(11) **EP 1 967 794 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

10.09.2008 Patentblatt 2008/37

(51) Int Cl.: F24B 1/02 (2006.01)

(21) Anmeldenummer: 08004294.8

(22) Anmeldetag: 07.03.2008

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA MK RS

(30) Priorität: 08.03.2007 DE 102007011438

(71) Anmelder: Rainer, Johann 4906 Eberschwang (AT)

(72) Erfinder: Rainer, Johann 4906 Eberschwang (AT)

(74) Vertreter: Leinweber & Zimmermann

Rosental 7 II Aufgang 80331 München (DE)

(54) Ofen mit zentrierter Flammenführung

(57) Die Erfindung betrifft einen Ofen mit einem zum Verbrennen fester Brennstoffe ausgelegten Feuerraum, mit einem im Feuerraum angeordneten schalenartigen

Einsatz mit einer zum Flammendurchgang ausgelegten Durchgangsöffnung in seinem Bodenbereich, die dem Boden oder einer Seite des Feuerraums zugewandt ist.

Beschreibung

[0001] Die Erfindung betrifft einen Ofen mit einem zum Verbrennen fester Brennstoffe ausgelegten Feuerraum. [0002] Derartige Öfen sind bekannt. Sie werden heutzutage als Kaminöfen, aber auch als Heizkörper zum Heizen ganzer Wohnungen und Häuser eingesetzt. Als feste Brennstoffe werden heutzutage zunehmend Preßlinge aus granularem brennbaren Material, sogenannte Pellets, verwendet. Demgemäß werden derartige Öfen modernerer Bauart auch Pellets- oder Stückholzöfen genannt. Um dem Benutzer dabei das angenehme Erscheinungsbild eines offenen Kamins zu geben, ist gerade bei Öfen, die sich im Wohnbereich befinden, die Verbrennung beispielsweise durch eine Glasscheibe in der Ofenwand oder einer aus feuerfestem Glas gefertigten Ofentür von außen einzusehen.

[0003] Nun werden, insbesondere durch die immer besser isolierten Häuser und Wohnungen, z.B. Niedrigenergie- und Passivhäuser, immer kleinere Heizlasten für die Öfen benötigt. Um die dafür geforderten geringen Heizleistungen zu realisieren, werden die Öfen zeitweilig nur im Teillastbetrieb betrieben.

[0004] Gerade im Teillastbetrieb ist es allerdings schwierig, eine gleichmäßige Verbrennung der festen Brennstoffe sicherzustellen. Eine ungleichmäßige oder als Folge daraus auch unvollständige Verbrennung der Brennstoffe führt zu einer Verringerung des feuerungstechnischen Wirkungsgrades, und umgekehrt auch zu einer Erhöhung umweltschädlicher Emissionen. Ein weiterer optischer Nachteil bei ungleichmäßiger Verbrennung liegt darin, daß nur kleinere Flammenbilder mit unruhiger kurzer Flamme sichtbar sind.

[0005] Angesichts der oben angeführten Probleme liegt der Erfindung die Aufgabe zugrunde, einen Ofen bereitzustellen, der eine verbesserte und insbesondere gleichmäßigere Verbrennung der Brennstoffe ermöglicht.

[0006] Diese Aufgabe wird von der Erfindung durch eine Weiterbildung des Ofens der eingangs genannten Art gelöst, der durch einen im Feuerraum angeordneten schalenartigen Einsatz mit einer zum Flammendurchgang ausgelegten Durchgangsöffnung in seinem Bodenbereich, die dem Boden oder einer Seite des Feuerraums zugewandt ist, gekennzeichnet ist.

[0007] Dabei liegt der Erfindung die Erkenntnis zugrunde, daß eine gleichmäßigere Verbrennung, insbesondere von Rückständen noch brennbarer Rauchgase, durch eine von der Durchgangsöffnung des schalenartigen Einsatzes bewirkte geordnete Zentrierung der Flamme ermöglicht wird. Durch diese geordnete Zentrierung strömen die Rauchgase durch die definierte Durchgangsöffnung, wobei eine Durchmischung von brennbaren Rauchgasen mit Verbrennungsluft zwangsweise herbeigeführt wird. Mit der starken Durchmischung der Rauchgase mit Verbrennungsluft ist die zur Restverbrennung der Rauchgase nötige Verbrennungsluft in ausreichender Weise vorhanden. Weiter wird durch die Form

des schalenartigen Einsatzes, im folgenden der Einfachheit halber oft auch als Schale bezeichnet, ein Wärmestauraum definiert, der einem Abkühlen des Brennraums im Bereich des Schaleninnenraums entgegenwirkt, indem die für den Wärmeverlust in dem Bereich sorgende Wärmestrahlung zumindest teilweise aufgehalten wird. Anderenfalls würde die in diesem Bereich entstehende Wärme ungehindert nach außen in Richtung der Feuerrauminnenwände abgestrahlt und zunächst nur zu einer Erwärmung im Bereich des Ofens führen, der von dem Brennzentrum entfernt ist. Je nachdem, ob das Brennen in dem Ofen von unten nach oben erfolgt, wie in den meisten Öfen, oder eher von einer Seite, ist die Durchgangsöffnung dem Boden bzw. dieser Seite des Ofens zugewandt.

[0008] In einer bevorzugten Ausführungsform ist die Durchgangsöffnung zentral, vorzugsweise symmetrisch in dem schalenartigen Einsatz gebildet. So kann die Gleichmäßigkeit der Verbrennung weiter erhöht werden. [0009] In einer besonders bevorzugten Ausführungsform besteht der schalenartige Einsatz zumindest teilweise aus feuerfestem Keramikglas. So können die durch die Durchgangsöffnung 2 nach oben schlagenden Flammen auch im Innenbereich der Schale weiter beobachtet werden. Derartige Keramikgläser sind beispielsweise die von der Firma SCHOTT AG vertriebenen RO-BAX ®- Gläser.

[0010] In einer weiter bevorzugten Ausführungsform ist ein Innenwandbereich des schalenartigen Einsatzes zumindest teilweise reflektierend ausgebildet. So kann von der Flamme im Innenbereich der Schale ausgestrahlte Wärmestrahlung zumindest teilweise wieder in den Innenbereich zurückgestrahlt werden, wodurch sich eine geringere Abkühlung des Verbrennungsbereichs bzw. eine entsprechend höhere Temperatur ergibt, die einer Nachverbrennung der Rauchgase förderlich ist. Ein weiterer Vorteil liegt darin, daß durch eine verstärkte Nachverbrennung die Leuchtkraft der Flamme im Innenbereich der Schale erhöht wird.

40 [0011] Eine einfache Art und Weise, die reflektierenden Innenwandbereiche zu erreichen, besteht darin, die Wände des schalenartigen Einsatzes zumindest teilweise aus Metall zu bilden. Allerdings bleibt die Schale zumindest in den Bereichen undurchsichtig, in denen sie vollkommen aus Metall gebildet ist.

[0012] Dagegen ist nach einer besonders bevorzugten Ausführungsform vorgesehen, daß das feuerfeste Keramikglas an Innenwandbereichen zumindest teilweise verspiegelt ist. So wird zum einen der oben genannte Vorteil verbesserter Nachverbrennung wie auch einer erhöhten Leuchtkraft der Flamme erreicht. Zum anderen wird weiter Keramikglas als Material verwendet, so daß durchsichtige Bereiche der Schalenwände möglich sind.
[0013] In einer nochmals weiter bevorzugten Ausführungsform ist die Verspiegelung des Keramikglases derart, daß die Schalenwandbereiche bei Betrieb des Ofens zumindest teildurchsichtig sind, insbesondere werden. Dabei kann daran gedacht werden, Gläser vom Typ der

15

20

25

ROBAX ®-verspiegelten Glaskeramiken zu verwenden. Diese werden unter anderem für Kaminsichtscheiben oder Innenraumverkleidungen von der Firma SCHOTT AG hergestellt. Bei diesen Scheiben ist in unbefeuertem Zustand der Blick durch die Scheibe verwehrt, wogegen die Flamme im beheizten Zustand durch die Wände sichtbar ist. So kann eine gute Nachverbrennung mit einem guten optischen Erscheinungsbild kombiniert werden.

[0014] Nach einer baulich einfachen Ausgestaltung ist der schalenartige Einsatz zylinderförmig oder schüsselförmig.

[0015] Andererseits kann auch vorgesehen werden, daß die Schalenwände schräg zur Bodenebene des schalenartigen Einsatzes verlaufen. So kommen unterschiedliche Reflektionswinkel bereits durch die Neigung der Schalenwände zum Einsatz, wodurch sich eine optische Verbesserung des Flammenbilds ergibt. Dabei kann der Neigungswinkel der Schalenwände gegenüber der Bodenebene im Bereich von 5° bis 75°, vorzugsweise 15° bis 60°, insbesondere 25° bis 40° betragen. Bei einem Schalenwinkel von 90° hätte man wiederum einen zylinderförmigen Einsatz.

[0016] Nach einer besonders bevorzugten Ausführungsform sind die Schalenwände dagegen konkav ausgebildet. So kann bei der Wärmerückstrahlung zusätzlich ein fokussierender Effekt erreicht werden.

[0017] In diesem Zusammenhang ist insbesondere vorgesehen, daß die Schalenwände elliptisch oder parabolisch geformt sind. So kann zum einen die Fokussierwirkung verstärkt werden, zum anderen kann ein nochmals ansehnlicheres Flammenbild erhalten werden.

[0018] Nach einer besonders zweckmäßigen Ausführungsform hat die Schale in Draufsicht auf die Durchgangsebene des Bodenbereichs eine runde oder polygonale Form. So läßt sich die Schale in die meisten Öfen passend einbauen und ist baulich einfach herzustellen. [0019] Nach einer weiter bevorzugten Ausführungsform hat die Durchgangsöffnung eine runde oder polygonale Form. So kann eine geeignet zentrierte Führung der Flamme erreicht werden, wobei die Randbereiche der Durchgangsöffnung gleichmäßig erwärmt bzw. zum Glühen gebracht werden können, was in einer nochmals gleichmäßigeren Nachverbrennung resultiert.

[0020] Nach einer besonders bevorzugten Ausführungsform weist eine Umrandung der Durchgangsöffnung eine zumindest teilweise spitz auf die Durchgangsöffnung zulaufende Kante auf. Je dünner die Kante ist, desto schneller kann diese zum Glühen gebracht werden und durch Entzünden der Rauchgase die gewünschte Nachverbrennung einleiten. Diese Wirkung wird durch die spitz zulaufende Kante optimal ausgenutzt.

[0021] Im weiteren betrifft die Erfindung auch einen schalenartigen Einsatz mit den oben bereits beschriebenen Merkmalen.

[0022] Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung mit

Bezug auf die beiliegenden Figuren, von denen

- Fig. 1 a eine Seitenansicht eines schalenartigen Einsatzes für einen Ofen einer ersten Ausführungsform der Erfindung zeigt,
- Fig. 1 b den schalenartigen Einsatz aus Fig. 1 a in einer Draufsicht von oben zeigt,
- Fig. 2a eine Fig. 1 a entsprechende Ansicht einer zweiten Ausführungsform eines schalenartigen Einsatzes zeigt,
 - Fig. 2b eine Draufsicht auf den schalenartigen Einsatz aus Fig. 2a ist,
 - Fig. 3a eine Fig. 1 a entsprechende Ansicht einer dritten Ausführungsform eines schalenartigen Einsatzes zeigt,
 - Fig. 3b eine Draufsicht auf den schalenartigen Einsatz aus Fig. 3a ist, und
 - Fig. 4 den schalenartigen Einsatz aus Fig. 3 in einer Schnittansicht zeigt.

[0023] In Fig. 1 ist eine erste Ausführungsform einer Schale 1 für einen erfindungsgemäßen Ofen dargestellt, wobei der Ofen selbst nicht dargestellt ist, sondern lediglich der Innenraum des Ofens durch die Bezugsziffer 10 gekennzeichnet ist. In dem Ofeninnenraum 10 ist eine Brennerschale 11 angeordnet, in der nicht gezeigte Pellets zum Verbrennen aufgenommen sind. Eine im Bodenbereich der Schale 1 vorgesehene Durchgangsöffnung 2 sorgt dafür, daß die (nicht dargestellte) Flamme bei Gebrauch des Ofens im wesentlichen durch die Durchgangsöffnung 2 schlägt und mit ihr Rauchgase und durch den entstehenden Sog auch Verbrennungsgase durch die Öffnung 2 nach oben strömen. Somit wird durch die Durchgangsöffnung 2 ein wohldefinierter Flammenweg vorgegeben, der vergleichsweise eng dimensioniert ist, und die Rauchgase werden sich mit den Verbrennungsgasen stark vermischen.

[0024] Wie aus Fig. 1 a gut zu erkennen ist, verlaufen die Seitenwände 3 schräg zur Bodenebene der Durchgangsöffnung 2. Wie insbesondere aus Fig. 1b besser zu erkennen ist, hat die Schale 1 in Draufsicht eine im wesentlichen viereckige Form, mit vier Seitenwänden 3a bis 3d, die jeweils gegenüber dem Boden um in diesem Ausführungsbeispiel etwa einen Winkel von 30° geneigt sind. Dies kann aus der Neigung der Kante 4 zwischen den Seitenwänden 3a und 3d gut erkannt werden.

[0025] Ist der Ofen mit der darin eingebauten Schale 1 in Betrieb, wird sich zunächst ein Umrandungsbereich 6 der Durchgangsöffnung 2, der die Unterkanten der vier Seitenwände 3a bis 3d bildet, verstärkt erwärmen bzw. zum Glühen gebracht. Durch die erhöhte Temperatur der Umrandung 6 können sich noch brennbare Rauchgase

20

daran entzünden, und für eine weitere Verbrennung und dadurch eine bessere Verbrennungsqualität sorgen.

[0026] Selbstverständlich muß das Material der Schale 1 feuerfest ausgelegt sein. Aber selbst Feuerfestprodukte mit schlechter Wärmeleitung können für die Schale 1 verwendet werden. In der konkreten in Fig. 1 dargestellten Ausführungsform ist die Schale 1 jedoch aus einem feuerfesten Keramikglas hergestellt, so daß die durch die Öffnung schlagende Flamme 2 durch die Seitenwände 3 für den Betrachter sichtbar bleibt, sofern natürlich der Innenraum 10 selbst von außerhalb des Ofens durch etwa eine Glaswand oder eine Glastür sichtbar ist. [0027] Des weiteren sind bei dieser Ausführungsform die Innenflächen der Schalenwände 3a bis 3d verspiegelt, aber nur derart verspiegelt, daß die Transparenz des Keramikglases wenigstens zum Teil erhalten bleibt, etwa zu 50%. Aufgrund der Verspiegelung der Innenflächen wird von den durch die Öffnung 2 hindurchschlagenden Flammen ausgehenden Wärmestrahlung zumindest ein Teil von den Innenflächen der Seitenwände 3a bis 3d der Schale 1 reflektiert und in den Brennbereich oberhalb der Durchgangsöffnung 2 zurückgeworfen. So wird weitere Wärme in diesen Brennbereich zurückgeführt, die Abkühlung in diesem Brennbereich verlangsamt und eine verbesserte Verbrennungsgüte erzielt. Wie bereits eingangs erwähnt, kann dadurch einerseits der Wirkungsgrad der Verbrennung erhöht werden und können auch umweltschädliche Emissionen verringert werden, indem eine vollständigere Restverbrennung der in diesem Bereich befindlichen Rauchgase erreicht wird. Wie bereits gesagt, sorgt eine Erhitzung der Umrandung 6 für einen Glührand, der dafür sorgt, daß sich die Rauchgase auch entzünden können.

[0028] Um den Vorteil der Wärmerückstrahlung zu erreichen, muß nicht unbedingt das verspiegelte Keramikglas zum Einsatz kommen. Es könnten auch keramisch glasierte Oberflächen oder polierte Metalloberflächen für die Innenflächen der Seitenwände 3a bis 3d verwendet werden.

[0029] Allerdings hat die verbleibende Transparenz bei der Verwendung des verspiegelten Keramikglases den Vorteil, daß die Flamme im Schalenbereich nicht nur weiterhin sichtbar bleibt, sondern aufgrund mehrfacher Spiegelungen durch die verspiegelten Innenflächen eine optische Vervielfachung des Flammenbilds für den Betrachter erreicht wird. Diese für den Betrachter angenehme optische Vergrößerung des Flammenspiels wirkt um so mehr, da durch die Konzeption der Schale 1 im Schaleninnenbereich eine gleichmäßigere und bessere Verbrennung erreicht wird, wodurch sich auch die Leuchtkraft der Flamme erhöht.

[0030] Fig. 2 zeigt eine weitere Ausführungsform der Schale 1, bei der die Schale 1 eine polygonale Grundform mit acht Seitenflächen 3a bis 3h aufweist. Entsprechend ist die Durchgangsöffnung 2 als Achteck ausgebildet, während sie bei der Ausführungsform von Fig. 1 quadratisch war. Durch eine größere Anzahl von Seitenwänden mit unterschiedlichem Raumwinkel zum Boden der

Schale 1 wird die Anzahl möglicher Spiegelungsflächen erhöht, wodurch noch weitere Spiegelungsmöglichkeiten gegeben sind und sich ein nochmals beeindruckenderes Flammenspiel für den Betrachter ergibt, sofern das Material für die Schale 1, wie auch bei dieser Ausführungsform bevorzugt, aus dem oben beschriebenen Spiegelglas besteht.

[0031] Fig. 3 zeigt eine dritte Ausführungsform einer Schale 1. Im Unterschied zu den in den Figuren 1 und 2 beschriebenen Ausführungsformen bilden die Seitenflächen 3 keine Schräge 4 mit der Bodenebene, sondern einen in Seitenansicht gekrümmten Rand 5, der für eine konkave Schalenform sorgt. In der in Fig. 3 dargestellten Ausführungsform ist die Form der Krümmung elliptisch. Es könnte aber auch eine parabolische Form verwendet werden. Durch die konkave Krümmung der Schalenwand 3 ergibt sich ein zusätzlicher Fokuseffekt der von der reflektierenden Innenfläche 5a reflektierten Wärmestrahlung, so daß sich im Innenbereich der Schale 1 oberhalb der Durchgangsöffnung 2 nochmals heißere Bereiche ausbilden können, die eine verbesserte Nachverbrennung der durch die Durchgangsöffnung 2 strömenden Rauchgase ermöglichen. Diese Form wird gegenüber den in Fig. 1 und Fig. 2 dargestellten Formen mit schrägen Seitenwänden nochmals bevorzugt.

[0032] In Fig. 4 ist die Schale 1 aus Fig. 3 nochmals vergrößert und im Querschnitt abgebildet. Dabei ist gut zu erkennen, daß sich die Umrandung 6 der Durchgangsöffnung 2 auf die Durchgangsöffnung zu in Form einer spitzen Kante 7 verjüngt. Dies kann einfach dadurch erreicht werden, indem die Kante der Umrandung 6 angeschrägt ist. Die spitz zulaufende Kante 7 kann nochmals schneller zum Glühen gebracht werden, um die daran vorbeiströmenden Rauchgase schneller zu entzünden und die erwünschte Nachverbrennung einzuleiten.

[0033] Das anhand der Figuren 1 bis 4 weiter erläuterte Flammenzentrierungs-, Verbrennungs- und Spiegelungsprinzip kann bei allen handelsüblichen Schalenbrennern sowie Verbrennungssystemen mit einer geführten Flamme zum Einsatz kommen. Es muß aber auch keine Brennschale 11 wie in Fig. 1a dargestellt vorhanden sein, auf der sich die Schale 1 abstützt. Vielmehr kann die Schale 1 auf beliebige andere Weise oberhalb des Bodens des Feuerraums 10 eines Ofens angebracht werden, z.B. durch ein Gestell aus Metall zur Aufnahme der Schale.

[0034] Auch ist die Erfindung nicht auf die dargestellten Ausführungsformen eingeschränkt. Vielmehr können die in der obigen Beschreibung sowie in den Ansprüchen offenbarten Merkmale der Erfindung sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.

Patentansprüche

1. Ofen mit einem zum Verbrennen fester Brennstoffe

45

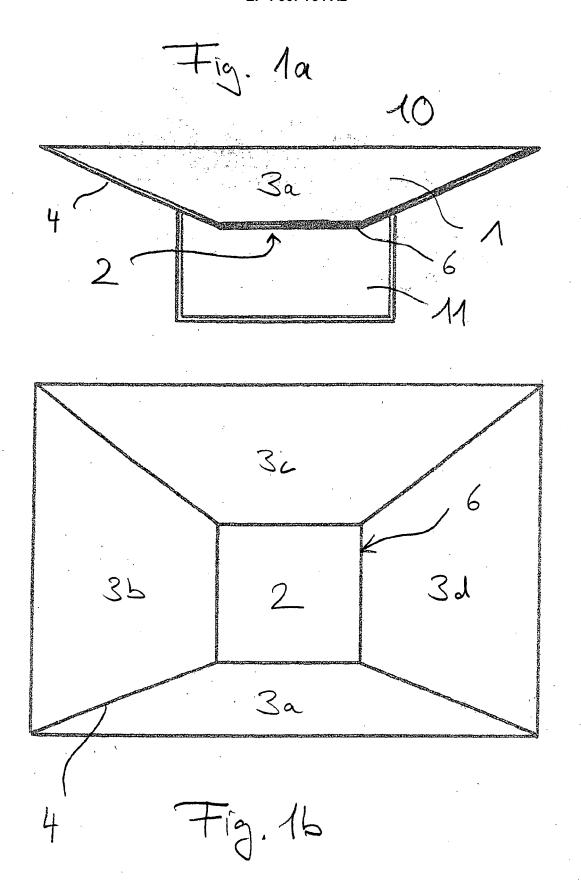
15

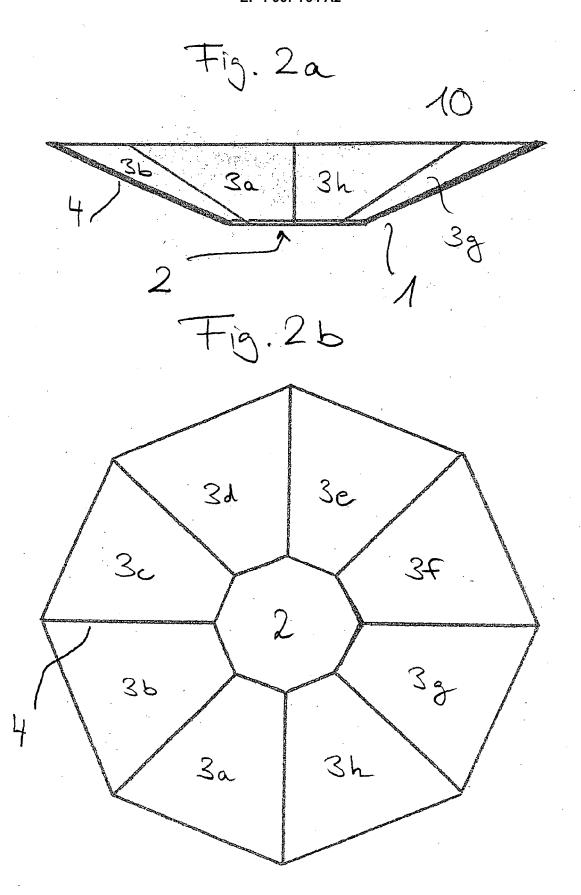
20

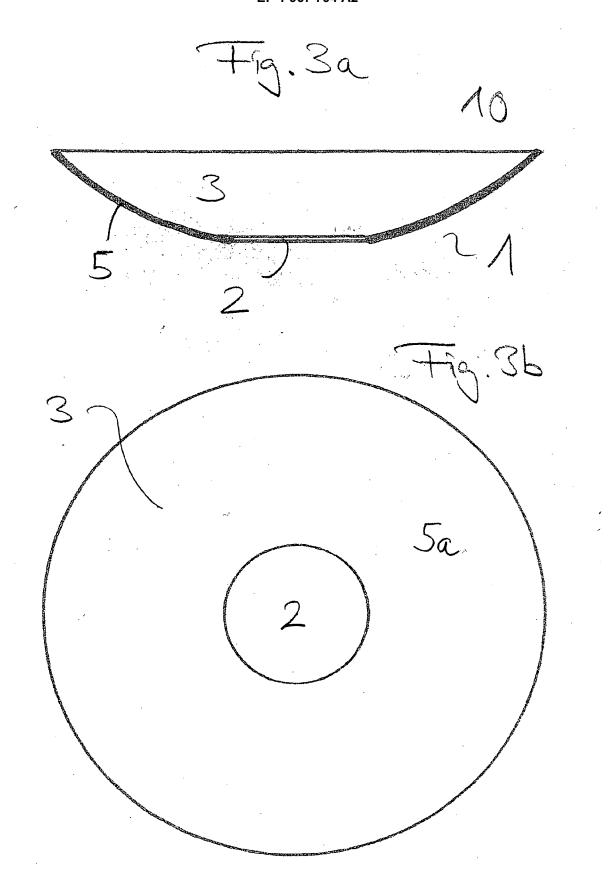
25

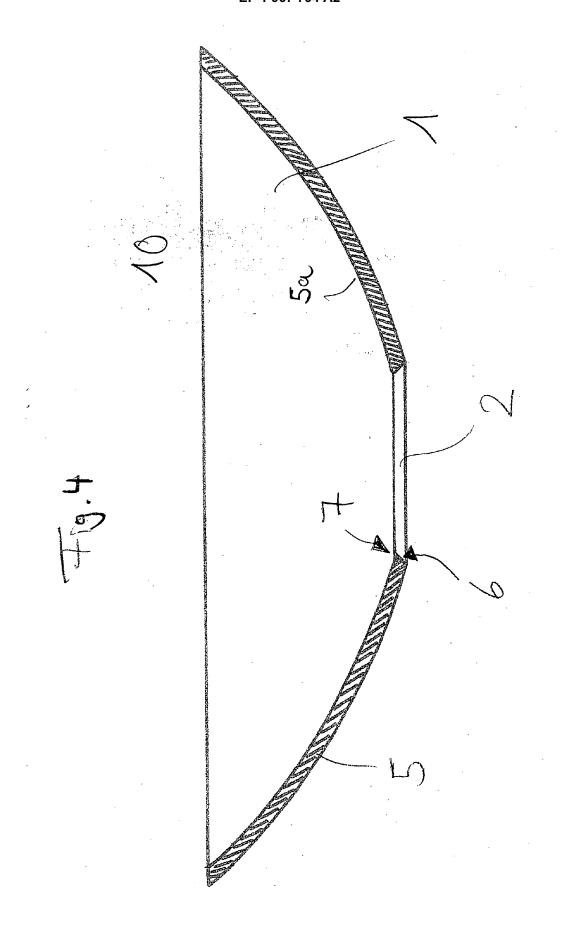
30

35


40


45


ausgelegten Feuerraum (10), **gekennzeichnet durch** einen im Feuerraum (10) angeordneten schalenartigen Einsatz (1) mit einer zum Flammendurchgang ausgelegten Durchgangsöffnung (2) in seinem Bodenbereich, die dem Boden oder einer Seite des Feuerraums (10) zugewandt ist.


- 2. Ofen nach Anspruch 1, dadurch gekennzeichnet, daß die Durchgangsöffnung (2) zentral, vorzugsweise symmetrisch, in dem schalenartigen Einsatz (1) gebildet ist.
- 3. Ofen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der schalenartige Einsatz (1) zumindest teilweise aus feuerfestem Keramikglas besteht.
- 4. Ofen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein Innenwandbereich (5a) des schalenartigen Einsatzes (1) zumindest teilweise reflektierend ausgebildet ist.
- 5. Ofen nach Anspruch 4, dadurch gekennzeichnet, daß die Wände (3) des schalenartigen Einsatzes (1) zumindest teilweise aus Metall gebildet sind.
- 6. Ofen nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß das feuerfeste Keramikglas an Innenwandbereichen (5a) zumindest teilweise verspiegelt ist.
- 7. Ofen nach Anspruch 6, dadurch gekennzeichnet, daß die Verspiegelung des Keramikglases derart ist, daß die Schalenwandbereiche (3) bei betriebenem Ofen zumindest teildurchsichtig sind, insbesondere werden.
- Ofen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der schalenartige Einsatz (1) zylinderförmig oder schüsselförmig ist.
- Ofen nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Schalenwände (3) schräg zur Bodenebene des schalenartigen Einsatzes (1) verlaufen.
- 10. Ofen nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Schalenwände (3) konkav ausgebildet sind.
- Ofen nach Anspruch 10, dadurch gekennzeichnet, daß die Schalenwände (3) elliptisch oder parabolisch geformt sind.
- **12.** Ofen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schale (1) in Draufsicht auf die Durchgangsebene (2) des Bodenbereichs eine runde oder polygonale Form hat.

- 13. Ofen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Durchgangsöffnung (2) eine runde oder polygonale Form aufweist.
- Ofen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Umrandung (6) der Durchgangsöffnung (2) eine zumindest teilweise spitz auf die Durchgangsöffnung (2) zulaufende Kante (7) aufweist.
- 15. Schalenartiger Einsatz (1) zur Anordnung in einem zum Verbrennen fester Brennstoffe ausgelegten Feuerraum (10) eines Ofens, mit einer zum Flammendurchgang ausgelegten Durchgangsöffnung (2) im Bodenbereich des Einsatzes (1), insbesondere mit weiteren in einem der Ansprüche 2 bis 14 angegebenen Merkmalen des Einsatzes (1).

