| (19) |
 |
|
(11) |
EP 1 972 041 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
19.08.2009 Bulletin 2009/34 |
| (22) |
Date of filing: 16.12.2005 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/EP2005/013941 |
| (87) |
International publication number: |
|
WO 2007/068278 (21.06.2007 Gazette 2007/25) |
|
| (54) |
HIGH OR MEDIUM VOLTAGE SWIVEL
HOCH- ODER MITTELSPANNUNGS-DREHTEIL
ROTULE POUR HAUTES ET MOYENNES TENSIONS
|
| (84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE
SI SK TR |
| (43) |
Date of publication of application: |
|
24.09.2008 Bulletin 2008/39 |
| (73) |
Proprietor: Single Buoy Moorings Inc. |
|
1723 Marly (CH) |
|
| (72) |
Inventors: |
|
- LONGMIRE, Stuart
F-06500 Menton (FR)
- PERRATONE, René
F-06500 Menton (FR)
- POLLACK, Jack
Houston, TX 77079 (US)
|
| (74) |
Representative: van Westenbrugge, Andries |
|
Nederlandsch Octrooibureau
Postbus 29720 2502 LS Den Haag 2502 LS Den Haag (NL) |
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The invention relates to a high voltage swivel, comprising an annular outer element
defining a cylindrical chamber around a longitudinal axis and an inner cylindrical
element coaxial with the outer element and rotatable relative to said outer element
around said longitudinal axis, the inner and outer elements each comprising two axially
spaced electrical conductors which conductors are rotatable with the inner and outer
elements, the conductors forming two pairs placed with contact surfaces in mutual
electrical contact, one conductor in each pair being provided at the inner element,
the other at the outer element and being connected to a respective voltage line which
extends to an input terminal and to an output terminal respectively, the conductors
being surrounded by an insulating material. The invention also relates to a medium
voltage swivel of the above mentioned type.
[0002] Such a swivel is known from
US patent nr. 4,252,388 describing a slip ring mounted in a buoy for power transmission from a generating
vessel to an offshore installation. The vessel can weathervane around the buoy in
response to wind en current conditions, the slip ring transmitting high voltage three
phase power. The conductors of the inner element -rotor- are annular plates mounted
on a central frame of dielectric support brackets, alternately with washer-like dielectric
barriers. The conductors of the outer element -stator- are provided by carbon brushes
mounted in brush holders 69 and contact the conductive copper rings of the contacts
of the rotor. The open ring stack allows high dielectric insulating oil to circulate
through the stack, allowing smaller dimensions compared to using air as a dielectric.
[0003] The known swivel has as a disadvantage that the dielectric oil may be contaminated
by the particles originating from the carbon brushes upon wear. Hereby the maximum
voltage which can be transmitted by the swivel is limited.
[0004] Furthermore, use of a circulating liquid dielectric insulator in the known swivel
is relatively complex and requires the need for additional pumps and liquid tight
design of bearings, while at the same time posing limitations to the maximum voltage
to be transmitted by the swivel.
[0005] It therefore is an object of the present invention to provide a medium/high voltage
swivel, preferably a high voltage swivel of compact and reliable design. It is a further
object of the present invention to provide a swivel which can be operated a relatively
high voltages.
[0006] Hereto the swivel according to the present invention is
characterised in that the electrical contacts of the outer element are provided in a recess in an annular
solid outer insulating ring,
the electrical contacts of the inner element are provided in a recess in an annular
solid inner insulating ring, coaxial with the outer ring,
the inner and outer insulating rings each defining a boundary surface extending in
an axial direction, the boundary surfaces of each rings being placed in close proximity,
the electrical conductors being placed with their contact surfaces at or near the
boundary surface.
[0007] By the use of solid insulating material in the form of insulating rings, a high dielectric
strength can be achieved such that high voltages on the electrical contacts are possible,
such as voltages up to 33 kV at for instance a nominal current of 395 A. Furthermore,
the use of the solid insulating material allows the size and weight of the swivel
to be reduced, and hence helps to limit bending moments on the turret swivel stack.
Reduced contamination of the insulating material by particles resulting from wear
of the electrical contacts occurs, such that the insulating properties are maintained
during the lifetime of the swivel.
[0008] In one embodiment, the conductors at the outer and at the inner element comprise
annular contact surfaces. By the use of ring-shaped contact surfaces, instead of known
carbon brushes, contamination of dielectric oil in the swivel, which can be used inside
for instance 11kV can be avoided.
[0009] In the swivel, each electrical contact comprises a connector extending axially from
the conductor to a connector surface, situated in an enclosure bound by a cover with
a an opening for fixedly receiving a power cable and with fastening means for connecting
the cover to the outer element, each connector at the connector surface being provided
with a receiving cavity for receiving a conducting wire of the power cable. By integration
of the power cable in terminal boxes that are integrated in the body of the swivel,
certification of the complete swivel can be carried out without a lower voltage limit
being imposed by the connectors, which would be the case when connectors of an Exe
protected type would be applied.
[0010] A suitable material for use as the solid insulating material comprises a polymer
solid electric insulator of polyether ether ketone commercially available under the
tradename PEEK from Entegri's Inc.
[0011] A suitable copper alloy for the electrical contacts is commercially available under
the tradename MULTILAM® copper alloy. Multilam is a nickel plated copper alloy strip
that uses multiple leaf spring louvers and allows contact to be made via a large number
of defined contact points. Each louver forms an independent current bridge, so that
the many parallel louvers substantially reduce the overall contact resistance.
[0012] Because of the high power transmitted by the electrical swivel of the present invention,
it can be used in an offshore construction comprising a first floating structure provided
with a vessel anchored to the sea bed in a weathervaning manner via a turret, the
vessel being provided with at least one swivel according to the invention, an electrical
lead extending from a power supply on the vessel to a sub sea power cable via the
swivel, the sub sea power cable.
[0013] The electrical lead can extend to one or more unmanned satellite platforms to export
for instance 22.5 MVA of power, whereas the electrical generation plant is situated
on an FPSO due to economy of scale benefits and presence of the operation and maintenance
crews. On the platforms the main drives (e.g. gas compression, water injection, gas
lift) are electrical, high reliability and low maintenance allowing the platforms
to be unmanned.
[0014] Another suitable application of the high power swivel according to the present invention
is to export electricity to an onshore location from an offshore FPSO. Instead of
reinjection into the well or transport of gas to shore, gas turbines can be used on
the FPSO to produce electricity which is transported, via the swivel according to
the present invention and a submarine power cable to an onshore power grid.
[0015] Again another application of the present swivel is to supply power from an FPSO to
a sub sea pipeline for heating of the pipeline to counteract hydrate formation due
to low sea water temperatures.
[0016] An embodiment of a high voltage swivel according to the present invention will be
described in detail, by way of non-limiting example, in the appended drawing. In the
drawing:
Fig. 1 shows a longitudinal cross-sectional view of a high voltage swivel according
to the present invention,
Fig. 2 is a schematic cross-sectional view through a conductor pair of Fig. 1;
Fig. 3 shows an embodiment of a cross-sectional view through the high voltage swivel
of Fig. 1;
Fig. 4 shows a detail of the rings of the swivel of Fig. 3;
Fig. 5 shows an alternative embodiment of a swivel of Fig. 1; and
Fig. 6a-6c show an offshore system comprising a high voltage swivel according to the
present invention.
[0017] Fig. 1 shows a high voltage swivel 1, comprising a stationary outer annular wall
2 and an inner cylindrical support 3. The outer annular wall 2 is connected to top
and bottom connector boxes 4,5 for connection to three phase power cables 6, 7. Within
the annular wall 2, five insulating rings 8,9,10,11 and 12 are provided which are
fixed to the outer wall 2. In the insulating rings 8-13 a recess is provided in which
an annular conductor 15,16,17,18 is situated. A boundary surface 20 of the outer insulating
rings 8-11 is contacting the boundary surface of five inner annular insulators 21-24
which are fixed to the inner cylindrical support 3. The inner annular insulators 21-24
and the cylindrical element 3 are rotatable around longitudinal axis 27. Conductors
28-31 are provided in recesses of the insulating rings 21-24. The conductors 28-31
are preferably formed by ring-shaped conductors, but may be comprised of other shapes,
such as cylindrical or spherical shapes. The insulators 8-12 and 21-24, even as the
conductors 15-18 and 28-31 comprise contact surfaces in mutual contact at the boundary
surface 20, for transmission of current from a rotatable power lead 6, to a stationary
power lead 7.
[0018] The inner electrical conductors 15-18 are connected to electrical connectors 32,33
which extend axially to a connector surface 34 of the upper connector box 5. The connectors
32, 33 comprise a cavity 35,36 for receiving a cable 38,39 of three phase power lead
6. A cover 40 of the connector box is rotatably connected to the outer wall 2 via
bearings 41,42 ,seals 43,44,45 and bolts 47. The lower connector box 4 comprises the
same layout as upper connector box 5, and is with a cover 46 fixedly connected to
the outer wall 2. The power leads 6,7 are clampingly attached to each cover 40,46
via a clamping device 50.
[0019] Dielectric oil is protected from overpressure, over temperature and leakage via a
Buchholz Relay unit 51 comprising a compensation bladder for accommodating thermally
induced expansion and contraction of the dielectric oil. The present swivel is suitable
for high voltages, such as 33kV at currents of 395 A or more.
[0020] The conductor 15 shown in Fig. 2 is made of bronze and has rounded corners for ease
of assembly. The opposite bronze conductor 18 is provided with recesses in which a
multi-contact ring, such as a Multilam
® ring, is provided for a resilient conductive contact in a number of contact points,
hence reducing contact friction. The gap 83 between the conductors 15, 18 is filled
with dielectric oil.
[0021] As can be seen from Fig. 3, the inner cylindrical support 3, which may be the rotating
part, the outer wall 2 being stationary, is comprised of a first split ring and an
inner ring 3'of closed circumference, to which the power cables 38, 39 are connected.
To avoid wear of the conductors 15-18 and 21-24 due to constant small-motion relative
movements of the rings 2 and 3, the split ring of the cylindrical support 3 can slightly
deform and remain stationary against outer wall 2, upon small excursions of inner
ring 3'. Upon larger, rotations, e.g larger than 5
0, of the inner ring 3', the split ring of support 3 will follow the outer ring's movements.
As can be seen from Fig. 4, the inner and outer rings 3,3' are coupled via biasing
spring 14.
[0022] In the embodiment of Fig. 4, the inner ring 3' is attached to the outer cylindrical
support 3 of closed circumference via radial projection 19, which is situated between
two springs 14, 14'on the cylindrical support 3. This allows small motions of the
inner ring 3'with respect to the support 3, which upon such small motions can remain
stationary against outer wall 2 to avoid small motion wear.
[0023] Fig. 6a-6c show an offshore system comprising a Floating Production Storage and Offloading
vessel (FPSO) 60 which is anchored to the sea bed 61 via a turret 62, at the bottom
of which anchor lines 63 and 64 are attached. The vessel 60 can weathervane around
the turret 62, which is geostationary. A product riser 65 extends from a sub sea hydrocarbon
well to a product swivel (not shown) on the FPSO 60 and from the product swivel via
duct 65'to production and/or processing equipment on the FPSO. In a power generation
unit 66, gas produced from the well may be converted into electricity which is supplied
to a swivel 67 according to the present invention. The power lead 68 extending from
the power generation unit 66 is attached to conductors on the inner cylindrical support
of the swivel 67 which is stationary relative to vessel 60. The power lead 69, extending
to the sea bed is connected to the electrical conductors of the outer annular wall
of the swivel 67 which is fixedly attached to the turret 62. The power lead 69 may
extend to an unmanned platform 70 attached to the sea bed via product riser 70', such
as a gas riser, or may extend to an on-shore power grid 71, or may be connected to
heating elements 75, 76 of a substantially horizontal hydrocarbon transfer duct 77
between two floating structures 72,73.
1. High or medium voltage swivel (1), comprising an annular outer element (2) defining
a cylindrical chamber around a longitudinal axis (27) and an inner cylindrical element
(3) coaxial with the outer element (2) and rotatable relative to said outer element
around said longitudinal axis (27), the inner and outer elements each comprising at
least two axially spaced electrical conductors (15,16,17,18;28,29,30,31) which conductors
are rotatable with the inner and outer elements (2,3), the conductors forming at least
two pairs (15,28;16,29;17,30;18,31) placed with contact surfaces in mutual electrical
contact, one conductor in each pair (15,16,17,18) being provided at the inner element
(3), the other (28, 29, 30, 31) at the outer element (2)and being connected to a respective
voltage line (32,33)) which extends to an input terminal (6) and to an output terminal
(7) respectively, the conductors (15-18,28-31) being surrounded by an insulating material,
characterised in that,
- the electrical conductors (28-31) of the outer element (2) are provided in recess
in an annular solid outer insulating ring (8,9,10,11,12),
- the electrical conductors (15-18) of the inner element (3) are provided in a recess
in an annular solid inner insulating ring (21,22,23,24), coaxial with the outer ring,
the inner and outer insulating rings (8-12,21-24) each defining a boundary surface
(20, 20') extending in an axial direction, the boundary surfaces of the rings being
placed in close proximity, the electrical conductors being placed with their contact
surfaces at or near the boundary surface (20,20').
2. High or medium voltage swivel (1) according to claim 1, wherein the conductors (15-18,28-31)
at the outer and at the inner element (2,3) comprise annular contact surfaces.
3. High or medium voltage swivel (1) according to claim 1 or 2, each electrical conductor
being attached to a connector (32,33) extending axially from the conductor to a connector
surface (34), situated in an enclosure bound by a cover (40) with a an opening 50)
for fixedly receiving a power cable (6) and with fastening means (47) for connecting
the cover (40) to the outer element (2), each connector (32,33) at the connector surface
(34) being provided with a receiving cavity (35,36) for receiving a conducting wire
(38,39) of the power cable (6).
4. High or medium voltage swivel (1) according to claim 1, 2 or 3, the insulating ring
(8-12;21-24) comprising a solid insulator of a thermoplastic polymer, such as PEEK,
PES, PTFE or Teflon®.
5. High or medium voltage swivel according to claim 4, the insulating ring comprising
a polyether ether ketone (PEEK) polymer.
6. High or medium voltage swivel (1) according to any of the preceding claims, wherein
the electrical conductors comprise a copper alloy, such as a MULTILAM® conductor.
7. High or medium voltage swivel (1), according to any of the preceding claims, wherein
each conductor (15-18,28-31) comprises an annular metal contact surface.
8. High or medium voltage swivel (1) according to claim 7, the metal comprising a copper
alloy, such as a MULTILAM® conductor.
9. Offshore construction comprising a first floating structure (60 anchored to the sea
bed in a weathervaning manner via a turret (62), the structure (60) being provided
with at least one swivel (67) according to any of claims 1 to 8, an electrical lead
(68) extending from a power supply (66) on the vessel to a sub sea power cable (69)
via the swivel.
10. Offshore construction according to claim 9, the power cable (69) extending to at least
a second floating structure (70), at a distance from the first structure, the second
structure connected to a sub sea hydrocarbon well via a riser(70').
11. Offshore construction according to claim 10, the first floating structure (60) being
connected to a sub sea gas field via a riser (65), the power cable (69) extending
to an on shore power grid (71), the power supply (66) at the first floating structure
(60) comprising a gas turbine.
12. Offshore construction according to claim 9, the power cable (69) being connected to
a sub sea hydrocarbon transport duct (74) provided with heating elements (75,76) for
temperature control of the transported hydrocarbon.
1. Drehteil (1) für hohe oder mittlere Spannungen, mit einem ringförmigen äußeren Element
(2), das eine zylindrische Kammer um eine Längsachse (27) bildet, und mit einem inneren
zylindrischen Element (3), das zu dem äußeren Element (2) koaxial ist und relativ
zu dem äußeren Element um die Längsachse (27) drehbar ist, wobei das innere und das
äußere Element jeweils mindestens zwei axial voneinander beabstandete elektrische
Leiter (15, 16, 17, 18; 28, 29, 30, 31) aufweisen, die zusammen mit dem inneren und
dem äußeren Element (2, 3) drehbar sind, wobei die Leiter mindestens zwei Paare (15,
28; 16, 29; 17, 30; 18, 31) bilden, die mit Kontaktflächen in gegenseitigem elektrischen
Kontakt angeordnet sind, wobei der eine Leiter in jedem Paar (15, 16, 17, 18) an dem
inneren Element (3) vorgesehen ist und der andere
(28, 29 30, 31) an dem äußeren Element (2) vorgesehen ist, und die mit einer jeweiligen
Spannungsleitung (32, 33) verbunden sind, die sich zu einem Eingangsanschluß (6) bzw.
zu einem Ausgangsanschluß (7) erstreckt, wobei die Leiter (15-18, 28-31) von einem
isolierenden Material umgeben sind,
dadurch gekennzeichnet,
- daß die elektrischen Leiter (28-31) des äußeren Elements (2) in einer Aussparung in einem
ringförmigen massiven äußeren Isolierring (8, 9, 10, 11, 12) vorgesehen sind,
- daß die elektrischen Leiter (15-18) des inneren Elements (3) in einer Aussparung in einem
ringförmigen massiven inneren Isolierring (21, 22, 23, 24) vorgesehen sind, der koaxial
zu dem äußeren Ring ausgebildet ist,
wobei die inneren und äußeren Isolierringe (8-12, 21-24) jeweils eine in Axialrichtung
verlaufende Grenzfläche (20, 20') bilden, wobei die Grenzflächen der Ringe einander
unmittelbar benachbart angeordnet sind und wobei die elektrischen Leiter mit ihren
Kontaktflächen an der oder nahe bei der Grenzfläche (20, 20') angeordnet sind.
2. Drehteil (1) für hohe oder mittlere Spannungen nach Anspruch 1,
wobei die Leiter (15-18, 28-31) an dem äußeren und an dem inneren Element (2, 3) ringförmige
Kontaktflächen aufweisen.
3. Drehteil (1) für hohe oder mittlere Spannungen nach Anspruch 1 oder 2,
wobei jeder elektrische Leiter an einem Verbinder (32, 33) angebracht ist, der sich
von dem Leiter axial weg zu einer Verbinderfläche (34) erstreckt, die sich in einer
Umschließung befindet, die von einer Abdeckung (40) mit einer Öffnung (50) zum fixierten
Aufnehmen eines Stromkabels (6) und mit Befestigungseinrichtungen (47) zum Verbinden
der Abdeckung (40) mit dem äußeren Element (2) begrenzt ist,
wobei jeder Verbinder (32, 33) an der Verbinderfläche (34) mit einem Aufnahmehohlraum
(35, 36) zum Aufnehmen eines Leitungsdrahts (38, 39) des Stromkabels (6) versehen
ist.
4. Drehteil (1) für hohe oder mittlere Spannungen nach Anspruch 1, 2 oder 3,
wobei der Isolierring (8-12; 21-24) einen massiven Isolator aus einem thermoplastischen
Polymer, wie z.B. PEEK, PES, PTFE oder Teflon®, aufweist.
5. Drehteil (1) für hohe oder mittlere Spannungen nach Anspruch 4,
wobei der Isolierring ein Polyetheretherketon- (PEEK-)Polymer aufweist.
6. Drehteil (1) für hohe oder mittlere Spannungen nach einem der vorhergehenden Ansprüche,
wobei die elektrischen Leiter eine Kupferlegierung, wie z.B. einen MULTILAM®-Leiter,
aufweisen.
7. Drehteil (1) für hohe oder mittlere Spannungen nach einem der vorhergehenden Ansprüche,
wobei jeder Leiter (15-18; 28-31) eine ringförmige Metallkontaktfläche aufweist.
8. Drehteil (1) für hohe oder mittlere Spannungen nach Anspruch 7,
wobei das Metall eine Kupferlegierung, wie z.B. einen MULTILAM®-Leiter, aufweist.
9. Offshore-Konstruktion mit einem erstem Schwimmaufbau (60), der am Meeresboden über
eine Dreheinrichtung (62) nach Art einer Wetterfahne verankert ist, wobei der Aufbau
(60) mit mindestens einem Drehteil (67) nach einem der Ansprüche 1 bis 8 versehen
ist und wobei eine elektrische Leitung (68) von einer Stromversorgung (66) an einem
Schwimmkörper über das Drehteil zu einem Unterwasser-Stromkabel (69) verläuft.
10. Offshore-Konstruktion nach Anspruch 9,
wobei sich das Stromkabel (69) zu mindestens einem zweiten Schwimmaufbau (70) in einem
Abstand von dem ersten Aufbau erstreckt, wobei der zweite Aufbau
über ein Steigrohr (70') mit einem Unterwasser-Kohlenwasserstoff-Bohrloch verbunden
ist.
11. Offshore-Konstruktion nach Anspruch 10,
wobei der erste Schwimmaufbau (60) über ein Steigrohr (65) mit einem Unterwasser-Gasfeld
verbunden ist, wobei sich das Stromkabel (69) zu einem an Land befindlichen Energieversorgungsnetz
(71) erstreckt und wobei die Energieversorgung (66) an dem ersten Schwimmaufbau (60)
eine Gasturbine aufweist.
12. Offshore-Konstruktion nach Anspruch 9,
wobei das Stromkabel (69) mit einer Unterwasser-Kohlenwasserstoff-Transportleitung
(74) verbunden ist, die mit Heizelementen (75, 76) für die Temperatursteuerung des
transportierten Kohlenwasserstoffs versehen ist.
1. Rotule à haute ou moyenne tension (1), comprenant un élément extérieur annulaire (2)
définissant une chambre cylindrique autour d'un axe longitudinal (27) et un élément
cylindrique intérieur (3) coaxial avec l'élément extérieur (2) et rotatif par rapport
audit élément extérieur autour dudit axe longitudinal (27), les éléments intérieur
et extérieur comprenant chacun au moins deux conducteurs électriques espacés de façon
axiale (15, 16, 17, 18 ; 28, 29, 30, 31) lesquels conducteurs sont rotatifs avec les
éléments intérieur et extérieur (2, 3), les conducteurs formant au moins deux paires
(15, 28 ; 16, 29 ; 17, 30 ; 18, 31) placées avec des surfaces de contact en contact
électrique mutuel, un conducteur dans chaque paire (15, 16, 17, 18) étant prévu au
niveau de l'élément intérieur (3), l'autre (28, 29, 30, 31) au niveau de l'élément
extérieur (2) et étant connecté à une ligne de tension respective (32, 33) qui s'étend
jusqu'à une borne d'entrée (6) et jusqu'à une borne de sortie (7) respectivement,
les conducteurs (15-18, 28-31) étant entourés par un matériau isolant,
caractérisé en ce que,
- les conducteurs électriques (28-31) de l'élément extérieur (2) sont prévus dans
un évidement dans un anneau isolant extérieur solide (8, 9, 10, 11, 12),
- les conducteurs électriques (15-18) de l'élément intérieur (3) sont prévus dans
un évidement dans un anneau isolant intérieur solide (21, 22, 23, 24), coaxial avec
l'anneau extérieur, les anneaux isolants intérieur et extérieur (8-12, 21-24) définissant
chacun une surface de limite (20, 20') s'étendant dans une direction axiale, les surfaces
de limite des anneaux étant placées à proximité intime, les conducteurs électriques
étant placés avec leurs surfaces de contact à ou près de la surface de limite (20,
20').
2. Rotule à haute ou moyenne tension (1) selon la revendication 1, dans laquelle les
conducteurs (15-18, 28-31) au niveau de l'élément extérieur et au niveau de l'élément
intérieur (2, 3) comprennent des surfaces de contact annulaires.
3. Rotule à haute ou moyenne tension (1) selon la revendication 1 ou 2, chaque conducteur
électrique étant fixé à un connecteur (32, 33) s'étendant de façon axiale du conducteur
à une surface de connecteur (34), située dans une enceinte limitée par un couvercle
(40) avec une ouverture (50) destinée à recevoir de façon fixe un câble électrique
(6) et avec des moyens de fixation (47) destinés à relier le couvercle (40) à l'élément
extérieur (2), chaque connecteur (32, 33) au niveau de la surface de connecteur (34)
étant pourvu d'une cavité de réception (35, 36) destinée à recevoir un fil métallique
conducteur (38, 39) du câble électrique (6).
4. Rotule à haute ou moyenne tension (1) selon la revendication 1, 2 ou 3, l'anneau isolant
(8-12 ; 21-24) comprenant un isolant solide de polymère thermoplastique, tel que PEEK,
PES, PTFE ou Téflon®.
5. Rotule à haute ou moyenne tension selon la revendication 4, l'anneau isolant comprenant
un polymère de polyéther éther cétone (PEEK).
6. Rotule à haute ou moyenne tension (1) selon une quelconque des revendications précédentes,
dans laquelle les conducteurs électriques comprennent un alliage de cuivre, tel qu'un
conducteur MULTILAM®.
7. Rotule à haute ou moyenne tension (1), selon une quelconque des revendications précédentes,
dans laquelle chaque conducteur (15-18 ; 28-31) comprend une surface de contact métallique
annulaire.
8. Rotule à haute ou moyenne tension (1) selon la revendication 7, le métal comprenant
un alliage de cuivre, tel qu'un conducteur MULTILAM®.
9. Construction en mer comprenant une première structure flottante (60) ancrée au fond
marin à la manière d'une girouette par l'intermédiaire d'une tourelle (62), la structure
(60) étant pourvue d'au moins une rotule (67) selon une quelconque des revendications
1 à 8, un fil de sortie électrique (68) s'étendant d'une alimentation électrique (66)
sur le bâtiment marin à un câble électrique sous-marin (69) par l'intermédiaire de
la rotule.
10. Construction en mer selon la revendication 9, le câble électrique (69) s'étendant
jusqu'au moins une seconde structure flottante (70), à une distance de la première
structure, la seconde structure étant raccordée à un puits à hydrocarbures sous-marin
par l'intermédiaire d'une colonne montante (70').
11. Construction en mer selon la revendication 10, la première structure flottante (60)
étant raccordée à un champ de gaz naturel sous-marin par l'intermédiaire d'une colonne
montante (65), le câble électrique (69) s'étendant jusqu'à un réseau électrique à
terre (71), l'alimentation électrique (66) au niveau de la première structure flottante
(60) comprenant une turbine à gaz.
12. Construction en mer selon la revendication 9, le câble électrique (69) étant connecté
à une conduite de transport d'hydrocarbures sous-marine (74) pourvue d'éléments de
chauffage (75, 76) pour la régulation de la température des hydrocarbures transportés.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description