan 0,3 - 0,8

Chrom 1,1 - 1,5

Stickstoff 0,004- 0,015

Niob 0,02 - 0,04

Vanadium 0,01 - 0,015

Bor 0,002 - 0,004

Rest Eisen und üblicher Verunreinigungen besteht, wobei die Zugfestigkeit Rm des Rohrbauteils im vergüteten Zustand größer als 1.800 MPa und die Streckgrenze Rp0,2 größer als 1.600 MPa ist.
 
3. Verwendung einer Stahllegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im vergüteten Zustand des Rohrbauteils die Zugfestigkeit Rm größer als 2.000 MPa und die Streckgrenze Rp0,2 größer als 1.900 MPa ist.
 
4. Verwendung einer Stahllegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im vergüteten Zustand des Rohrbauteils die Zugfestigkeit Rm größer als 2.100 MPa und die Streckgrenze Rp0,2 größer als 2.000 MPa ist.
 
5. Verwendung einer Stahllegierung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im vergüteten Zustand des Rohrbauteils die Dehnung A5 größer als 9 % ist.
 
6. Rohrbauteil hergestellt aus einer Stahllegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es mit einer Abschreckgeschwindigkeit größer als 200 Kelvin/Sekunde wasservergütet ist.
 
7. Rohrbauteil hergestellt aus einer Stahllegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass bei einer Anlasstemperatur von 250 °C die Brucheinschnürung Z größer als 30 % ist.
 
8. Rohrbauteil hergestellt aus einer Stahllegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sein Außendurchmesser in einem Bereich von 3 mm bis 150 mm liegt.
 
9. Rohrbauteil nach Anspruch 8, dadurch gekennzeichnet, dass der Außendurchmesser in einem Bereich von 8 mm bis 50 mm liegt.
 
10. Rohrbauteil nach Anspruch. 8 oder 9, dadurch gekennzeichnet, dass seine Wanddicke zwischen 10 % und 25% seines Außendurchmessers beträgt.
 
11. Rohrbauteil hergestellt aus einer Stahllegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es ein Drehmoment übertragendes oder torsionsbelastetes Bauteil ist.
 
12. Rohrbauteil nach Anspruch 11, dadurch gekennzeichnet, dass es eine gerade oder gewundene Torsionsfeder oder eine Hohlwelle ist.
 
13. Rohrbauteil nach einem der Ansprüche 5 bis 12, dadurch gekennzeichnet, dass die Randentkohlungstiefe maximal 50 µm beträgt.
 
14. Rohrbauteil nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, dass die Fehlertiefe maximal 50 µm beträgt.
 





Recherchenbericht










Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente